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We discuss the possibility of forming primordial black holes during a first-order phase transition in
the early Universe. As is well known, such a phase transition proceeds through the formation of
true-vacuum bubbles in a Universe that is still in a false vacuum. When there is a particle species
whose mass increases significantly during the phase transition, transmission of the corresponding
particles through the advancing bubble walls is suppressed. Consequently, an overdensity can build
up in front of the walls and become sufficiently large to trigger primordial black hole formation.
We track this process quantitatively by solving a Boltzmann equation, and we delineate the phase
transition properties required for our mechanism to yield an appreciable abundance of primordial
black holes.

Introduction. Black holes are among the most
fascinating objects in the Universe, inspiring not
only scientists, but also science fiction authors, film-
makers and their audiences. Since Schwarzschild [1]
and Droste [2] first provided exact solutions to the
Einstein equations, which predict the existence of
black holes, the field has come a long way. In 2016
the LIGO and Virgo collaborations announced the
first observation of gravitational waves from a merger
of stellar-mass black holes [3], followed in 2019 by the
spectacular first direct image of a supermassive black
hole by the Event Horizon Telescope [4].
While we know that black holes can form when

old, massive stars collapse after running out of fuel,
it is not clear whether this creation mechanism can
account for the whole population of observed black
holes. There is therefore a keen interest in primordial
black holes (PBHs), which are created in the hot and
dense early Universe fractions of a second after the
Big Bang. For recent reviews on PBHs, see refs. [5–
10]. Depending on the time at which they form,
PBHs can have almost any mass, and could solve a
number of problems in cosmology: most importantly,
they could constitute all or part of the dark mat-
ter (DM) [5, 7, 8, 10], they could create other DM
particles when they evaporate [11–22], change the
expansion history of the Universe [17, 23], remove
unwanted monopoles or domain walls from the Uni-
verse [24, 25], or provide seeds for the supermassive
black holes observed at the centre of galaxies [26] or
for large scale structure formation [9, 27–30]. There
are several possible production mechanisms of PBHs:
the most widely studied is collapse of density pertur-
bations generated during inflation [31–37], while the
collapse of topological defects [38–45], the dynamics
of scalar condensates [46, 47], or collisions of bubble

walls during a first-order phase transition [48–53] are
viable alternatives.

We here present a new mechanism of PBH pro-
duction during a first-order cosmological phase tran-
sition. While previous papers on this topic have only
considered the energy density stored in the bubble
wall, we will focus on a population of particles that
interact with the bubble wall. The mass of these par-
ticles may increase significantly during phase transi-
tions due to either confinement or a Higgs mecha-
nism. If this is the case, energy conservation means
that all but the highest energy particles will be re-
flected and remain in the false vacuum. This sce-
nario has been previously considered for other rea-
sons, but black hole formation has not been shown.
For example, confining phase transitions have been
shown to produce quark nugget DM [54–61], where
Standard Model (SM) or dark quarks are trapped
in a colour-superconducting phase, unable to transi-
tion to the standard QCD vacuum. The dynamics
of reflected particles during a phase transition real-
ising a Higgs mechanism has recently been studied
in ref. [62], where the focus was on the formation of
Fermi-ball DM. In this scenario, small pockets of the
false vacuum are supported by dark particles that
have insufficient energy to transition to the true vac-
uum. These false vacua are stable but not dense
enough to collapse into black holes. In this work,
we determine the conditions under which the den-
sity of reflected particles could lead to the formation
of PBHs. The mass and abundance of the PBHs
depend on the temperature at which the phase tran-
sition occurs and the probability that a black hole
will form in a given volume. We here present the
general mechanism and describe quantitative results
for a toy model. Technical details of the calculation
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FIG. 1. A cartoon picture of the late stage of a first-
order cosmological phase transition: regions of true vac-
uum (blue) are expanding with speed vw and coalescing,
leaving an approximately spherical bubble of false vac-
uum (light red). Very high momentum χ particles can
pass through the bubble wall into the true vacuum and
gain a large mass, while lower momentum χ particles are
reflected due to energy conservation. The build-up of χ
particles creates a density perturbation which may lead
to PBH formation. The local coordinate system is also
shown, along with the bubble wall thickness, lw.

appear in ref. [63].
General Mechanism. We envision a scenario

where there are two new fields, χ and ϕ. The field ϕ
is a scalar and undergoes a first-order phase transi-
tion while in thermal contact with the SM. At high
temperatures ϕ does not have a vacuum expectation
value (vev), ⟨ϕ⟩ ≡ ⟨0|ϕ|0⟩ = 0, but at the nucle-
ation temperature, Tn, ϕ develops a vev, ⟨ϕ⟩ ̸= 0.
In first-order phase transitions bubble walls, where
⟨ϕ⟩ transitions smoothly from 0 to its final value,
move through the Universe, leaving behind the new
⟨ϕ⟩ ≠ 0 phase. The field χ interacts with ϕ in such
a way that its mass significantly increases when ϕ
obtains its vev. In the simplest case, this is achieved
through a Yukawa coupling of the form LY = yχϕχχ.
When a χ particle collides with the bubble wall, it
can only pass through if it has enough kinetic en-
ergy to overcome the mass difference (due to en-
ergy conservation). Otherwise, the bubble walls will
sweep up χ particles and increase their density in the
⟨ϕ⟩ = 0 region. The resulting density perturbations
can then lead to PBH formation. The scenario is de-
picted schematically in fig. 1. While most treatments
of first-order phase transitions envision an expanding
bubble with ⟨ϕ⟩ ≠ 0 inside, we consider a shrinking
bubble with ⟨ϕ⟩ = 0 inside. The latter situation is
more suitable for describing the late stages of the
phase transition, when the density of particles swept
along becomes highest and black hole formation is
most likely.
We first perform a simplified analysis, to demon-

strate the plausibility of the mechanism. We take

the bubble to have an initial radius r0w ∼ rH where
rH ≡ 1/H (with H the Hubble parameter) is the
radius of a Hubble volume, i.e., the largest causally
connected volume at a given time in the evolution of
the Universe.

We will take χ to be relativistic inside the bub-
ble and assume for the moment that no χ parti-
cles can penetrate the bubble wall. We assume χ
begins in equilibrium, but as χ particles would ac-
tually have been swept up from the beginning of
the phase transition, this assumption underestimates
the achievable overdensity and is therefore conserva-
tive. The density of the χ particles will increase as
the bubble shrinks, with an energy density given by
ρχ = [r0w/rw(t)]

4ρeqχ , where ρeqχ = (7π2/240)gχT
4
n is

the equilibrium energy density of χ and rw(t) is the
bubble radius at time t. The factor gχ = 4 accounts
for the number of degrees of freedom of χ and its
anti-particle χ̄. This scaling can be understood from
the increase in number density ∝ [r0w/rw(t)]

3 due
to the decreasing bubble volume, combined with the
energy gain ∝ r0w/rw(t) of each χ particle due to re-
flections off a bubble wall moving at non-relativistic
speeds. On each reflection, the particle’s energy in-
creases by dE = 2vwE. The time between such col-
lisions is dt ≈ 2rw(t) = 2(r0w − vwt). From these
two relations, we can deduce that E ∝ r0w/rw(t).
While this energy increase on reflection is ultimately
sourced from the latent heat of the phase transition,
it is independent of the latent heat (and derived
quantities such as vw) when expressed in terms of
the wall radius, as long as the wall moves at a con-
stant, non-relativistic speed. We will assume that
this is the case; more justification for this assump-
tion is given below as well as in ref. [63].

A black hole forms when the bubble is smaller than
the Schwarzschild radius of the total enclosed energy,

rw(t) < rs ≡ 2GE
(<rw)
tot , (1)

where G is the gravitational constant and E
(<rw)
tot is

the total energy inside a bubble of radius rw(t). To
be conservative, we will only include the energy of
the χ particles and not that of, for instance, the wall
itself.

On substituting in ρχ and using the Friedmann
equation H2 = 8

90π
3Gg⋆T

4
n , with g⋆ the effective

number of relativistic degrees of freedom in the ther-
mal bath, we obtain

rw(t)

rH
<

√
7

8

gχ
g⋆

(
r0w
rH

)2

. (2)

We see that the Schwarzschild criteria depends on
temperature only through g⋆(Tn), and is otherwise
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independent of any physical scale. For Tn ≳ 100GeV
(so g⋆ ∼ 100) and r0w ≈ 1.5 rH , the condition is sat-
isfied when rw(t) ≈ r0w/3.7. So if large r0w ∼ rH
bubbles can capture the majority of the χ particles
while shrinking by a factor of a few, then we would
expect to form black holes.
While this is encouraging, there are many physi-

cal effects not captured by this heuristic description:
(1) Walls moving relativistically will impart a larger
momentum boost on the χ particles. This effect in-
creases the energy density of the χ particles, making
it easier to satisfy the Schwarzschild criteria. (2)
Sufficiently energetic χ particles will be able to tra-
verse the wall, reducing the overdensity. (3) As ρχ
grows, the gravitational force will further reinforce
the overdensity. (4) The χ particles may annihilate
via χχ̄ → ϕ and χχ̄ → ϕϕ, and (5) they may scatter
off each other and off ϕ particles, leading to mo-
mentum redistribution. (6) The wall velocity and
width may vary as the bubble shrinks. (7) Hubble
expansion delays the shrinkage of the bubble, and
red-shifts the energy density inside.
In the following we will discuss numerical simula-

tions that take into account the first four of these
effects. The fifth one – momentum redistribution –
is expected to be relatively unimportant as the scat-
tering rate of χ is of the same order as the χχ̄ an-
nihilation rate, and as black hole formation can be
successful only when annihilation is negligible. Al-
though the mechanism is approximately independent
of the wall width and velocity – the sixth point – the
time-dependence of vw can be important in extreme
cases: a runaway bubble wall would mean that es-
sentially all χ particles can pass through the bubble
wall, while a high χ density could stop the wall com-
pletely, halting the phase transition. Avoiding both
of these extremes is possible if the latent heat release
is not too large and not too small. In addition, com-
plete models will often feature friction mechanism
such as particle production at the bubble wall that
prevent vw from becoming too large, while not im-
peding the advancement of the wall at slow vw. The
latent heat release should also not be so large that
the interior of the bubble is vacuum energy domi-
nated. We discuss these aspects in more detail in
a companion paper, ref. [63]. Finally, we neglect
Hubble expansion because we will find that, if black
holes form, they do so after not much more than one
Hubble time. We discuss all of these effects in more
detail in ref. [63].
Numerical Results. As a basis for our numeri-

cal analyses, we introduce a Dirac fermion χ and a
real scalar field ϕ, whose dynamics control a first-
order phase transition. Both χ and ϕ are SM gauge

singlets. The Lagrangian of our toy model contains
the terms

L ⊃ −m0
χχχ− yχϕχχ− V (ϕ) , (3)

where yχ is a real Yukawa coupling and V (ϕ) is the
scalar potential. When ϕ obtains a vev, χ obtains
a mass correction mχ = m0

χ + yχ⟨ϕ⟩. In this toy
model we will assume that m0

χ ≪ Tn ≪ yχ⟨ϕ⟩, so χ
will be relativistic inside the bubble. While χ also
obtains a thermal mass, this will be negligible com-
pared to Tn. We will not assume any particular form
for the scalar potential but will assume that it leads
to a first-order phase transition, which we will pa-
rameterise by a nucleation temperature, Tn, order
parameter, ⟨ϕ⟩/Tn, wall thickness, lw, and wall ve-
locity, vw. We further assume that the temperature
does not vary significantly during the phase transi-
tion and that ϕ stays in thermal contact with the
SM bath. We also find that the mechanism requires
large order parameters, ⟨ϕ⟩ ≫ Tn, so that mχ ≫ Tn.
This is can be achieved in renormalizable polynomial
potentials with only very mild fine tuning.

Starting from the initial conditions discussed
above, we then track the phase space distribution
function of χ, fχ, by numerically solving the Boltz-
mann equation L[fχ] = C[fχ], where the Liouville
operator L[fχ] accounts for the evolution of fχ in
the absence of hard interactions. The collision term
C[fχ] accounts for particle annihilation and creation
via χχ̄ ↔ ϕ and χχ̄ ↔ ϕϕ. Assuming spherical
symmetry reduces the problem to one spatial di-
mension and two momentum dimensions, so that
fχ ≡ fχ(r, pr, pσ, t) only retains a dependence on the
radial coordinate r, on the momenta in the radial and
tangential directions, pr and pσ, and on time t. We
then solve the resulting system of equations numeri-
cally, building on methods similar to those described
in ref. [64]. We use the method of characteristics,
which transforms the Boltzmann equation – a par-
tial differential equation – into a system of ordinary
differential equations, each of which corresponds to a
particle’s phase space trajectory. Full details of the
equations and the methods used to solve them can
be found in ref. [63].

In fig. 2 we show the spatially averaged χ+ χ̄ en-
ergy density, ⟨ρχ⟩, inside the bubble as a function of
time, parameterised by the bubble radius, for four
benchmark parameter choices. We see that the blue
curve with r0w = 1.5 rH satisfies the Schwarzschild
criteria for black hole formation when it has shrunk
by a factor of around three, as expected from eq. (2).
The orange curve, characterised by a larger r0w =
2 rH , satisfies the Schwarzschild criteria when it has
shrunk to a radius of ≈ rH (that is, by a factor of
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FIG. 2. The simulated spatially-averaged energy density
of χ+ χ̄, ⟨ρχ⟩, inside a shrinking bubble as a function of
time, parameterised by the bubble radius, for different
parameter points. In the grey region the Schwarzschild
criteria is satisfied, and the point of black hole formation
is indicated by a black point.

around two). The average energy density, ⟨ρχ⟩, in-
creases approximately like a power-law ∝ r−4

w (t), for
the blue and orange curves.
The dashed green and dot-dashed red curves show

two parameter points which fail to lead to black hole
formation. For the parameter point shown in green,
the mass gain (mχ = 5Tn) is too small to prevent
χ particles from leaking through the bubble wall. In
the red curve, the large Yukawa coupling leads to
too many χ particles annihilating. For mass gains
larger, and Yukawa couplings smaller, than shown
in the blue and orange curves, black hole formation
is again successful.
Overall, we see from fig. 2 that black hole forma-

tion is successful, as long as yχ is small enough to
avoid excessive χ annihilation, and mχ/Tn is large
enough to suppress χ transmission through the bub-
ble wall. As mχ ≈ yχ⟨ϕ⟩, this underlines the need
for very large ⟨ϕ⟩/Tn.
The Resulting Black Hole Population. The

mass of a PBH that forms during radiation domi-
nation is mBH ∼ (r0w)

3/(Gr2H) [9]. The black hole
relic abundance when the Universe has temperature
T , expressed as a fraction of the DM relic abundance
at T , is then

f ≡ ΩPBH(T )

ΩDM(T )
=

nPBH(Tn)mBH

ΩDM(T0) ρcrit(T0)

g⋆s(T0)T
3
0

g⋆s(Tn)T 3
n

≈ 3.7× 109 p

(
Tn

GeV

)
, (4)

where the initial number density (at the nucleation
temperature of the phase transition, Tn) is given by
the number of black holes formed per Hubble vol-
ume, nPBH(Tn) = 3 pH3/4π, p is the probability that
a black hole will form in a given Hubble volume, T0

is the temperature today, g⋆s is the effective number
of degrees of freedom in entropy, and we assume that
the black hole mass does not significantly change be-
tween formation and today. In other words, we ne-
glect accretion and Hawking evaporation. The ex-
pression after the second equal sign in eq. (4) does
not depend on T any more because the dark matter
abundance, ΩDM, and the PBH abundance, ΩPBH,
depend on temperature in the same way. The pa-
rameter p depends on the details of the phase tran-
sition and can be approximated as the probability of
not nucleating a true-vacuum bubble in a shrinking
false-vacuum pocket. (If new regions with ⟨ϕ⟩ ≠ 0
form before collapse is complete, the accumulating
particles will be split into separate populations, each
of which is too small to form a black hole.) Quan-

titatively, p ∼ exp
[
−

∫ t

0
dt′Γnuc(t

′)
]
. Here, Γnu(t)

is the nucleation probability, which is typically an
exponentially growing function of βt, where β is
the parameter describing how fast the bounce ac-
tion evolves with temperature [65]. This shows that
phase transitions with small β – such as supercooled
transitions – are particularly conducive to black hole
formation [65, 66]. We discuss this point further in
ref. [63] and find that β/H ≲ 4.
Taking the conditions on the phase transition to-

gether, we see that a black hole can form if (1) the
initial radius of the false-vacuum pocket is slightly
larger than the Hubble radius, (2) the interior is not
vacuum energy dominated, (3) the bubble wall veloc-
ity is not too fast (γw ≲ yχ ⟨ϕ⟩ /Tn), (4) the phase
transition is strong enough to overcome the pressure
of the matter trapped in the false vacuum, and (5)
the phase transition proceeds slowly (β/H ≲ 4). We
note that these conditions are typically not simul-
taneously satisfied in phase transitions discussed in
the literature. In particular, slow phase transitions
(5) typically do not have a small latent heat (2), e.g.
Ref. [66]. Conversely, phase transitions with a small
latent heat (2) do not typically proceed slowly (5),
e.g., Ref. [65].

However, it is reasonable to think that these condi-
tions could be simultaneously achieved. Additional
friction forces acting on the wall (possibly due to
further particles present in a complete model) would
help accommodate condition (3) [63]. Conditions (2)
and (4) can both be satisfied if the potential differ-
ence ∆V between the true and false vacua lies in a
narrow range [63]. Satisfying condition (5), a slow
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transition, then imposes constraints on the height
and width of the barrier between the two vacua.
Finally, for small β, condition (1) will be satisfied
in some regions of the Universe on a statistical ba-
sis [63].
It is plausible that even polynomial potentials

could satisfy all these conditions simultaneously. In
the limit of small latent heat release ∆V relative to
T 4
n , a 4th-order polynomial at T = 0 can be written

as

V (ϕ) ≈ 16
(v − ϕ)2ϕ2

v4
B +

ϕ2(5v2 − 14vϕ+ 8ϕ2)

v4
∆V ,

(5)

where B is the barrier height and v is the vev. In
this form we see that we can independently fix the
latent heat release, addressing (2) and (4), the bar-
rier height at T ∼ 0, addressing (5), and the vev.
Condition (3) could then be addressed by additional
physics that introduces more sources of friction and
condition (1) would determine the resulting PBH
abundance. A detailed investigation of explicit mod-
els that address all conditions is left for further work.
The dark grey contours in fig. 3 show the PBH

mass fraction we predict as a function of the black
hole mass mBH for different values of p. The top axis
shows the nucleation temperature Tn corresponding
to each black hole mass, assuming that r0w ∼ rH .
We see that phase transitions occurring between the
Planck scale and the time of matter–radiation equal-
ity can form PBHs with masses from the Planck scale
up to 1018M⊙. Of particular interest may be the
following mass ranges: (1) mBH ∼ 10−15M⊙, where
PBHs could account for all the DM in the Universe;
(2) below about 10−23M⊙, where their evaporation
before Big Bang Nucleosynthesis (BBN) would pro-
vide an interesting production mechanism for par-
ticles (including possibly DM) that interact with
the SM only gravitationally; (3) around 1010M⊙,
where PBHs could seed supermassive black holes [26]
and/or large scale structure formation (LSS) [9, 27–
30]; (4) around 10−5M⊙, where they could explain
the possible hint seen by the OGLE survey [67, 68].
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