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In modern particle physics experiments, the identification and trajectory of physics object, e.g.
leptons and jets, depends on a complex pipeline of feature extraction, search, and machine
learning algorithms. Deep neural networks (DNNs) offer a possibility of streamlining this
process. This note describes the production of a dataset that the ATLAS collaboration is
releasing for community use. It is formatted like popular point-cloud datasets, e.g. ShapeNet
or S3DIS, which have been used to research new network topologies and applications. This
dataset broadens the domain of these public datasets to include high energy physics detectors
and encourages new deep learning research. The note also describes the application and
performance of the PointNet++ and DGCNN networks, as well as the GravNet and GarNet
networks developed by the HEP community. These networks predict to what type of physics
object each detector readout channel is associated, e.g. electron, jet, or neither in this case. In
the analysis, the performance is measured using the mean Intersection over Union scores. The
result suggests that these networks could be used as a method to narrow the search space in a
traditional reconstruction pipeline.

The dataset is derived from simulated Z → e+e− production in associationwith jets. Each event
is represented as a list of non-zero ATLAS detector readouts, including the detector channel
readout position, raw readout value, and some truth information. The truth information
indicates if a channel is associated to an electron, jet, or neither. There is also tracking
information included to facilitate track studies.
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1 Introduction

Reconstructing and identifying objects, like particle jets and leptons, is an integral piece of both trigger
and physics object reconstruction with data collected by the ATLAS detector [1] at the LHC [2]. Current
algorithms have been developed and honed over the last two decades leading to very high precision particle
identification [3–5]. These algorithms perform a step-wise reduction and refinement transforming raw
detector readout channels to energy clusters and particle tracks, which are used in identifying final state
particles and measuring their four momenta.

The ATLAS collaboration is releasing the dataset described herein to encourage cross-domain research.
The first study motivating this effort will be described below. It aims to understand if deep machine
learning methods applied to low-level ATLAS detector data can effectively label detector channels as
being associated with a jet or electron. The dataset contains detector readout channels represented as a
point-cloud with each channel represented by the central position of its active detector, and a scalar value
that represents its readout. Channels with zero reading (no signal output or below noise threshold) are
omitted to reduce the storage footprint and computational intensity.

An approach referred to as point-cloud semantic-segmentation in the deep learning community is applied
here. This means classifying the non-zero readout from each channel in one collision event as belonging
to a jet, electron, or neither. Great strides on point-cloud segmentation have been made recently, usually
evaluated on benchmark datasets such as ShapeNet [6], S3DIS [7], and ScanNet [8]. These are datasets
focused on computer vision tasks like segmenting rooms, city streets, and everyday objects. They can
often be solved by only looking at a small handful of points at a time.

Deep neural networks have been shown to be the most effective tool for performing point-cloud seg-
mentation [9–22]. These networks can fit complex datasets and generalize well to unseen samples. The
immediate question is how one should process point-cloud data. Convolutional Neural Networks (CNNs)
are a class of neural network that can learn features with spacial extent making them a logical choice for
this problem. CNNs [23–25] have achieved state-of-the-art performance in many computer vision tasks
that require efficient learning of image, video, audio, and voxel data. However, a core assumption of CNNs
is that the data is arranged on a lattice. While ATLAS data is arranged geometrically based on the detector
design, it does not follow a pattern easily represented by an multi-dimensional array. Point clouds have no
such structure.

The application of machine learning techniques to particle physics detector data is a very active field of
research. References [26, 27] are examples of training CNNs using calorimeter data, formatted as two
dimensional images arranged in pseudorapidity (η) and azimuthal (φ) angles (see Section 2 for description),
to perform jet classification. Reference [28] is an example of a study using Graph Neural Networks, which
thoroughly explains the challenges of translating irregularly shaped and spaced detectors to the CNN lattice
data structure used in image classification tasks. This study goes beyond past results, that typically have
used simplified detector models and only data from calorimeters, by using a fully operational LHC detector
simulation that includes the silicon tracker.
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Figure 1: The Inner Detector structure inside the barrel region |η | < 2.5 [1].

2 The ATLAS Detector

The ATLAS experiment [1] at the LHC [2] is a multi-purpose particle detector with a forward-backward
symmetric cylindrical geometry and a near 4π coverage in solid angle2. It consists of an inner tracking
detector (ID) surrounded by a thin superconducting solenoid providing a 2 Tesla axial magnetic field,
electromagnetic (EM) and hadron (HAD) calorimeters, and a muon spectrometer.

The ID (Figure 1) covers the pseudo rapidity range |η | < 2.5. It is divided into two regions, the barrel
region where the cylinders around the beam pipe provide full coverage for |η | < 1.5, and the end-cap region
where the disks, placed perpendicular to the beam axis, extend the η coverage to 2.5. The ID consists
of three subdetectors, silicon pixel (Pixel), silicon microstrip (SCT), and transition radiation tracking
(TRT) detectors. The Pixel detector consists of four layers located at a mean radius of 33, 50.5, 88.5,
and 122.5 mm in the barrel and three disks in each of the end-caps. The innermost layer (the insertable
B-layer [29, 30]) has the highest granularity, with a typical pixel size of 50 µm × 250 µm × 200 µm. The
next three layers have a typical pixel size of 50 µm × 400 µm × 200 µm. Each individual pixel measures
the charge collected, and outputs the time duration it exceeds a given threshold (referred to as time over
threshold or TOT). There are about 80 million readout channels in the Pixel detector. Outside of the Pixel
detector, the SCT detector consists of four double strip layers in the barrel at radii of 299, 371, 443, and
2 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upwards.
Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis. The pseudorapidity
is defined in terms of the polar angle θ as η = − ln tan(θ/2). Angular distance is measured in units of ∆R ≡

√
(∆η)2 + (∆φ)2.
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514 mm, with nine disks in each of the end-caps. A typical strip size is 126 mm × 80 µm × 285 µm in
barrel. Unlike pixels, strips only provide the number of consecutive strips recording a hit as output. There
are about six million channels in the SCT detector.

The high-granularity EM and HAD calorimeters measure the EM and hadronic energy up to |η | = 4.9. The
EM barrel and EM end-cap are liquid-argon (LAr) sampling calorimeters covering |η | < 1.475 in the barrel,
and 1.375 < |η | < 3.2 in the end-caps. These calorimeters are segmented into three layers (barrel shown in
Figure 2). Layer 1 is finely segmented in the η direction, typical cell size is 0.003 × 0.1 in ∆η × ∆φ. Layer
2 has a granularity of 0.025 × 0.025 in ∆η × ∆φ. Layer 3 has a cell size of 0.05 × 0.025 in ∆η × ∆φ.’ The
thickness varies in each layer to maintain a constant radiation length X0 as shown in Figure 2. In front
of the Layer 1, there is a thin presampler (PS) layer, covering the pseudorapidity interval η < 1.8, with a
granularity of ∆η × ∆φ = 0.025 × 0.1. The HAD end-cap is also a LAr sampling calorimeter covering
1.5 < |η | < 3.2 with 4 sampling layers separated into two granularity regions of 0.1 × 0.1 in ∆η × ∆φ for
1.5 < |η | < 2.5 and 0.2 × 0.2 in ∆η × ∆φ for 2.5 < |η | < 3.2. The barrel HAD (steel/scintillator-tile)
calorimeter consists of 64 modules of size ∆φ ∼ 0.1. The barrel covers the region |η | < 1.0, and the two
extended barrels cover the region 0.8 < |η | < 1.7. The central hadronic calorimeter system is segmented
into three layers as shown in Figure 3 with granularity of 0.1 × 0.1 in ∆η × ∆φ for the first two layers
and 0.2 × 0.1 in ∆η × ∆φ for the third. In total, the calorimeters have approximately 200,000 readout
channels.

The muon spectrometer surrounds the calorimeters and is based on three large air-core toroidal supercon-
ducting magnets with eight coils each. The field integral of the toroids ranges between 2.0 and 6.0 T·m
across most of the detector. The muon spectrometer includes a system of precision tracking chambers and
fast detectors for triggering.

A two-level trigger system is used to select events [31]. The first-level trigger is implemented in hardware
and uses a subset of the detector information with lower resolution to reduce the accepted rate to at most
nearly 100 kHz. This is followed by a software-based trigger with access to the full event data that reduces
the accepted event rate to 1 kHz on average depending on the data-taking conditions.

3 Method

Simulated collisions in the ATLAS detector are used to generate a training dataset on which the following
point-cloud networks are evaluated: PointNet++ [10], DGCNN [13], GravNet, and GarNet [28]. PointNet++
is a network that learns functions only on individual points, DGCNN is a state-of-the-art computer vision
network that operates on graphs, and GravNet and GarNet are state-of-the-art graph networks in the
High-Energy Physics domain. The goal is to characterize the existing literature against this novel dataset.
Each of the reference networks have published software implementations which are used as written for
these studies.

3.1 Dataset

The dataset is composed of three different samples, each with the following processes generated for pp
collisions at

√
s = 13 TeV

1. Z → e+e− + 2-jets: with jet pT > 20 GeV and electron pT > 10 GeV,
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Figure 2: Sketch of a barrel EM calorimeter module [1].

2. Z → e+e− + 2-jets: with jet pT > 700 GeV and electron pT > 10 GeV, and

3. Z Z → e+e−e+e− with electron pT > 10 GeV and events with reconstructed jets are vetoed,

with the relevant kinematic distributions in truth object pT , η, and φ shown in Figures 4, 5, and 6,
respectively. pT in this context refers to the transverse momentum. In addition, the distribution of channels
per truth object is shown. Dataset (1) covers the full pT spectrum, dataset (2) aims to provide more jet
examples at higher energy, and dataset (3) provides more training examples in the electron class to address
the imbalance in detector channels associated with electrons versus jets.

These collision events were generated at leading order with MadGraph v2.6.7 [32] and showered in Pythia
v8.235 [33] using the default tune. The hard process contains a fixed jet multiplicity. The parton distribution
function NNPDF2.3 LO [34] was used. The events are fully simulated using the ATLAS Geant4 [35]
detector simulation. The ATLAS simulation infrastructure [36] was employed on the Theta supercomputer
at Argonne National Laboratory to generate these samples.

Only signals from the Pixel, SCT, and calorimeters are included in the output dataset. The TRT and muon
spectrometer were not included in this dataset. Each event contains all non-zero inputs from these detectors
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Figure 3: Segmentation in depth and η of the tile-calorimeter modules in the central (left) and extended (right)
barrels [1].

including their physical position and the number of hits in a tracking detector or the deposited cell energy
in a calorimeter cell (as described in [37, 38]). Inputs from the LAr calorimeter had a noise suppression
applied requiring values to be greater than 250 MeV. Only signals from detector channels within the range
|η | < 3.0 are included in this dataset. Effects due to pile-up, the result of multiple protons interacting
in the same or neighboring bunch crossing, are not included in this sample. There is vertex smearing
applied, though the vertex location was not varied. All collisions occur at (x, y, z) = (−0.5,−0.5, 0) mm in
the detector coordinates, with a spread of (10−2, 10−2, 42) mm.

For each detector input, a unique identification number (id) is assigned. Their three dimensional geometric
center position is extracted from the Run 2 ATLAS detector geometry with alignment correction. The
"raw" detector value for each channel is taken from the time over threshold (ToT) in the Pixel detector,
the number of consecutive strips that recorded a hit in the SCT, and the digitized energy deposition in the
HAD/EM calorimeters.

Truth labels for each detector input are derived using the (η, φ, r)-position from generated leptons,
reconstructed jets, and reconstructed tracks. Generated leptons were used as their location is correlated
to their energy deposition in the detector and does not change significantly through the showering and
reconstruction process. However, the location of generated partons is not necessarily correlated to the
energy deposition in the detector as it may go through hard decays during showering resulting in multiple
distinct jets. Only truth leptons, reconstructed jets and detector channels that fall within the range |η | < 3.0
are included in this dataset omitting the more complicated geometry in the forward region.

The lepton label is assigned to inputs based on the position of the generated truth leptons. The jet label uses
the ATLAS Flavor tagging scheme [39], which is quickly reviewed here. ATLAS defines truth jets, derived
from hadronic parton showers, and reconstructed jets, derived from reconstructed energy clusters based
on calorimeter measurements. The truth jets are matched to reconstructed jets based on proximity. The
proximity between two objects with (ηi, φi)|i=1,2 is measured with ∆R =

√
∆η2 + ∆φ2 where ∆η = η1 − η2

and ∆φ = φ1 − φ2. Reconstructed jets must match a truth jet within ∆R < 0.3. Reconstructed jets
within ∆R < 0.3 of a truth lepton are removed to suppress reconstructed jets caused by electrons. Finally,
detector inputs in the tracking detectors are assigned a value that identifies which unique track with which
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Figure 4: Z → e+e− + 2-jets: with jet pT > 20 GeV and electron pT > 10 GeV. Showing truth pT (top-left), η
(bottom-left), φ (bottom-right), and number of detector channels contained (top-right) for each object

it was associated during track reconstruction. Tracks are defined as generated stable particles from the
decay process with hits in more than two layers in the Pixel and SCT detectors. This additional piece of
information is not used in the training described below, but included to encourage track reconstruction
studies.

A simple procedure is used to label detector channels as belonging to a jet or electron. Only reconstructed
jets passing the criteria above are used. If a detector channel is within a configurable ∆R region of the
object, it is labeled with that object’s particle ID. For leptons ∆R < 0.2 is used, while for jets from b, c or
light quarks ∆R < 0.4 is used. Anything not labeled as jet or lepton is labeled as background. In cases of
overlap, the jet label takes priority, however this occurs in less than 0.6% of the objects.

Averaging across the three physics process, without pile-up included, each event contains roughly 3000
non-zero channels of the possible 86.2 million channels, but extreme events contain up to 23, 000 non-zero
channels in dataset (2). A total of 117, 000 events were produced (20, 000 in dataset (1), 39, 000 in dataset
(2), 58, 000 in dataset (3)) containing about 150, 000 electrons and 330, 000 jets. The dataset contains 330
million channels in total, 30% are points labeled as jets, 7% are labeled as electrons, and the remaining
are background which is dominated by the detector noise and truth failing the selection described above.
Figure 7 shows the distribution of non-zero channels per event for the three datasets generated. The highest
bin contains overflow in which there are only two events.

As described in Section 2, it would be prohibitive to store and process dense representations of these events
so a sparse representation is used which is described in the Appendix A.
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Figure 5: Z → e+e− + 2-jets: with jet pT > 700 GeV and electron pT > 10 GeV. Showing truth pT (top-left), η
(bottom-left), φ (bottom-right), and number of detector channels contained (top-right) for each object

3.2 Dealing with Bias in a Dataset

The dataset contains points labeled with three classes, background, jet, and electron, with 63%, 30%, and
7% of all points having these respective labels. Due to the imbalanced representation of classes, a machine
learning model trained with unweighted cross-entropy loss would learn to accurately predict background
points at the expense of the other classes. To that end, a process of balanced learning is used similar to the
method in Reference [40].

In an object classification problem, where one input is labeled with a single class, imbalanced datasets can
be managed by sampling inputs of rarer classes more often such that on average the batched training data
are balanced. In an object segmentation problem, where one input has a fixed distribution of classes, the
balance of classes in a single input cannot be changed without changing the sample itself.

To address this the loss is not calculated on every point in the event. Instead the loss is only calculated
on equal numbers of points from each class. For example, given Ne electron points, Nj jet points, and
Nbg background points in a single event where Ne < Nj < Nbg, all points in the event will be processed
through the network to get a prediction on every point. The loss will randomly mask out the point-wise
loss of some of the jet and background points such that the number of points considered in the loss are 3Ne

(Ne electron points, Ne jet points, and Ne background points). Figure 8 illustrates this method. The left
figure represents the entire ground truth, and the right represents one possible random subsampling such
that each class is equally represented.
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Figure 6: Z Z → e+e−e+e− with electron pT > 10 GeV. Showing truth pT (top-left), η (bottom-left), φ (bottom-right),
and number of detector channels contained (top-right) for each object

3.3 Training Parameters

Each network is trained on 95,000 events with a batch size of 16 for 10 epochs with the Adam optimizer
with an initial learning rate of 0.001 and an exponential decay parameter of 0.7 applied every 200, 000
iterations. The input features are the (x, y, z) coordinates of each detector readout channel, the (r, η, φ)
representation of the same coordinates, and the readout value. The output is one of three classes: jet,
electron, or background. Since the events all have different numbers of non-zero readout channels, the input
vector is zero padded to 15, 000 during training which is above the maximum number for any single event
in the training set. The zero pad is set to 25, 000 in the evaluation as there is an event of this magnitude in
the test set.

4 Results

The networks are evaluated on object segmentation, a point-wise classification task, measured with 24, 000
events that are independent of the training events. The standard metric for evaluating these tasks is
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Figure 7: Distribution of non-zero channels included in each event image in the three datasets. The last bin is overflow.

Figure 8: This diagrams the balancing of the loss calculation during the training process. The left figure represents
the entire ground truth with class labels (jet, electrons, background) represented as colors. The right represents one
possible random subsampling such that each class is equally represented with black representing points not included
for the total loss calculation. This removes the effect of bias from the unbalanced training dataset.

Intersection over Union (IoU). For a single class prediction, the IoU is defined as

IoUc =

∑N
n=0 1[yn = c & ŷn = c]∑N
n=0 1[yn = c or ŷn = c]

, (1)

where 1 is the indicator function, which means that it has a value of one if the condition in brackets is
met and zero otherwise. yn is the truth level label and ŷn is the label predicted by the model, both of
which take on class identification values, c = 0, 1, 2 (these are numerical representations of electron, jet, or
background). The sum is over n points. The mean IoU (mIoU) is the average of all the individual class
IoUs. Maximizing this score requires both precision and recall to be high. The IoU results for the networks
evaluated are in Table 1.
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mIoU Jet IoU Electron IoU Background IoU
PointNet++ 0.776 ± 0.009 0.842 ± 0.007 0.61 ± 0.01 0.882 ± 0.007
GravNet 0.60 ± 0.02 0.74 ± 0.01 0.32 ± 0.02 0.75 ± 0.02
GarNet 0.43 ± 0.02 0.45 ± 0.04 0.13 ± 0.02 0.70 ± 0.02
DGCNN 0.826 ± 0.005 0.885 ± 0.002 0.69 ± 0.0.01 0.904 ± 0.002

Table 1: The Intersection over Union (IoU), a standard metric for semantic segmentation learning tasks, calculated
for each object class separately (jet, electron, and background) and the mean IoU (mIoU) of all classes. Each row
contains the metrics for each test model: PointNet++, GravNet, GarNet, and DGCNN. This table shows the mean and
standard deviations of the IoUs over 3 identical runs.

DGCNN outperforms all the other networks under evaluation, achieving a 6.4% higher mIoU than
PointNet++ in these trials. GravNet and GarNet performance was unexpectedly lower.

The T-SNE plots [41] in Figure 9 translate the multidimensional feature vector to an arbitrary two
dimensional space. The feature vector is the input vector to the last layer of the neural network that
outputs the point label prediction. The distance between points is proportional to the distance in the higher
dimensional space in order to give a visible representation of separation strength between classes. It shows
the DGCNN and PointNet++ networks separate the three classes (jet, electron, background) well in feature
space. GravNet and GarNet out of the box seem to be able to tell apart jets and electrons from one another.
However, they frequently confuse the background class with non-background classes, and vice versa. This
suggests that GravNet and GarNet are not able to precisely predict the shape of jets and electrons.

One difference between GravNet/GarNet and PointNet/DGCNN is that the latter use ReLU activation
functions instead of tanh used in the former. ReLU is a common machine learning activation function
that simply evaluates f (x) = max(0, x) per x input value, and has been found to lead to faster training
than f (x) = tanh(x) [23]. One issue with tanh is that it can saturate an output for both large positive and
negative values, which can reduce learning over time. ReLU only saturates for negative values. Table
2 shows the previous results for GravNet/GarNet as well as results using ReLU for activation functions
(labeled with +ReLU). GravNet+ReLU achieves state-of-the-art mIoU over DGCNN by a margin of 2.2%,
improving by 39.7% over the original version. GarNet sees an 7.8% improvement in mIoU.

The structure of GarNet’s convolution, in which a hidden point-cloud is generated and associated with
the real point-cloud (referred to as a bipartite graph), may be too much indirection for the network
to learn effectively. Removing the bipartite graph structure and simply applying a PointNet++-style
multilayer-perceptron per point improves mIoU performance by 25.5% over GarNet + ReLU. This is seen
in Table 2 labeled as ‘-Bipartite’. Not modeling relationships between points at all is more effective than
modeling them using the proposed bipartite graph structure.

The last difference between PointNet++/DGCNN and GravNet/GarNet is that GravNet/GarNet do not
have global feature vectors (GFVs) concatenated with local features before the final classification layer.
PointNet++ pools its point clouds multiple times down to a single point feature vector which represents
global information before ‘unpooling’ back to the original point cloud. DGCNN, after all of its convolutions,
performs maximum pooling on the point cloud down to a single feature vector, and concatenates this
global feature vector to each of the individual point feature vectors. Conceptually, having global features
in addition to local features when training the classifier at the end gives it context beyond the local
neighborhoods. Without it, there is a risk that the classifier attempts to learn how to predict for an ‘average’
sample with the given local features. To test this, a global feature vector was created from the last feature
vector before the fully-connected layers and concatenated with each point-wise feature vector. Table 2
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(a) PointNet++ (b) DGCNN (c) GravNet

(d) GarNet (e) GravNet+ReLU + GFV (f) GarNet+ReLU-Bipartite+GFV

Figure 9: The T-SNE algorithm translates the multidimensional feature vector (the input to the last network layer) to
an arbitrary two dimensional space. The feature vector is the last input used by the networks (a) PointNet++, (b)
DGCNN, (c) GravNet, (d) GarNet, (e) GravNet+ReLU, and (f) GarNet+GFV to classify a single detector input as
belonging to jet (black), electron (yellow), or background (blue). The distance between points is proportional of the
distance in the higher dimensional space in order to give a visible representation of separation strength between
classes. Good performance of the network is reflected by clear delineation of class points. The x- and y-axes are
arbitrary units with no translatable label.

mIoU Jet IoU Electron IoU Background IoU
GravNet 0.60 ± 0.02 0.74 ± 0.01 0.32 ± 0.02 0.75 ± 0.02
+ ReLU 0.84 ± 0.02 0.86 ± 0.03 0.74 ± 0.02 0.933 ± 0.003
+ GFV 0.866 ± 0.002 0.878 ± 0.006 0.782 ± 0.004 0.938 ± 0.001
GarNet 0.43 ± 0.02 0.45 ± 0.04 0.13 ± 0.02 0.70 ± 0.02
+ ReLU 0.46 ± 0.1 0.47 ± 0.05 0.19 ± 0.02 0.72 ± 0.02
- Bipartite 0.575 ± 0.001 0.654 ± 0.003 0.305 ± 0.001 0.765 ± 0.002
+ GFV 0.577 ± 0.004 0.670 ± 0.006 0.305 ± 0.004 0.756 ± 0.004

Table 2: The Intersection over Union (IoU), a standard metric for semantic segmentation learning tasks, calculated
for each object class separately (jet, electron, and background) and the mean IoU (mIoU) of all classes. Each row
contains the metrics for the original and improved GarNet and GravNet models (see text for details). Training was
run for 10 epochs in each case. This table shows the mean and standard deviation of each IoU over 3 identical runs.

shows the results of this addition (labeled ‘+GFV’). GravNet mIoU performance improves by 2.6%, while
GarNet sees another 0.35% increase in mIoU performance, or 44% overall, over the original version. Figure
9 shows the T-SNE class distribution for the best performing modified GravNet and GarNet models.

T-SNE and mIoU metrics are useful tools for generally characterizing segmentation networks. However,
it must be determined whether the network is finding all of the unique objects in the data. This is not
immediately evident from the predictions, which are per-point instead of per-object. The ground truth in
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this dataset labels not only the per point class but to which object instance the point is associated, e.g. 1st
electron in the event, 2nd jet in the event. This could be used to train an instance-segmentation network to
identify collections of points belonging to individual physics objects in future work.

5 Discussion

This dataset offers several research opportunities. Point-cloud segmentation algorithms can be developed
tuned to this physics localization domain. The same ground truth can be used to develop detection or
instance segmentation algorithms, which can more directly predict the number of objects in a sample.

While DGCNN is a state-of-the-art network in computer vision tasks, and performed the best out of the
baseline networks evaluated, it still does have trouble separating the classes in many cases, as the T-SNE
plot shows. It is also a relatively simple network, with only four convolutional layers with 64 filters each.
This means that the convolutions have limited receptive field, and only a limited amount of capacity to
capture all of the different cases represented in the dataset. GravNet with modifications outperforms
DGCNN, but its based on the same principles of sharing a single set of weights. This is a strong regularizer
that prevents overfitting, but it may keep the network from modeling all of the complexity of the physics
data. Here is a recent example of the potential for using GravNet for instance segmentation [42].

6 Summary

In this work physics object identification and localization is posed as a point-cloud segmentation problem.
ATLAS detector data can be posed as a point cloud where each activated detector channel is a point that is
associated with a jet, electron, or neither. This method does not quantize the data as voxel/image CNN
methods do, and does not require a canonical ordering as recurrent/LSTM methods do. Some baseline
point-cloud and graph network methods were evaluated to set an initial watermark for research on this
dataset.

Using a point-cloud segmentation network for physics object localization is not a turnkey solution. The
network makes predictions per point, but does not actually predict discrete physics objects. That said, this
network could still be valuable in a physics localization pipeline by narrowing the search space to only
locations predicted as likely locations for a jet or electron by the network. A natural extension for future
work is to add a module to the network for instance segmentation. Previous studies have shown that this
is feasible for point clouds in traditional computer vision problems [43–45]. These approaches rely on
PointNets as a learning machine and could benefit from the extra learning capacity of graph neural network.
They may also require modification to address the large bias toward the background class that full-detector
data often contains.

Point-cloud neural networks are a potential tool to accelerate physics object localization. This study shows
that point-cloud segmentation networks are able to recognize which detector channels in the full detector
are associated with a jet or electron with high accuracy, even though the dataset is highly biased. It is able
to perform this task quickly, with a single forward pass. Future refinements of these networks will look
at increasing accuracy, clustering classified points into single objects, and using regression networks to
estimate four momenta. This could lead to improved hardware level triggers and reconstruction algorithms.
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Follow up analyses will also include effects due to pile-up interactions, the TRT and Muon detector
information, and muon data.
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Appendices

A Data format for training

For each event a text file is created with each row representing one detector channel. For each channels these
values are included: [hwid, idx, x, y, z, r, eta, phi, raw, pid, n, truth_eta, truth_phi, truth_pt,
trk_good, trk_barcode, trk_pt]. They are defined as below:

• hwid: unique hardware ID based on a bit mask that can be used to select specific detector components
(unsigned 64-bit integer). To select subdetector channels use these cuts: Pixel < 5e17 < SCT
< 3e18 < LAr < 4.8e18 < Tile.

• idx: unique incremental index for each point that orders the detector channels into a one dimensional
vector (unsigned 32-bit integer).

• [x, y, z] and [r, eta, phi]: central position of the active detector material corresponding to the readout
channel in the ATLAS right-handed coordinate system (32-bit float).

• raw: a value that represents the detector channel readout, which corresponding to ToT (Time over
Threshold) in case of the Pixel detector, the number of consecutive strips recording a hit in case of
the SCT, and the digitized energy deposition in GeV (from CaloCell object) in case of the HAD/EM
calorimeter (32-bit float).

• pid: truth label of the object, electrons are labeled as 11, positrons as -11, jets as 0, and background
as -99 (32-bit integer).

• n: unique index of the truth object, e.g. if there are two electrons in the event, detector inputs will be
assigned to the first (0) or second (1) electron (32-bit integer).

• truth_eta, truth_phi, truth_pt: truth object η, φ, and pT (in GeV), taken from reconstructed jets
and leptons in the hard process as described above (32-bit float).

• trk_good: good track flag, set to 1 if this detector input was associated with a reconstructed track
and is a candidate of the truth object, otherwise is 0 if the reconstructed track was not associated to a
truth object (32-bit float).

• trk_barcode: if point was included in a reconstructed track this is a unique index of the track and
set to 0 otherwise (32-bit float). Therefore, all detector channels associated to the same reconstructed
track will have the same barcode index.

• trk_pt: transverse momentum in MeV of the reconstructed track.

Note, the trk_good, trk_barcode, trk_pt columns are only included for points in Pixel and SCT
detectors. Only non-zero points are included in the output for storage efficiency.
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B Example Python Code to Read CSV File Format

The follow example code can be used to load the files into a pandas DataFrame object for processing in
popular machine learning frameworks like Tensorflow or PyTorch.

import pandas as pd
import numpy as np
col_names = [ ’ hwid ’ , ’ i dx ’ ,

’ x ’ , ’ y ’ , ’ z ’ ,
’ r ’ , ’ e t a ’ , ’ ph i ’ ,
’ raw ’ , ’ p i d ’ , ’ n ’ ,
’ t r u t h _ e t a ’ , ’ t r u t h _ p h i ’ , ’ t r u t h _ p t ’ ,
’ t r k_good ’ , ’ t r k _ b a r c o d e ’ , ’ t r k _ p t ’ ]

c o l _ d t y p e = { ’ hwid ’ : np . i n t 64 , ’ i dx ’ : np . i n t 32 ,
’ x ’ : np . f l o a t 3 2 , ’ y ’ : np . f l o a t 3 2 , ’ z ’ : np . f l o a t 3 2 ,
’ r ’ : np . f l o a t 3 2 , ’ e t a ’ : np . f l o a t 3 2 ,
’ ph i ’ : np . f l o a t 3 2 ,
’ raw ’ : np . f l o a t 3 2 , ’ p i d ’ : np . i n t 32 , ’ n ’ : np . i n t 32 ,
’ t r u t h _ e t a ’ : np . f l o a t 3 2 , ’ t r u t h _ p h i ’ : np . f l o a t 3 2 ,
’ t r u t h _ p t ’ : np . f l o a t 3 2 ,
’ t r k_good ’ : np . f l o a t 3 2 , ’ t r k _ b a r c o d e ’ : np . f l o a t 3 2 ,
’ t r k _ p t ’ : np . f l o a t 3 2 }

f i l e n ame = ’ / p a t h / t o / f i l e n ame . csv ’
d a t a = pd . r e ad_c s v ( f i l ename ,

h eade r =None ,
names=col_names ,
d t ype= co l _d t ype ,
sep= ’ \ t ’ )
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