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Abstract. The CERN ATLAS Experiment successfully uses a worldwide dis-
tributed computing Grid infrastructure to support its physics programme at the
Large Hadron Collider (LHC). The Grid workflow system PanDA routinely
manages up to 700,000 concurrently running production and analysis jobs to
process simulation and detector data. In total more than 500 PB of data are
distributed over more than 150 sites in the WLCG and handled by the ATLAS
data management system Rucio. To prepare for the ever growing data rate in
future LHC runs new developments are underway to embrace industry accepted
protocols and technologies, and utilize opportunistic resources in a standard
way. This paper reviews how the Google and Amazon Cloud computing ser-
vices have been seamlessly integrated as a Grid site within PanDA and Rucio.
Performance and brief cost evaluations will be discussed. Such setups could
offer advanced Cloud tool-sets and provide added value for analysis facilities
that are under discussions for LHC Run-4.

1 Introduction

The distributed computing system [1] of the ATLAS experiment [2] at the LHC is built around
two main components: the workflow management system PanDA [3] and the data manage-
ment system Rucio [4]. The involved systems manage the computing resources to process
the detector data at the Tier-0 at CERN, reprocesses it periodically at the distributed Tier-1
and Tier-2 Worldwide LHC Computing Grid (WLCG) [5] sites, and runs continuous Monte
Carlo (MC) simulation and reconstruction. In addition, continuous distributed analyses from
several hundred ATLAS users are executed. The resources used are the Tier-0 at CERN and
Tier-1/2/3 Grid sites worldwide, opportunistic resources at High Performance Computing
(HPC) sites, Cloud computing providers, and volunteer computing resources.

The ever growing needs for CPU and disk resources especially during the challenging
LHC Run-4 planned to start in 2027 makes it necessary to explore new technologies and re-
source providers. The Cloud computing providers Google [6] and Amazon [7] offer the latest
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technologies in terms of software containerization and workflow scheduling using Kuber-
netes [8] and large scale storage accessible with industry-standard protocols such as HTTP
and S3. These components will be used in the following to setup a transparent integration
into PanDA and Rucio for production and user analysis workflows. They can be the basis
for an analysis facility in the Cloud and be one ingredient to address the LHC Run-4 data
processing challenges.

2 Data management in the Cloud with Rucio

The Rucio system manages ATLAS data all along their life cycle. In particular, Rucio enables
files to be uploaded and downloaded from distributed storage systems. Rucio can also initiate
transfers between two storage systems directly, a so called third party copy transfer, and
negotiates across potential network links and transport protocols, such as HTTP, WebDAY,
root, GridFTP, or similar. Third party copies are delegated by Rucio to the FTS [9] system,
which executes the actual transfers. One of the two involved storage systems becomes the
active partner in the transfer, the other becomes the passive partner. The active storage either
pushes to, or pulls from, the other storage. It was thus necessary to ensure that these modes
of operation are seamlessly integrated in the way Rucio maps the data namespace onto Cloud
storage. Importantly, transfers to Cloud storage always require the active storage involved
in the transfer to push the data using either the HTTP or S3 protocol. There is currently no
possibility for Cloud storage to pull data from arbitrary storage with other protocols.

Cloud providers use signed URLSs to transfer data in and out of their storage and, depend-
ing on the protocol, use different mechanisms to generate these URL signatures. A signed
URL gives access to the object identified in the URL once for a given operation, and includes
additional information, for example, an expiration date and time, that gives more control over
this access to the content. Rucio was extended to accept and generate both Amazon and
Google style signatures for all its operations. This requires storage of the private key of the
Cloud account owner on the Rucio server in a secure environment. Rucio users never see
or interact with the private key and this eliminates the need to distribute the private keys.
The authorisation module of Rucio was extended to allow users to generate URL signatures
selectively; non-privileged users will still see the existence of the data on the Cloud storage,
but they won’t be able to interact with it since Rucio will not generate a signature for them.
Third party copy, on the other hand, requires that signed URLs are handed over from Rucio
to FTS. This has two problems: the signature could expire before the transfer is able to leave
the queue, and a potential security risk as the signatures could leak through to the monitoring
systems. FTS and its underlying libraries GFAL and Davix were thus extended in the same
way as Rucio, to accept and sign URLs only at the time of actual third party copy. Similarly,
FTS has to store the private key of the Cloud storage owner account. Since even for large
collaborations like ATLAS only two to three FTS instances are in place, this is considered an
acceptable deployment complication.

An additional challenge was posed by the X.509 certificate infrastructure of the Google
Cloud Storage. The trust of the certificates in transfers within WLCG sites is provided by the
Inter-operable Global Trust Federation [10], however, it is important that the Cloud storage is
also verifiable. The Cloud provider Certificate Authority (CA) has to be part of this federation
to allow third party copy transfers. Amazon uses the DigiCert CA which is available in
IGTF, however Google does not, as they use their own CA. Up to now there are still ongoing
discussions to get the Google CA included in IGTF. There exists a workaround where one
can set up a frontend with their own CA, however that incurs additional charges and is thus
not recommended.



The storage at the Cloud provider was set up as follows. The Google Cloud Storage
(GCS) was setup in a single object storage bucket close to the Kubernetes compute. The data
was accessible through signed URLs using HTTPS with the Google signature protocol. The
Amazon Web Services (AWS) storage was setup in an object storage bucket and accessible
through signed URLs using the HTTPS protocol with the S3v4 signature algorithm.

The ATLAS data files in ROOT format [11] and O(1-10 GB) in size were transferred into
the storage buckets using Rucio and processed by either copying them in one-go from the
storage or streaming them into the payload using the HTTPS or S3 protocols, respectively.

3 Simulation of Cloud data management

ATLAS storage resources and commercial Cloud resources can be combined using different
approaches. An approach that was investigated in more detail is the Hot/Cold Storage model.
This model categorizes storage into three categories: Hot Storage, a limited storage resource
which provides the best performance; Cold Storage which is significantly less limited than
hot storage, globally accessible, but not as fast as hot storage; and Archival Storage, which
provides the largest storage space but comes with a very high access latency.

In the Hot/Cold Storage model data required by jobs must exist on hot storage. The data
are preferably transferred from cold to hot storage. If the data are only available on archival
storage they are not only transferred to hot storage but also to cold storage. Data on cold
storage are deleted based on a popularity metric, such as access frequency.

The Hot/Cold Storage model can be combined with the data carousel model [12] to the
Hot/Cold Data Carousel (HCDC) model. The HCDC model targets the bandwidth and access
latency bottlenecks of the data carousel model. The HCDC model can be used by the con-
tinuous ATLAS derivation production workflow [1]. In this model only tape storage would
contain permanent replicas of the input data. The cold storage would be implemented by the
commercial Cloud storage. The data are transferred from tape to Cloud storage based on their
requirement or popularity metric.

A simulation framework [13] was developed to evaluate storage and network usage of
models combining ATLAS resources with commercial Cloud resources. The HCDC model
was simulated assuming Google Cloud Storage as cold storage. Three different configurations
were simulated. The first configuration (I) did not include Cloud storage and had limitless hot
storage available. The results of this configuration should show the best case where all data
can be permanently stored on the hot storage. In the second configuration (II) the hot storage
limit was changed to 100 TB. The results of the second configuration show how the job
throughput is reduced when data have to be transferred from tape, each time they are required.
The third configuration (IIT) keeps the limit on hot storage but includes limitless cold storage.
Figure 1 shows for each configuration a histogram of the waiting time for the input data.
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Figure 1: Waiting time distribution of the HCDC model for configuration I (left), II (middle),
and /11 (right). The number of bins in the left and right histogram was reduced from 30 to 10
to improve visibility of the first bin. The simulation is based on the two Grid and Cloud sites
SITE-1 and SITE-2 each with different storage element setups.



As expected, jobs in the first configuration have small waiting times, because the data is not
deleted on hot storage. The waiting time in the second configuration is higher because data
must frequently be transferred from tape storage. The results of the third configuration are
similar to the results of the first configuration although the hot storage uses the same limit as
in the second configuration. This shows that Cloud storage can improve the job throughput
while keeping the hot storage requirements limited.

4 Integration of Kubernetes with the ATLAS workload management
system

The workload management system PanDA is used to process, broker and dispatch all ATLAS
workloads across the heterogeneous WLCG and opportunistic resources. The interface to the
resources is handled by Harvester [14], which was implemented following a flexible plugin
approach so that it can be easily expanded for any available resource. During the first proof
of concept phase with Google in 2017 [15] the ATLAS payloads on Google Compute Engine
(GCE) had to be integrated in the most native and lightweight way possible. At that point
Harvester plugins were implemented to manage the life cycle of VMs (Virtual Machines)
using the GCE python API. Through contextualization the VMs were starting the PanDA
pilot [16] and executing ATLAS payloads. This model worked correctly, but apart from other
smaller inconveniences it was not generic enough and could only be applied to GCE.

During that time containerization and Kubernetes were getting increasingly relevant in
Cloud environments providing a secure, lightweight, standardized way to package and ex-
ecute software. Kubernetes was available on major Cloud providers, e.g. Amazon, Azure,
Google and Oracle. On the ATLAS side, payloads were being containerized and some col-
laborating institutes were interested in evaluating Kubernetes as a batch system. Therefore
we started a project to implement Kubernetes plugins in Harvester and partnered with a few
institutes to evaluate this model [17].

4.1 Harvester-Kubernetes plugins

Figure 2 shows the schema of the PanDA and Harvester setup to use Kubernetes for job
execution. Most of the Harvester complexity is implemented in the Core. Kubernetes plugins
using the python API will do the following specific integration tasks:

¢ Credential manager: periodically updates a short lived certificate to the Kubernetes cluster
through Kubernetes secrets. This certificate is used by the Pilot to authenticate towards the
storage or the PanDA server.

e Submitter: submits Kubernetes job controllers, specifying the memory and CPU needed
by the jobs. While various shapes exist, the typical requirements are 1 core and 2 GB of
memory, or 8 core and 16 GB of memory. The jobs use Kubernetes affinity so that the
single core jobs attract each other, rather than spreading across the cluster and preventing
the multi core jobs from being scheduled.

e Monitor: gets the status of the Kubernetes jobs and updates it in the Harvester database. To
narrow down the selection of jobs and prevent scalability issues on large clusters, each job
is labeled with its ID and the monitor specifies the label selector when listing the jobs.

e Sweeper: performs the clean-up for completed jobs.
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Figure 2: Schema of the PanDA and Harvester setup for job submission to Kubernetes clus-
ters.

4.2 CVMFS

The only requirement on the cluster is to have CVMEFS [18] installed, since CVMEFS is used to
distribute all ATLAS software. On static clusters the most stable option is to install CVMFS
directly through the package manager. On auto-scaled clusters or clusters where nodes can
be exchanged dynamically, for example Google pre-emptible instances and Amazon Spot in-
stances, direct installation is not possible and CVMFS needs to be installed as a daemonset.
There are different solutions that other projects in the High Energy Physics (HEP) environ-
ments have developed: CVMFS CSI driver [19] and the CVMFS OSG driver [20]. Both
options have a very similar daemonset concept with a privileged CVMFS pod running on
each node and sharing a volume to the other pods in the node.

e The CSI driver shares the volume by implementing the CSI standard functions in Golang.
e The OSG driver shares the volume through a local volume and is much simpler to operate.

Slight adaptations of the OSG driver were made and liveness probes were added to verify all
CVMES mounts are present. Independently of the driver, it is of critical importance to specify
adequate resource specifications (memory and CPU requests) for the pod, since otherwise it
will get killed when the node is out of memory or be extremely slow when the node is out of
CPU. With these considerations the OSG driver has worked very stably for us.

4.3 Frontier squid

ATLAS uses a Frontier squid [21] hierarchy to distribute detector conditions data that de-
scribes the environment under which the LHC collision events were taken. The squid can
also be used to cache CVMES for the cluster. If a Grid site is not connected to a squid cache,
the requests from all individual nodes are directed to the Tier-1 launchpads at the top of the
hierarchy. The Tier-1 launchpads are a critical service and it’s important to protect them.
Therefore a squid cache has to be setup in a Cloud VM next to the Kubernetes processing
cluster or directly in the cluster as a pod. The frontier pod is exposed as a Kubernetes service
controller so that the internal IP does not change even when the pod is moved in the cluster.



4.4 Service accounts

Harvester does not require administrator privileges on the clusters, but only a restricted set
of actions to interact with jobs, pods and secrets. The actions can be limited to a certain
namespace. The usual procedure is to generate a service account that defines the scope of
action for Harvester. Depending on the Cloud provider it is possible to generate service
accounts directly through the admin interface, or otherwise it is possible to generate them
directly in the Kubernetes cluster. These settings are extracted to a Kubeconfig file per cluster
that contain information about the user, the cluster endpoint and the certificate. They are
placed in Harvester to communicate with the cluster.

4.5 Infrastructure choices in the Cloud

Commercial Cloud providers offer a wide range of options for virtual machine sizing and
performance. During the current tests at Google and Amazon we did not attempt to do a
complete study or benchmarking of all available options, but did gain some experience in
the choices to make, depending on the different job requirements. During our exercises we
typically run two types of jobs:

e Monte Carlo simulation jobs: multi core jobs that are very CPU intensive and have very
low I/O demands. Given the low I/O requirements the worker node can download the in-
put from, and upload the output to, a remote storage without heavily penalizing the CPU
efficiency or congesting the network. For these jobs we usually select the most afford-
able virtual machines with 8vCPU, 16GB of RAM (or the default RAM selection) and the
lowest-end storage (i.e. spinning network disk) for the creation of our Kubernetes cluster.
In the case of Amazon it is not recommended to use "Burstable" instances, since the jobs
will exceed the CPU baseline and incur in additional costs. We did not compare the pro-
cessing times of different CPU families in the same Cloud, but it would be interesting to
see which CPU family offers the best price/performance relation for these jobs.

e User analysis: single core jobs with frequently very high I/O requirements. Preferably,
these jobs are executed close to the storage endpoint. Partially because of our "in vitro"
conditions and the short expiration times of the signed URLs provided by Rucio to interact
with the storage, our analysis exercises required a high throughput to the VM disk. It is
important to pay attention to the throughput rates of the devices you choose in your setup.
Cloud providers can have throttle policies to protect their network and share it across the
tenants. In the case of the Google Cloud storage, there are different strategies you can
consider in order to increase the disk throughput, such as over allocating disk (throughput
can be a function of the disk size) or taking faster devices like SSDs (see Figure 3). In the
case of local SSDs, the fastest option, you will need to see the availability and conditions.
The output of these jobs is usually much smaller in size compared to the inputs and chosen
to be uploaded to the Cloud storage using Rucio. The signed URLs for the output files on
the Cloud storage are generated during the stage-out process.

4.6 Kubernetes mini-grid

The Harvester-Kubernetes model has proven a very interesting solution. A few ATLAS sites
have shown interest to run (a part of) their batch services as a Kubernetes cluster. Regarding
commercial Clouds, the integration has been demonstrated at different scales on Google,
Amazon and Oracle (the latter only to run some test jobs on a trial account). During 2020
we have run a 1000-2000 core Kubernetes mini-grid (see Figure 4) with several participants
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Figure 4: Number of running job slots using Harvester and Kubernetes at various Grid and
Cloud sites in August-October 2020. The successful wallclock consumption was 91 per cent
during this period.

and dedicated significant effort to stabilize operations. We managed to bring down the failure
rate to levels comparable to the Grid. Eventually the failure rate depends on a combination of
issues at each site, the associated storage and also other SW or central infrastructure issues.

5 Production and Analysis jobs performance

Using the compute and storage setup described in the previous sections, we first demonstrated
that ATLAS production input data can be automatically transferred in and out of the Cloud
storage using Rucio. Figure 5 shows the throughput rate in GB/s to the Google Cloud storage
from various Grid sites. Data transfers are possible at the same or even higher rates than
between currently used Grid sites. One aspect to consider is that the Grid sites are largely
connected through the general purpose network to Cloud providers and are not using ded-
icated links on the LHCOPN/LHCONE networks. As a second step we demonstrated that
continuous and stable production and user analysis using the previously described Harvester
and Kubernetes workflow path can be successfully used. Figure 6 (a) shows the number of
running job slots for production and user analysis on Google Kubernetes Engine (GKE). The



Transfer Throughput
== PRAGUELCG2_DATADISK

= UNIBE-LHEP_DATADISK

LRZ-LMU_DATADISK

25GBs
AGLT2_DATADISK

== UKI-NORTHGRID-MAN-HEP_DATADISK 1.128 GBs 433 MBs
(M1

1 I
— B

, B |
il UL ETTHTTT

. | | .I-l. | 1 | l Em__

1610 1620 30 16140 00 0 30 840 18

— TOKYO-LCG2_DATADISK 1464GBs 303 MBs

Figure 5: Rucio throughput to GCS during a test transfer of about 50 Terabytes split by
source Grid sites. These Grid sites store a fraction of the ATLAS data files on Rucio storage
elements called DATADISK.

number of slots is not always flat, because we were actively working on different activities
and redistributing the resources according to internal priority. Pre-emptible worker nodes
have been used for production jobs in order to save costs. Pre-emptible nodes are made avail-
able by Google at a significantly reduced cost with the limitation that they only can live up
to 24 hours, but could be evicted earlier if there is a fully paying Cloud tenant. Pre-emptible
nodes are required to find a balance between maximal job duration and acceptable failed wall-
time. For example jobs with a duration over 24 hours will never succeed on a pre-emptible
node. Our choice was to only broker jobs with a duration under 5 hours, which lead to a
failed walltime under 10%. This loss was largely outweighed by the cost savings. Failed jobs
are automatically retried by PanDA and in reasonable conditions do not require additional
operational load.

User analysis jobs have been scheduled on powerful standard (non pre-emptible) worker
nodes to avoid our users having to wait for some of the failed jobs to be automatically retried.
Figure 6 (b) shows the Google Cloud Storage throughput rate in MB/s that is mainly dom-
inated by analysis job input file reading and demonstrates that the large I/O demands from
user analysis can be met by the Cloud storage. As described in Section 2 input files are either
downloaded once before the user payload is started on the worker node or streamed into the
running user payload. Both modes work fine with AWS storage while with GCS only the first
mode works at scale right now. There had been so far only a very small number of analysis
users and the dataset size permanently stored and analysed was in the O(TB). Non-standard
ATLAS workflows like using GPU in addition to CPU processing could be easily added.

The list-price costs running with a GKE cluster of O(200) CPUs and a small local GCS
storage in the O(TB) and remote stage-out of the production data was about 2.3k USD/month
(77 USD/day) in July and 1.7k USD/month (54 USD/day) in August 2020 including all costs
and in particular network egress costs. Depending on the Cloud service choices the Cloud
CPU and storage prices can be more than a factor of 5 higher applying the list prices in com-
parison to a Tier2 Grid site. This applies especially to continuous operations. But Cloud
computing resources can very flexible requested on-demand in case of short notice resource
needs. The price difference will be lower if staffing costs and costs for power and hous-
ing are considered. Pre-emptible CPU slots or academic discounts will reduce the costs for
Cloud computing usage further. One non-negligible factor remains the network egress costs
in Cloud computing which constrains some of the workflows in terms of costs.

We have also operated PanDA queues on Amazon Elastic Kubernetes Service (EKS).
Amazon offers their unused capacity in the Spot market and users can bid for those resources.
When providing a large enough bid it is possible to obtain virtual machines without a prede-
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fined deadline. In practice we have used a bid of 0.16 USD/hour (list price is 0.384 USD)
for m5.2xlarge machines (8 vCPU and 32GB RAM). With this bid we have been running a
stable, uninterrupted 160 core cluster since September 2020 (see Figure 7). We have encoun-
tered one important issue, where the EKS nodes stop receiving jobs after one or two weeks.
This is caused by a bug in an old systemd version used in the Amazon Machine Image (AMI),
which does not clean up correctly transient mounts and makes the node unschedulable. This
explains the periodic drops in Figure 7. Currently we are terminating those nodes manu-
ally, but a permanent solution needs to be found. We didn’t evaluate jobs with heavy 1/O

requirements.
6 Summary and Conclusions

Google and Amazon Cloud computing services have been successfully integrated within the
ATLAS workflow and data management systems PanDA and Rucio. State-of-the-art tech-



nologies like Kubernetes and Cloud storage are used and work at the scale of today’s medium
sized Grid sites. The Cloud provider list prices are still higher than currently operating Grid
sites. The discussed solutions are not ATLAS specific and can be easily adapted by other
HEP or non-HEP communities, and may be considered for example in the implementation
of analysis facilities for LHC Run-4, with all the added values and services offered by the
commercial Cloud providers.
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