
Future of User Storage at CERN

CERN Future of Storage Working Group
X. Espinal, J. Moscicki, A. Peters, D. Van der Ster, A. Wiebalck

First draft 18 March 2020
Revision-v1 15 Octobre 2020/Revision-v2 1 November 2020/Revision-v3 1 December 2020

1 Storage Working Group Mandate

The scope of the working group is to provide a multi-year vision about solutions to provide user-oriented, i.e.
non-physics, storage for the CERN community, in particular for use-cases on Linux PCs, lxplus, and lxbatch.
To start elaborating a vision the working group decided to focus on the following topics:

• Definition: offer a technical definition of the term home directory to avoid confusion. Right now the term
is applied in different systems with different meanings: AFS, DFS, CERNBox and Laptop/Desktop.

• Identify the use-cases for user-oriented storage: Separate convenience from requirement, prioritise the
features.

• Identify the challenges with the current AFS usage. Clarify the concrete challenges and showstoppers.
These could be used to help guide future technical solutions.

• Technology Survey: review the options available in relation to the above use-cases, and estimate their
initial and long-term costs.

• Propose one or more future scenarios: combining one or more of the above technologies, present different
scenarios, which may vary by feature completeness, initial and long term costs.

2 Identify the challenges with the current AFS usage

The predominant accesses to AFS come from desktop machines, lxplus and batch worker nodes, each with
approximately 1/3 of the share respectively. The total average access rate is 10kHz which induces an average
load of 300Hz per AFS server.

In terms of space, user home directories are 10GB on average and they are mainly used for interactive work.
Users log in to find a consistent environment where they run the common tools for software development.
The total size of these home directories is 50TB.

About 50% of the space and 10% of the files in AFS workspaces are occupied by ROOT files that should be
stored from elsewhere (EOS). The total amount of space for AFS workspaces is 360TB. Three AFS projects
occupy 50% of the total size: ATLAS, SW and Indico, totalling 140TB. We started to report the mis-use of
AFS workspace, used to store ROOT files, to the experiments and invite them to revise/clean-up.

The original motivations for the AFS phase-out have evolved. The community is still alive, i.e. companies
like Sine Nomine and Auristor offer options for AFS support. In the past years, OpenAFS has regularly pub-
lished new releases. Recently the IPv6 is on the roadmap for release production v2.0 (current development
is v1.9). Still some items should be properly followed-up: authentication schemes is at the moment limited
to kerberos, and majority of the current production workflows rely on AFS. From the TCO perspective and
given the criticality of the service, the effort needed for the AFS Service is relatively low: around 0.5 FTE.
At least the manpower costs need to be reviewed should we plan to keep AFS running for longer time, as the

1



service has been moved to a maintenance mode during the last years.

Conclusion: The size and the access rate make replacing AFS seem deceptively simple. The biggest
challenges we identified are two: 1) the current production usage across CERN communities and 2) the
scalability need in number of clients.

3 lxbatch use-case of Linux home directories

Around 40% of the batch workload is submitted via local condor submit. With the remainder coming from
grid workflows where there is no need for a shared file system. Although to ensure a good job mix and absorb
significant variations in the relative fraction, most nodes accept both grid and local jobs.
The most common workflow our users are following for local job submission is to log (ssh) to lxplus, cd into
the condor submit dir and run condor submit command, which relies on a shared filesystem (needed by the
scheduler). This requirement is not strictly necessary from the technical point of view: HTCondor at CERN
additionally supports staging files in and out of the workers using the scheduler, though the interaction pat-
tern with the system is different. This mechanism is in production use by some users and experiments, but
most have preferred to stay with the shared filesystem mechanism to avoid having to change their production
workflow systems, originally developed for the LSF-based service. In the context of batch submission, the
home directories are mounted on lxplus and the batch nodes: Around 100 lxplus nodes are used as remote
submit machines where users prepare their code and jobs. There are around 20 HTCondor schedd servers
which maintain responsibility for the jobs after they have been submitted and handle the file copying. These
access AFS for the sandbox files, such as the job parameter files and the job output. Around 20k batch
worker nodes mount the home directories so that the the jobs can access files directly. Non-grid use cases
expect access to a POSIX file system from their batch jobs. Furthermore, there is an implicit “contract” with
our users to ensure that lxbatch looks the same as lxplus. This helps with the development and testing of
batch jobs. Users appreciate the short turnaround time with local submission provided by the current model
and any changes to this would need to take this contract into account.

Besides home directories, project areas are also often used for production activities and providing the
experiment’s required frameworks.

Conclusions: The simplicity of the current lxplus/lxbatch shared-filesystem model is well-appreciated
by users, though other models are supported and are in use, e.g. not using a shared filesystem and staging
the files in and out via the schedd. The cost of adapting user and experiment production frameworks to any
other model is significant and is entirely on the user side. At present the shared filesystem access for job
input and output continues to be presented as the easiest option to the users.

4 lxplus use-case of Linux home directories

Lxplus is the central IT supported/managed Linux computing environment. We briefly discussed alternative
models: personal VMs, containers instantiated on demand, and notebooks. These alternatives have varied
resource costs, feature capabilities, and implications for the users.

Conclusions: While never seriously explored, alternatives to the current lxplus model would come with
different pros and cons, and it is unclear if such alternatives would bring a benefit to our user communities.
It is very likely that several alternatives would need to be provided to fulfill all user requirements, similar to
what is done at the moment.

5 Technology survey

This technology overview is based on some of the concepts that describe the ability of a shared file system to
perform: in terms of security, permissions, performance, etc. These different concepts are summarised on a

2



table in section 5.2.11 where we compare some of the widely used available technologies in the market with
large scale deployments. These different technologies are: NFS-appliances, CephFS, AFS, Lustre and EOS.

5.1 Security and Permission Models

Security and trust models differ substantially for each implementation. We distinguish a client and a user
based authentication model. CephFS provides client based authentication, others support in various flavours
client and user based authentication. Client authentication typically uses a shared secret. The authentication
model is coupled to authorization models. The main difference in authorization models is if access control is
done server side, client delegated or client enforced. The CephFS model provides each client with a global
pool access key, filesystem access control is afterwards only applied client-side. EOS uses client delegation
and server side enforcement. Others are similar in this respect, e.g. Lustre supports light-weight shared
secret authentication and strong Kerberos 5 user authentication.

Dynamic (virtual) group support is important with large user bases to express permissions for certain
individuals in the institution. NFS, CephFS and Lustre rely on UNIX mechanisms to express groups. This
mechanism is not optimized for rapid changing and large user groups. AFS allows to configure dynamic s.c.
AFS groups using the protection server commands (PTS). EOS supports CERN’s e-group model, where only
the membership in a group has to be verified. Entire groups, which can have more than 10.000 members,
don’t have to be cached.

5.2 Features, Performance & Scalability

5.2.1 High Availability

The high-availability models in the listed file system implementations are different. Lustre, Netapp and AFS
delegate most of the high-availability features for data and meta-data to the hardware itself using hardware
redundancy, virtual IPs etc. CephFS implements meta-data high-availability using standby nodes (PAXOS
for the central cluster metadata). EOS uses a similar approach, however automatic failover is not used in
production.

High availability for data is implemented in EOS and CephFS using replication and erasure encoding.

5.2.2 Scalability

Scalability is a key characteristic for distributed file systems. It can be divided into several areas:

• Data volume scaling

• Metadata volume scaling

• Metadata operation scaling

which are either following a scale-out or an scale-up philosophy. Lustre, CephFS, EOS allow vertical volume
scaling (scale-out). In NFS and AFS the volume scaling is coupled to the namespace structure e.g. volumes
are attached into the logical namespace e.g. in general this represents more a scale-up architecture. Only
CephFS implements metadata volume scaling with a scale-out architecture (RADOS) but due to the limited
size of meta-data and the hierarchical nature this is less of a concern.

Again due to the hierarchical nature there is no solution which can scale linear the metadata operation
performance - a hierarchical namespace can not be sharded. All implementations allow to scale the meta-data
operation performance using subtree branching. CephFS is the only implementation where this can be done
dynamic e.g. within a few seconds parts of the namespace can be moved between metadata servers to balance
performance.

5.2.3 Backups

None of the solutions, except AFS, provide an internal implementation of backup. Many standard tools allow
to backup filesystems, but there are also specialized open-source solutions like restic, which can backup the
POSIX attributes of filesystems. AFS is special within this respect due to the very non-POSIX group and
permission model.

3



5.2.4 Snapshots

Snapshots are point-in-time backups of a filesystem, which provide a consistent picture of the whole system
at a given moment. NFSapp, CephFS and AFS provide this feature which is very useful in particular for
backups.

5.2.5 Versioning

None of the filesystem provides versioning as VMS did in the past. EOS supports versioning with time-based
purging. This is however not directly triggered using the filesystem interface. Snapshots in CephFS could
provide something similar to versioning. Manual versioning is possible in all filesystems.

5.2.6 Quota

We can distinguish the following models when implementing resource limitations:

• user quota - volume/inodes per user in the whole filesystem

• group quota - volume/inodes per group in the whole filesystem

• user tree quota - volume/inodes per user in a given subtree

• group tree quota - volume/inodes per group in a given subtree

• project quota - volume/inodes for all users in a given subtree

• volume quota - volume/inodes for a user in a volume (AFS)

• pool quota - volume for a given user in a pool (CephFS)

All implementations provide a type of quota enforcement. Also here the implementation, where these are
enforced, differ. CephFS has the least flexible quota model providing quota in a subtree, which is enforced
client side. EOS has the most flexible quota mode, because it allows to define user, group and project quotas
in arbitrary subtrees. While not inherent to AFS, there is external tooling used heavily at CERN which
provides a similar flexibility for quota management. NSFapp is the only implementation providing nested
tree quotas.

5.2.7 Future Sustainability

All implementations are/will be supported for CentOS 8. Currently there are no native Windows or OSX
clients for CephFS, but Windows is in development. The recommended solution for CephFS is NFS access via
Ganesha gateways or Samba for all non-Linux platforms. EOS does not provide a native client for Windows.
The recommended access is using Samba gateways. OpenAFS is available on all platforms, though with
weaker support on Windows and MacOS platforms, so it does not require gateway setups, same for NFSapp.
Lustre is a Linux only product.

5.2.8 Licenses

Besides NFSapp and the Auristor commercial version of AFS, all other filesystems are open-source and
available under such licenses.

5.2.9 Support

NFSapp and Lustre are backed by companies for support. Commercial support for AFS and Ceph is available
as well.

4



5.2.10 Filesystem Client

OpenAFS, NFSapp, CephFS and Lustre provide a native kernel client. CephFS provides additionally a FUSE
client, EOS provides only a FUSE client.

FUSE is in general at least a factor 2-4 slower than a kernel client for meta-data operations. Without
splicing a factor 5-10 slower for data transfers. However this limitation do not always matter due to limitations
when communicating to metadata and data servers.

5.2.11 Client Maturity, Scalability & Stability

AFS is most mature and stable client implementation (according to our experience). Lustre is proven to be
the most scalable implementation concerning the number of filesystem clients in SCs. AFS is assumed to
scale better than CephFS, EOS and NFSapp with respect to this e.g. CERN is running over 30k AFS clients
in the data centre.

NFSapp CephFS AFS EOS Lustre

Security
Kerberos Yes No Yes Yes Yes
Shared Secret Yes Yes Yes Yes Yes
Static keys No Yes No No No

Permissions
ACL model nfsv4 posix afs rich/eos posix
Nested groups support unix unix afs unix/e-

groups
unix

Enforcement server client server server server

Features/Performance
metadata HA hw hw+sw hw sw/man hw
data HA hw hw+sw hw hw+sw hw
Scalability: data volume scale-up scale-out scale-up scale-out scale-out
Scalability: metadata storage scale-up scale-out scale-up scale-up scale-out
Scalability: subtree branching static dynamic static static static
backup external external external external external
Snapshots Yes Yes Yes Devel Propsal
Versioning No No No Yes No
Quota model u/g/t t/p vol ut/gt/t u/g/t
Nested Tree Quota Yes No No No No
Quota enforcement server client/server server server server

Future sustainability
OS support avail CentOS 8 CentOS 8 CentOS 8 CentOS 8 CentOS 8
UDP/IPv4 No No Yes No No
IPv6 Yes Yes No Yes Yes
Infiniband Yes Untested No Proposal Yes
License Closed LGPL IBM

Public
GPL3 X GPL2

Client implementation mount(k) mount(k+f) mount(k) mount(f) mount(k)
Client Scalability O(3) O(3) O(4) O(3-4) O(5)

6 Conclusions

The working group did not identify an urgent need to change the current home directory approach based
on AFS. The AFS project and the AFS community recovered from a risky period where the future was not
clear and various concerns were raised. The past few years have seen regular OpenAFS releases and there is
an AFS client on CentOS 8 (End of Life of CentOS 8 is in 2029). At the same time AFS is tightly integrated

5



with many production workflows, and there are no imminent requirements or issues which are not addressed.
Hence, CERN IT should continue to support AFS at an appropriate level.

However, the working group also agreed on the current CERN IT strategy to reduce the dependency on
and utilization of AFS and to confine its usage mainly to shared file systems needs (lxbatch and lxplus).
The ongoing work in this area should continue. Potential evolution of the current model assumed by central
Linux services should also be considered.

The working group sees an interest in moving out of AFS as a long term plan, mainly because of soft-
ware aging issues that have been exposed in the technology survey, such as the support for IPv6, HA, etc.
In addition, the current production use of AFS and the AFS dependencies in our communities render the
community effort for a potential migration quite substantial, entailing a long turnover time of at least several
months. For this reason reducing the usage of AFS is crucial and should be accompanied by the gradual
phase-in of a future replacement.

The working group hence recommends to plan for a longer term activity to look into an AFS replacement
technology including all concerned stakeholders.

The approach should be revisited later on, maybe at the end of Run-3.

6


