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Abstract

The present paper is the first in a series of studies in Q-learning. We start by investiga-
ting the interaction of a look-up table implementation of Q-learning with the underlying
adaptive discretization of the state space by a Kohonen feature map. Here, an interpola-
tion scheme for the @-function compensates for the drift of the state categories. On the
other hand the resolution of the state space partition is guided both by an attentional
mechanism for levelling the heterogeneous distribution of state vectors as well as the
sequence of actions generated by the Q-learner. A combined algorithm based on these
principles is applied to the standard pole balancing task resulting in a clear improve-
ment of convergence time and stability. Further articles are devoted to the theoretical
analysis of the Q-learning algorithm and to applications to chaos control.



1 Introduction

In recent years Q-learning (1] has become one of the major implementations of the rein-
forcement learning paradigm. By the wo.k of many investigators, experience has been
gathered from studying toy models of increasing complexity so that by now the appli-
cation to real world problems is at stake. From the point of view of the present paper
there are essentially two different ways of implementing Q-learning, either by means of
look-up tables or by trying an ansatz for the Q-function, e.g. using multi-layered neural
nets. For continuous state spaces the look-up table is based on a discretization of the
states of the system which is conveniently done by using a self-organizing feature map
(SOFM). Our paper is concerned with this kind of approach and tries to reveal and to
resolve several of the difficulties and pitfalls of this approach. Moreover, in an accompa-
nying paper we try to contribute to an improved understanding of the properties of the
Q-learning algorithm by studying a simple model system which can be treated exactly.
Explicit results for the convergence properties and the asymptotic behavior of the Q-
function obtained for the toy model provide (cf. discussion) cues for understanding the
properties of more realistic situations.

The kind of problems with the SOFM-based Q-learning we want to address firstly in
this paper typically arise from the interference of the learning of the SOFM (Kohonen
[2] or K-learning) with that of the O-function. In fact, during Q-learning the policy
of the controller and hence the trajectories change which in turn influences the density
of data points (states of the system) the SOFM receives as inputs. Since the Kohonen
map adapts to this time dependent density it is dragged along by the changing policy.
However, Q-learning takes the nodes of the map as reference points, moving around
these nodes changes the Q-function as a function defined with respect to physical space.
As a consequence we not only loose information on the best policy gathered so far but
also introduce a further shift in the trajectories controlled by the Q-function which again
introduces a new drift into the Kohonen map. This feed back mechanism may lead to
instabilities or to a decrease of learning speed and reliability of the learning procedure.

Clearly, the problem of instability can be avoided by choosing the time scales for
the K-learning much longer than that for the Q-learning so that the Q-learning can
compensate for the drift of the nodes. This however is very time consuming and will
break down in a dynamic environment where the map must be able to trace the changes
imposed by the environment. We propose a more effective way of dealing with the
problem of the interference of K- and Q-learning which relies on an interpolation scheme
for the Q-function based on the topology preservation in the SOFM, cf. Section 4.

Another set of problems arises from the fact that the Kohonen algorithm adapts the
resolution of the state space according to the density of data points and not according
to the needs of getting an optimal representation for the Q-function which coarsely
speaking means choosing the density of nodes proportional to the roughness of the Q-
function. A solution to this problem will be proposed in Sec. 3. Our proposals will
be tested for the generic example of the pole balancer in Sec. 5 where the expected
improvement over the usual implementation is all too clear.

In the second part of our paper we try to extract some more fundamental resulis
from a simple model which serves as a crude abstraction of the pole balancer. It turns



out, however, that the influence the choice of parameters has on the behavior of the
algorithm is similar in both cases, cf. discussion.

2 Q-Learning and K-learning

2.1 Q-learning

We consider a general control task of the following type. Suppose, a system may be
characterized by the state vector z € X. Using an appropriate discretization of the
generally continuous X the states can be represented by a finite number of categories
j(t). z is to be controlled towards and stabilized close to a target state z* using a
sequence of control actions {a(t)}, t = 0,1,.... The set of possible actions is assumed
to be finite. The Q-learning algorithms determines optimal action sequences {a(t)} in
correspondence to trajectories {7(¢)} based on reinforcement signals r(t). Given j(t) an
action a(t) to be applied is chosen according to

a(t) = argmax Q(5(t),e(t)) (1)
Q(j(t),a(t)) which measures the value of a state-action pair is adjusted according to
AQ(j(t),a(t)) = e(r(t + 1) + 4V (i(t + 1)) - Q(5(t), a(t))) (2)

where
V(i(t+1)) = max QUi(t +1),a) 3)

The reinforcement signal r(t) assumes an elevated value if the state has reached the
target. It is possible to reward states that came close to the target or to use negative
reinforcement if the system has reached a ‘failure’ state. However, as shown in the
companion paper Q-learning may fail in the case of negative reinforcement.

2.2 K-learning

Both the control algorithm and the representation of the environment in the system
should be adaptive by any of the following reasons: () The environment changes in
time. (B) No sufficient prior knowledge is available. () The representation of the
environment in the system depends intrinsically on the behavior of the system itself.

This concerns in particular the discretization or partition of the state space. In the
above situation it appears to be natural to base the Q-learning algorithm on a self-
organizing feature map. We were using the Kohonen or K-learning algorithm for this
purpose. The basic update rule for category vectors w; representing a prototype state
of category j reads

Aw; = —ehj,(w; — ). (4)



Topology preservation between category space and state space is enforced by the Gaus-
sian neighborhood function
Iy — sli?

hjs = exp(— 572 )- (5)

which is centered at the best matching unit s
z—s if ||lw,—z|| =min|jw; -z (6)
3

Besides the topology of the categories the distribution of the w; is guided by the
frequency of input vectors z. In the present situation this causes the problem that if
the controller has met the task and the state of system tends to be close to the target
most of the time the rule (4) will contract all prototypes finally to this small region
abandoning in this way the information on how to guide the system from a remote state
to the target. For reasons mentioned above switching off the partitioner adaptivity is
generally not desirable.

Further, the distribution of prototype vectors is not automatically the most optimal
one with respect to the performance of the controller. These two issues are addressed
by a modified version of the Kohonen algorithm.

3 State-space partitioner

3.1 Adjusting the frequency dependence of K-learning

When rewriting Eq. (4) in terms of averages with respect to the input distribution P(z).
Note that s is dependent on z.

Auw; = - / dz P(z)eh; (w; — z) (7)
it obvious that by the choice

¢~ P(z)" (8)

the algorithm would behave as if P(z) were constant. In Eq. (7) the integral over
the state space may splitted into regions in which s is constant, hence the learning
rate according to (8) will be dependent only on the winning unit s. A feasible way of
applying (8) reveals when expressing P(z) in terms of the probability P(s) of neuron s
being the best-matching unit and the censity P(w) of prototype vectors w; € X, i.e. by
two quantities which are readily available from the feature map.

P(z) ~ P(w,)P(s), (9)

Eqgs. (8) and (9) allow to determine a neuron-dependent learning rate which guarantees
an even distribution of prototype vectors in those regions of the state space where P(z)
is greater than a certain minimal value. Formulated the other way round, as long as
the neuron dependent learning rate ¢, does not exceed a certain maximal value the
prototype distribution is constant.



A few remarks are in order. The maximal value of ¢, has to be chosen such that
correlations in the input data which are caused by the fact that the system moves along
continuous trajectories are averaged out. In regions of low P(z) the system adapts at
least with the maximum learning rate. Instead of ‘~1’ other exponents can be used in
Eq. (8) allowing e.g. for more faithful representations of the input distribution than the
original Kohonen algorithm. Even ‘inverse’ prototype distributions where sparse regions
of the input space are densely inhabited and vice versa are possible {3].

In practise, Eq. (9) would require to monitor sliding averages for both P(w) and
P(s). More simply, it turned out to be sufficient to approximate P(s) by the inverse
lag between the current and the previous time of a unit to be the winner and P(w) by
a function of the current distance between z and w,!

3.2 Action-dependent partitioning

A further improvement of the controller’s performance is expected if the partition of the
state space is taken to be action dependent on top of the modifications in section 3.1.
The controller’s decision which action to take is in some regions of the state space less
critical than in others. Hence, critical regions should be resolved more accurately. In
particular, we modify the K-learning rule such that prototype vectors are attracted more
strongly if the action proposed by the controller is different in subsequent time steps,
whereas the learning rate may be low if one action is repeated. The neuron-dependent
learning rate will, hence, include an action-dependent contribution in addition to the
frequency-dependent part according to (8).

t . t
€& = { rrgpmea(t) i prpnree < émas (10)

€maz otherwise

where

= { el e e T an

Relation (11) tends to move more category prototypes towards boundaries between
regions of different optimal actions while leaving the inside of these regions less densely
inhabited.

It should be noted that various effects overlay to the ideal behavior stated so far.
Correlations in the input data will corrupt partially the averaging assumed for the
derivation of the neuron-dependent €, while neighborhood collaboration essential to
the K-learning scheme effects the action-dependent modification of ¢. The computer
experiment in section 5 shows, however, a clear improvement when using the modified
K-learning rule, such that action dependent partitioning can be considered as definitely
useful, whereas the neuron-dependent learning strengths are alienable.

Whereas action-dependent partitioning causes the representation of the state space
to be more efficient, the Q-function, in turn, is deteriorated by the drift of the category

1The relation between the intracell variance and the volume of a cell is dependent on the dimension
of the input space. Assuming isotropy we may use the relation volume = variance=¥3.



‘vectors. The next section will consider the issue of overcoming such feedback loops by
a compensation mechanism.

4 Compensating for drift of categories

The changes in the controller strategy being mediated by the Q-learning process should
naturally cause changes in the behavior of the controlled system. The partition of
the state space underlying the Q-learning algorithm therefore will become increasingly
inappropriate to represent the actual distribution of the input data. An update of the
categories of the partition, however, will influence also the representation of the Q-
function. Q-values which relate to the position of the category prototypes in the state
space generally should be different at the updated category positions. A simple way
to resolve this problem is to separate the time scales of the partitioner learning and
the Q-learning, i.e. between subsequent partitioner updates must be enough time to
readapt the Q-function. This allows for a very slow adaptation of the categories only, in
accordance to the time scales involved in most Q-learning problems and, furthermore,
results in temporary deteriorations of the controller’s performance.

An algorithm like the following interpolation scheme enables the system to perform
the partitioner update and the Q-learning simultaneously while not abandoning the
information already acquired in the category-based Q-values.

We will introduce the algorithm for a two-dimensional net and an n-dimensional state
space. The case of a one-dimensional chain of neurons is similar, but much simpler. The
Appendix formulates the algorithm for a net of arbitrary dimension d.

If a category prototype wj, is updated

w; — w'; (12)
the corresponding Q-value has to be modified according to
Q(w),a) — Q(v';,a) (13)

rather than leaving Q(w;,a) = Q(w';,a) unchanged. In order to determine Q(w';, a)
the projection of the updated category vector w'; onto the net subspace is represented
as

w'; = Bowo + frwy + fowsz, Pot+ bt Be=1 (14)
where wg, w1, w; are three suitably chosen prototype vectors from the two-dimensional
net prior to the recent update, viz. wj, is the nearest neighbor of w'; (the winning unit
if w'; were an stimulus vector to the old net). Apart from edge neurons any wj, has
two pairs of neighbors. Out of each pair wjy+c,, (€m, m = 1,2 being the lattice vectors)
that vector wj is chosen which is the closer one w.r.t. w';. ‘Closeness’ is determined by
maximizing the scalar product

(w,j = Wjp, Wjotem — wio)
lw'; — wis [Hwiptem — Wil
Yrea(Wik — wip k) (Wipenm k — Wio k) (16)

n /. . n . .
\/zkzl Wik — wJoJ‘\/Ek:l Wiotem .k — Wig,k

En (15)
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In the case of edge neurons for at least one index only either wjg4e, OF Wjp—e,, €Xists. If
the existing neighbor is opposite (negative scalar product) to w'; the interpolation rule
(17) performs an extrapolation, i.e. some of the §; are smaller than 0. The two chosen
neighbors of w;, are denoted by w;, and w;,.

Supposed the number of main features of the data manifold is matched by the net-
work dimension, a certain degree of topology conservation will have been achieved.
Therefore, if jo, j1 and j, are not placed at a single line wj,, wj, and w;, will be far from
being collinear. A linear approximation of the @-function can be obtained by

Q(w'j,a) = fo@(wo,a) + f1Q(wi,a) + B,Q(w2,a) (17)

where the coefficients §; are given by Eq. (14). The determination of values of f; involves
elementary linear algebra, and is given in the Appendix. In the present case we find:

Po = 1=p—-p
8 = (vlavl) Uz,vz> - (v'.l)z)(vz,vx)
(v1,v1){vz,v2) — (v1,v2)(v2,v1)
_ (v1,v1) (v, v2) — (v1,v2) (v, v1)
P2 = o on)(om, v2) = (o, va) o2, 01) (18)

where v/ = w'; — wjy, V1 = Wj, — W, V2 = Wj, — Wj,, and { , ) denotes the scalar
product (cf. (15)). Obviously, if w'; = w;, for one 1, i.e. v = v;, then f; =1 and §; =0
for j # 1.

In the one-dimensional case (18) simplifies to

Bo = 1-p

51 (wlj — Wiy, Wy, — wjo) (19)

It should be mentioned that due to linearity of the interpolation of the Q-function the
adjusted Q-values are still subject to errors in addition to those due to the imperfectness
of the current Q-values at the basis points. This should be compared with the ‘constant’
approximation in case when the Q-learning algorithm and the Kohonen algorithms are
unrelated. For high net dimension, however, linear interpolation is preferable to non-
linear schemes [4]. On the other hand a certain degree of readaptation of the Q-values
is certainly helpful in the present method in order to account for higher order errors.

A similar problem arises if the true Q-function is discontinuous. Discontinuities
relate to the discretization error in the Q-function. There is no knowledge in the w;
where exactly the discontinuity is in between w, and w;, i.e. the mean value (17) is a
good guess in both cases of w'; being actually right or left to the discontinuity of the
optimal Q-function. Thus, an readaptation of the Q-function is also needed, but this is
less essential and can moreover be performed at a much faster time scale.

The efficiency needs to be proven in a typical problem to which the next section is
devoted.



5 Example: Balancing a pole

The principles described above have been exemplified by the standard task of balancing
a pole. The state of the pole is determined by its angular position 8 and velocity
6. The vector z = S serves as input to the K-learning partitioner. The learning
rate of the partitioner is modified both by the frequency of inputs and the diversity
of control actions as described above. The Q-learning of control actions is subject to
compensation of category drift and contains a simple form of explorational behavior
by choosing actions according to (1) with probability ¢ and randomly otherwise.? ¢ is
linearly increased reaching unity at the end of the learning period and kept at this value
during the test phase. The length of the test phase is one third of the learning phase.

For the purpose of illustrating the principles described so far we have simulated the
dynamics of the pole using the dynamical equations from Ref. {5].

(1 +sin?6)d + _;_92 sin(26) — 25in 6 = — f cos 8 (20)

where 6 is the angular deviation from the upright position. The pole (or inverted
pendulum) consists of two point masses m and M which for convenience are set equal
to 1. These are connected by a massless bar of length 1. The control force f is applied
horizontally to the bottom mass.

Upon receiving an input the Kohonen partitioner returns the bestmatching unit as
the category to which the input vector (0,@) belongs. The category is submitted to
the Q-learning controller together with a reinforcement signal. Actions proposed by the
controller are reinforced if a target region close to the vertical position is reached or
they are penalized if the deviation exceeds a certain value.

The number of categories (Kohonen units) was 49 and 3 different actions have been
allowed. More general cases, i.e. square nets of varying numbers of neurons (4. ..4096)
or a larger number of actions which were symmetrical with respect to a zero action
and equidistantly increasing from zero led for appropriate convergence times to similar
results as reported below. The maximum allowed action was determined by comparison
to a PD controller, i.e. f = 5sinf + 6.

We compare the performance of the pole balancer trained by the full algorithm to
algorithms lacking either compensation of category drift or action-dependent learning
rate control in the K-learning. As criterion of the performance we used the number of
restarts that were necessary when the pole deviated more than one radiant form the
upright position. Fig. 1 compares the algorithm with and without action-dependent
learning, while Fig. 2 illustrates the improvement due to drift compensation. Displayed
are the means over 100 runs of the moving-average failure frequencies.

The setup of the experiment allowed to distinguish three learning phases: Initially,
while the controller was essentially untrained the action-dependent K-learning did not
cause an improvement, whereas the compensation of category drifts showed a stronger
effect, cf. Figs. 1, 2. While later the Q-learning was still exploratory the number of fai-
lures tended to be fairly low and decreased with decreasing exploration rate. Differences
among the variants of the algorithm are significant in this phase. During the test phase

2Strategies for exploring the combined state-action space are discussed in the companion paper [6).



no restarts were required except if the drift of categories was not compensated, where
in a few runs the pole fell down.

6 Conclusion

We have proposed principles for fine-tuning the interaction of a Q-learning controller
with the underlying state space partitioner. A speed-up of the learning is possible in
the described algorithm due to the conservation of information stored in the Q-function
against drift of category vectors. The skilled controller exhibits increased stability in a
changing environment because of its ability of suppressing feed-back loops arising from
the influence of the controllers activity on the state distribution. Some of the main
handicaps in using a Kohonen partitioner in a general control task, hence, have been
eliminated. Further we want to mention that the interpolation scheme of the Q-function
relies essentially on the topology preservation of the self-organizing feature maps.
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Figure captions

Figure 1: Improvement of performance due to action dependent learning rate.

Figure 2: Improvement of performance due to compensation of drift of category proto-
types
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Appendix

A Compensation of the drift of categories

Here we derive the transformation rule of the Q-function in the case of arbitrary dimen-
sions of both the net (d) and the state space (n). Consider a category j the vector w;
of which has moved to position w';. Suppressing the index j we write w — w'.

The values Q(w’,a) are approximated by interpolation of Q-values at positions w*
close to w', that not necessarily include Q(w, a).

d A d |
Q(vw',a) = EﬂeQ(w‘,a), Y Bi=1 (21)

1=0 =0

The w* refer to the partitioner before the last update or the most recent series of updates.
That category vector is chosen as w° which is closest to w'. Further, we choose out of
each pair of neighbors of w° the one which is closest to wasw,i=1,...,d. In the casc
of edge neurons there is sometimes no choice, of course. Introducing relative coordinates
by

. 0 .
w-u’, i=1,...,d

w —w® (22)

A

'
v

the vectors v; define a d-dimensional subspace A C R", such that v’ may be splitted
into a vector in A and an orthogonal component.

o =o' (23)
v' 4 1s a linear combination of the v;
d
via=_ B (24)
=1 -

On the other hand o'+ is orthogonal to any vj, i.e.

0 = {(v*,v;) Vi=1,...,d
d
= (vl - E ﬂivi’vj)
i=1
d
& W,v;) = 2 Bilvivs) (25)
=1
In order to determine the coefficients i, i = 1,...,d this system of d linear equations

has to be solved. For small d Cramer’s rule most conveniently yields the coefficients in
(21). For d <2 cf. Egs. (18, 19). In the general case we have
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