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Abstract. The ATLAS experiment at the Large Hadron Collider (LHC) op-
erated very successfully in the years 2008 to 2018, in two periods identified as
Run 1 and Run 2. ATLAS achieved an overall data-taking efficiency of 94%,
largely constrained by the irreducible dead-time introduced to accommodate the
limitations of the detector read-out electronics. Out of the 6% dead-time only
about 15% could be attributed to the central trigger and DAQ system, and out
of these, a negligible fraction was due to the Control and Configuration sub-
system. Despite these achievements, and in order to improve even more the
already excellent efficiency of the whole DAQ system in the coming Run 3,
a new campaign of software updates was launched for the second long LHC
shutdown (LS2). This paper presents, using a few selected examples, how the
work was approached and which new technologies were introduced into the AT-
LAS Control and Configuration software. Despite these being specific to this
system, many solutions can be considered and adapted to different distributed
DAQ systems.

1 Introduction

The ATLAS experiment [1] at the Large Hadron Collider at CERN relies on a complex Trig-
ger and Data Acquisition (TDAQ) system [2] to gather and select particle collision data at
unprecedented energy and rate. The TDAQ system is an overly complex distributed com-
puting system composed of a large number of hardware and software components (about
3000 computers and more than 50000 concurrent processes) which, in a coordinated manner,
provide the data-taking functionality of the overall system. The Control and Configuration
(CC) system [3] is responsible for the software infrastructure which manages and operates
the various components of the system and integrates them with the wider ATLAS data tak-
ing environment. It is the software component taking care of configuring, controlling and
monitoring all the TDAQ components and it has to guarantee the smooth and synchronous
operations of all the various sub-systems.

© 2021 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license.
∗∗e-mail: Andrei.Kazarov@cern.ch



The CC software ranges from high-level applications to low-level packages and it is de-
signed following a layered component model (Figure 1). At the very bottom are external
packages to deal, for instance, with threads. The next layer includes base libraries like the
in-house developed object persistency system OKS and the libraries for the CORBA-based
inter-process communication. Higher up are a set of services, like the configuration service or
the process management. Above these layers is the so-called application layer, with the run
control, the expert system, and a set of graphical user interfaces (GUIs) allowing the operator
to act on the system.
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Figure 1. Control and Configuration software: the high-level architecture.

The CC system is a crucial actor in operating the TDAQ system. Indeed, a disruption in
any of the basic and fundamental provided services would not only prevent to acquire LHC
collisions data but would also undermine the capability to properly control and monitor a data
taking session. For that reason, the CC system is asked to provide the means to minimize the
downtime of the system caused by runtime failures.

2 CC Software evolution and upgrade towards LHC Run 3

Control and Configuration services and applications played an important role in successful
TDAQ operations during data taking period in LHC Runs 1 and 2, allowing a high level of
the data taking efficiency.

The first long LHC shutdown (LS1, from February 2013 to spring 2015) was primarily
used to carry out a complete revision of the control and configuration software. Indeed,
several packages were designed in late ’90s and developed in the next decade. Additionally,
new requirements, not foreseen when the system was originally designed, emerged during the
ATLAS operations and were implemented in a less than optimal way. At the same time, new
software technologies appeared that could easily replace or simplify several custom-made
solutions.

As a consequence, the goals for the LS1 updates were three-fold: properly accommodate
additional requirements that could not be seamlessly included during steady operation of the
system; re-factor software that had been repeatedly modified to include new features, thus
becoming less maintainable; and seize the opportunity of modernizing the software, thus
profiting from the rapid evolution in IT technologies. The LS1 CC updates are discussed in
detail in Ref. [4].

Based on what was done during LS1 and the additional experience gained during Run 2,
a new campaign of software updates was launched for the second long LHC shutdown (LS2).



LS2 provided a novel opportunity for significant improvements of various parts of the system
and to make use of new technologies and standards.

All the upgrades were carried out retaining the important constraint of minimally impact-
ing the mode of operation of the system and public APIs, in order to maximize the acceptance
of the changes by the large user community.

3 Developments for Run 3

The following sections give a description of the strategic choices and approaches have been
adopted for the development of some of the major components of the CC system.

3.1 Configuration service storage improvements

The configuration service provides the data-taking configuration parameters. Such data de-
scribe more than 50,000 online processes distributed on more than 3,000 nodes with details
of their control, monitoring, diagnostic, recovery, data-flow and data quality configurations,
as well as connectivity and parameters for various TDAQ and detector modules, chips and
channels. The configurations are prepared and updated by many experts from various DAQ,
high-level trigger and detector groups [5]. Their consistency is one of the key requirements
for reliable and effective functionality of the TDAQ system and the whole ATLAS experi-
ment.

The configuration service is based on the OKS database storing data in XML files, de-
veloped in the middle of the ’90s [6] and gradually improved by needs of the experiment.
During LHC Run 2 we performed an evaluation of available database technologies looking
for suitable candidates for configuration data storage and distribution. It was decided to keep
the OKS database for implementation with few changes.

3.1.1 Data format changes

The first change was an improvement of the OKS XML data format to make it slimmer and
more readable by humans. In particular, now the data payload is stored into XML attributes
instead of elements, empty values and any internal counting numbers are avoided. Thus, there
is much less probability that an expert updating some XML file in a text editor can make a
syntax mistake.

3.1.2 New repository storage: Git backend

The configuration is stored in more than 1000 XML files, with various experts responsible
for updating the ones associated with their systems and detectors. In 2008, a special service
was implemented to validate any changes before they are committed into the OKS repository
verifying the consistency of the files and the update permissions based on user roles [7]. The
service was successfully used during LHC runs 1 and 2 keeping configuration data consistent
100% of time, however some changes are needed for the future.

The service was based on CVS [8], that has been used by the ATLAS software during its
development. CVS has not been supported for several years, and it misses important security
and interface improvements. Nowadays, the Git [9] is an obvious replacement for the service
implementation demonstrating many benefits and profiting expertise and commitment by our
software experts. We avoided several issues of the CVS implementation keeping the service
design mostly unchanged:



• Since Git uses transactions, now, several changes in interconnected files can be commit-
ted in one go. This was not the case in the CVS implementation, where every file was
committed individually and a failure might leave the repository in an inconsistent state.

• In the CVS implementation a configuration was read from a repository snapshot on a shared
file system updated by the CVS server after every commit. Thus, the processes for the same
run might get different configurations depending of the moment they access it. In the new
implementation a run configuration is preserved by a unique Git commit hash, thus any
process reads the same configuration independently of ongoing commits.

• The old service implemented the repository validation on the client side and provided a
special utility to commit changes on the CVS server, so the CVS interface was not exposed
to the users. In the Git implementation the validation is performed in the Git server pre-
receive hook, so clients can use any Git interface including web editors.

• When a configuration needs to be reloaded in the course of the data-taking session, the CVS
implementation presented to an operator a list of modified files to be selected from for a
new configuration. This error-prone approach was replaced by selection of a configuration
from newly available revisions with meaningful commit logs. The postponed changes are
committed into git branches and git merge requests are used to handle them.

The OKS Git update workflow is presented in Figure 2. Gitea [10] is used as a Git server
and it is only accessible inside the ATLAS experiment area. To modify a configuration, the
user clones the repository, makes necessary changes, commits them and pushes back to gitea.
The gitea hook validates changes, and, in case of success, stores them on the server, updates
the read-only snapshot on NFS [11] and synchronizes with CERN GitLab server [12]. The
NFS snapshot is only used for fast viewing of the configuration. The copy of repository
on CERN GitLab can be used to read configuration outside of the experiment area and is
accessible world-wide for authorized ATLAS users.

CERN
gitlab (ro)

experiment
area

gitea (rw)
user
repo

NFS (ro)
snapshot

(1) clone

(2) update
(3) push

(5) sync

configure
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Figure 2. The OKS git update workflow.

3.1.3 Archival

The last change is the new configuration archiving approach. In the past, every OKS config-
uration used for ATLAS data-taking run was archived in Oracle with fine grained details of
individual attribute values of configuration objects. Thus, every new value of every attribute
resulted in one or more new rows in the Oracle tables to be accessible independently of oth-
ers. This was requested by the experts before Run 1, but never used in practice since then.
Instead, the archived configurations were accessed on the files granularity level only. It was
then decided to drop the Oracle archiving and to use the CERN GitLab repository instead.
Every OKS configuration revision can be accessed world-wide via secure HTTPS protocol



using CERN on CERN Single-Sign-On (SSO). Any configuration used for data-taking runs
is tagged in git with the run number, and such tag is stored into the Run Number database.
Thus, every archived OKS configuration can be easily accessed by its run number.

3.2 CHIP: expert system

CHIP (Central Hint and Information Processor) [13] was introduced for the first time in the
TDAQ system during the LS1 period. CHIP is an automation and error management service
whose task is two-fold: maximizing the system efficiency and optimizing the user efficiency.
Indeed, through a continuous and comprehensive monitoring of the TDAQ system, CHIP has
proven in Run 2 to be able to deal fast and effectively with error and failures, thus greatly
reducing the need of manual interventions by the operator. CHIP’s tasks can be divided
into 3 main categories: handling abnormal conditions, automating complex procedures and
performing advanced recoveries.

CHIP at its core relies on an open-source Java-based Complex Event Processing (CEP)
[14] engine, ESPER [15]. The key features of the ESPER engine are the support for
advanced stream analysis (correlation, aggregation, sliding windows, temporal patterns), a
rich SQL-like Event Processing Language (EPL) to express the knowledge base, a natively
high-configurable multi-threaded architecture, the support for historical data replication and
built-in advanced metrics.
During Run 2, the performance of a single instance of CHIP1 was adequate to monitor the
whole TDAQ system and handle all the streams of information generated during the data
taking sessions (Figure 3), with data injection peaks into the ESPER engine of about 40 kHz.
The evaluation of EPL statements was very efficient too, with an average execution time of
about 2 µs per statement (weighted by the number of executions of a statement).

For the LS2 updates, the knowledge base was extended even further to cover new scenar-
ios and implement stop-less operations for new components of the TDAQ system (i.e., the
new read-out [16]). Currently the knowledge base counts more than 340 EPL statements in
29 different contexts, corresponding to a 13% increase in number of statements with respect
to Run 2.
Furthermore, LS2 was a good occasion to update the underlining ESPER engine to its last
version 8. Even though the migration required some code modification and adaptation in
CHIP, it brought sensible improvements in terms of performance and knowledge base orga-
nization. Indeed, the EPL statements are now compiled into Java byte code, hence improving
the efficiency of the runtime execution, allowing a more fine-grained verification process and
exposing features usually only available in high-level object-based programming language
(e.g., the possibility to define streams of events as private in the context of a knowledge base
module, thus greatly reducing the probability of hiding or overriding a certain data stream
definition). As an example, the average execution time (wall time) for the most executed EPL
statement could be reduced by more than 40%.

3.3 WebRC: a web-based DAQ Run Control

3.3.1 Web applications and new requirements

In last decades, web applications are used more and more widely in the area of control and
monitoring of the ATLAS experiment, gradually replacing traditional GUI applications (e.g.

1Running on server equipped with two Intel Xeon E5-2680 V3 CPUs and 64 GB of RAM.



0

5

10

15

20

25

30

35

40

12/02/18 12/03/18 12/04/18 12/05/18 12/06/18 12/07/18 12/08/18 12/09/18 12/10/18 12/11/18

Ra
te

 (k
Hz

)

Date (dd/mm/yy)

Average Max

ATLAS DAQ Operations

Figure 3. The average (blue line) and maximum (orange line) event injection rate into the ESPER
engine over the whole 2018 ATLAS data taking period. As expected, the maximum injection rate has a
high degree of variation. Indeed, the number of events generated by the DAQ system greatly depends on
the state of the system itself (i.e., state transition, errors and anomalies). At the same time, the average
rate is rather constant, with dips corresponding to the LHC machine development and maintenance
periods.

Qt-based). During LS2 we decided to develop a web application, providing functionality
similar to the main controlling application for TDAQ data taking, called Integrated GUI
(IGUI) [17]. This functionality must include: connecting to a running TDAQ session for
control or monitoring; presenting a hierarchical tree of different types of TDAQ applications,
dynamically updating changes in their states; sending commands to controller applications;
subscribing and browsing of Error Reporting Service (ERS) messages in real time; and less
important things like application log files browsing. The application was named Web Run
Control or WebRC.

3.3.2 Choice of technology: Apache Wicket

The main factors affecting the choice of technology for the WebRC application were the
following:

• Its backend part needs to be tightly integrated with main TDAQ services like Run Control,
Information Service and ERS;

• The frontend part should offer rich set of widgets, allowing to implement features similar
to Java Swing elements;

• It shall be well scalable and conservative in resource usage, allowing connections for many
users and serving multiple TDAQ partitions in parallel;

• Support of dynamic and interactive web features like Ajax or Web Sockets.

After a survey and a prototype development, a solid candidate was identified: Apache Wicket
[18], an open source, component oriented, pure-Java web application framework. Devel-
oped since 2004, it remains one of the mainstream Java server-side frameworks, allowing to
develop a powerful Java server application which integrates naturally into TDAQ software



ecosystem. In addition, it does not bring additional libraries or requirements on the frontend
side.

3.3.3 WebRC design and implementation

The server side of WebRC is a single multi-threaded Java application which provides HTTP
access to Wicket components, modelling different elements of running DAQ partitions. The
frontend part is a simple HTML page, containing visualization of the components, following
a typical Model-View design pattern. Visualization is managed internally by Wicket, leaving
to the programmer only the backend part of the business. The screenshot of the page with an
example of a running partition is presented in Figure 4.

Run	Control	
tree

ERS	messages

Partition	
selector

Run	
Information

Rates	plots	
(configurable)

ERS	controls

Figure 4. A screenshot of WebRC web page, representing a TDAQ partition in the Running state.

WebRC application does not require any additional infrastructure and its single instance
can serve dozens of clients and connections. It may be functioning in two different modes:
first is DISPLAY mode, or monitoring mode, where no RC commands can be sent to the sys-
tem, and second is CONTROL mode which provides full functionality like changing system
states, restarting applications etc. This type of application facilitates a lot the remote access
to the control and monitoring aspects of TDAQ data taking for system experts and operators,
which is becoming very demanding in periods of teleworking. Implemented functionality
allows to fully control an ATLAS data-taking session from a web browser, and potentially it
may replace the traditional IGUI application for this purpose. It is possible and is foreseen to
integrate the application with authentication services (like CERN Single-Sign-On) and with
standard TDAQ authorisation facilities (Access Manager).

3.4 ELisA: an electronic logbook for ATLAS and more

A web facility for an electronic logbook [19] has been developed to keep track of the daily
activities of the ATLAS operations, commissioning and deployment work. The logbook is
used by the operators, experts and automated services to record and share information. The
logbook comprises a web user interface (as seen in Figure 5), a REST API, a set of client
libraries, and a set of command line utilities for programmatic-free access to the logbook



operations [20]. The logbook uses a database backend to store its configuration. The facil-
ity provides a configurable email notification mechanism. Also, a logbook message can be
replied directly from the user’s preferred mail client, without accessing the web interface.
The logbook implemements restricted access with multiple user authentication mechanisms.
Developed primarily as the ATLAS experiment operations logbook, the ELisA facility is cur-

Figure 5. ELisA web interface screenshot.

rently being used for other projects such as detector development and commissioning work.
During the LS2 period, we have mainly implemented solutions [21] to improve the portability
of the logbook in private setups outside of the ATLAS working environment:

• Support for other database technologies (MYSQL) was added in order to avoid the depen-
dency from the centralized Oracle database which is quite a complex operation to setup;

• The authentication mechanisms were extended: beside the existing choices based on CERN
Single-Sign-On (SSO) and LDAP servers, social media login (Google and Github) is now
available. This could be potentially useful for setups outside CERN environment.

• The development and maintenance effort by using Spring Boot framework was reduced.
This framework eases the dependencies management, the XML configuration is rulled out
almost entirely, an application is automatically configured given the project dependencies.
As well, Spring Boot provides an embedded servlet container, thus eliminating the need
for an external servlet container installation and maintenance work.

• The deployment procedure was improved by packing all the necessary software and con-
figuration into an RPM, which is available in a public repository.

4 Conclusions and Outlook

The Control and Configuration software has contributed to the physics results obtained by the
ATLAS experiment during Run 1 by ensuring smooth and efficient data taking. It was com-
pletely revised during the Long Shutdown 1 (2013-2014) period in order to accommodate
additional requirements, improve maintainability and profit from advances in IT technolo-
gies. All this was done applying minimal changes to APIs, such that the large amount of
client code would not need significant adaptations. The Control and Configuration software
has proved to be stable, reliable and well performing in LHC Run 2 (2015-2018). In order



to face the new challenges that will arise in Run 3 operations, the Control and Configura-
tion software has undergone a further modernization process in different components during
the Long Shutdown 2. The experience operating the TDAQ system, has also demonstrated
that the overall modular architecture of the control and configuration system is flexible and
supports partial upgrades, as well as step-wise modernization of its components. This is fun-
damental for a system that is foreseen to run for several more years and that will undergo
several more upgrade iterations.
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