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Abstract

Measurements are presented of differential cross sections for the production of Z
bosons in association with at least one jet initiated by a charm quark in pp collisions
at
√

s = 13 TeV. The data recorded by the CMS experiment at the LHC correspond
to an integrated luminosity of 35.9 fb−1. The final states that contain a pair of elec-
trons or muons that are the decay products of a Z boson, and a jet consistent with
being initiated by a charm quark produced in the hard interaction. Differential cross
sections as a function of the pT of the Z boson and pT of the charm jet are compared
with predictions from Monte Carlo event generators. The inclusive production cross
section 405.4± 5.6 (stat)± 24.3 (exp)± 3.7 (theo) pb, is measured in a fiducial region
requiring both leptons to have |η| < 2.4 and pT > 10 GeV, at least one lepton with
pT > 26 GeV, and a mass of the pair in the range 71–111 GeV, while the charm jet is
required to have pT > 30 GeV and |η| < 2.4. These are the first measurements of these
cross sections in proton-proton collisions at 13 TeV.
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1 Introduction
The CERN LHC produced a large number of events at

√
s = 13 TeV in proton-proton (pp)

collisions containing a Z boson accompanied by one or more jets initiated by charm quarks
(c jets). The differential cross sections for inclusive Z+c jet production, as functions of the
transverse momenta pT of the Z boson and of the c jet check QCD models, provide information
on the parton distribution function (PDF) of the charm quark, and investigate the possibility
of observing the intrinsic charm quark (IC) component in the nucleon [1–3]. An IC component
would enhance the rate of Z+c jet production, especially at large values of pT of the Z boson
and of the c jet.

Associated production of a Z boson and a c jet is an important background in searches for
physics beyond the standard model (SM). For example, in supersymmetry models a top scalar
quark (̃t) could decay into a charm quark and an undetected lightest supersymmetric particle,
providing thereby a large pT imbalance [4]. One of the backgrounds for such a process is Z+c jet
production with the Z boson decaying into neutrinos. Better modelling of Z+c jet production
through studies of visible decay modes can enhance the sensitivity in searches for new physics.
An example of a Feynman diagram corresponding to the Z+c jet process that is sensitive to the
charm quark is shown in Fig. 1.

Figure 1: Example Feynman diagram for the Z+c jet process.

A previous measurement of the Z+c jet cross section at 8 TeV is reported in Ref.[5]. In this paper
the Z boson is formed from an identified electron or muon pair, and the c jet is identified by
applying charm tagging criteria [6] to reconstructed jets. This achieve a higher selection effi-
ciency than in the 8 TeV measurement, where c jets were identified by reconstructed D∗(2010)
mesons or soft muons inside the jets.

Measurements of the fiducial total and differential cross sections of Z+c jet production are pre-
sented as functions of the pT of the Z boson and of the c jet pT. To provide a direct comparison
with predictions from Monte Carlo (MC) event generators (generator level), we unfold the de-
tector effects.

The data, corresponding to an integrated luminosity of 35.9 fb−1 at
√

s = 13 TeV, were recorded
by the CMS experiment during pp collisions in 2016.

2 The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diam-
eter, providing a magnetic field of 3.8 T. A silicon pixel and strip tracker, covering a pseudo-
rapidity region |η| < 2.5, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a
brass and scintillator hadron calorimeter, with each system composed of a barrel and two end-
cap sections, lie within the solenoid volume. Forward calorimeters, made of steel and quartz
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fibers, extend η coverage provided by the barrel and endcap detectors to |η| < 5. Muons are de-
tected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid
that cover |η| < 2.4. Events of interest are selected using a two-tiered trigger system [7]. The
first level, composed of specialized hardware processors, uses information from the calorime-
ters and muon detectors to select events at a rate of ≈100 kHz within a fixed latency of about
4 µs. The second level, known as the high-level trigger, consists of a farm of processors running
a version of the full event reconstruction software optimized for fast processing, that reduces
the event rate to ≈1 kHz before data storage. A more detailed description of the CMS detector,
together with a definition of the coordinate system and kinematic variables, can be found in
Ref. [8].

3 Data and simulated events
The measurements of the cross section are based on 35.9 fb−1pp collision data collected by the
CMS detector in 2016. The minimum proton bunch spacing is 25 ns with 24 interactions on
average per beam crossing.

Various MC generators are used to simulate the Z+jets background and the signal processes.
The MADGRAPH5 aMC@NLO version 2.2.2 [9] (MG5 aMC) generator is used to simulate Drell–
Yan (DY) processes, including the Z+c jet signal, calculated at next-to-leading order (NLO).
Background DY events include those with a Z boson and a jet initiated by a bottom quark (b jet),
or a jet initiated by a light quark or a gluon (light jet). Samples are made for Z+n jet processes
(n ≤ 2), calculated at NLO in perturbative QCD. A second signal model is provided by using
MG5 aMC to calculate leading order (LO) matrix elements for pp → Z + n jets (n ≤ 4). For a
third signal model, SHERPA v2.2 [10, 11] is used to generate pp → Z + n jets events, with n ≤ 2
at NLO and n ≤ 4 at LO. All three signal models are normalized to the value of the inclusive
Z + jets cross section calculated at next-to-next-to-leading order with FEWZ v3.1 [12]. These
samples are generated using the NNPDF 3.0 [13] PDF set.

In addition to events with light and b jets, there are contributions to the background from
processes producing top quark pairs [14, 15] and single top quarks [16, 17]. These samples
are generated using NLO POWHEG v2.0 [18–20] or MG5 aMC. There is also background from
vector boson pair production, which is simulated using PYTHIA 8 v8.212 [21].

All samples, except SHERPA, use PYTHIA 8 to model the initial- and final-state parton showers
and hadronization, with the CUETP8M1 [22] or CUETP8M2T4 [23] (top pair sample) tune that
includes the NNPDF 2.3 [24] LO PDFs and the value of the strong coupling at the mass of the
Z boson is αS(mZ) = 0.119. Matching between the matrix element generators and the parton
shower is done using the kT–MLM [25, 26] scheme with the matching scale set at 19 GeV for the
LO MG5 aMC samples, and the FxFx [27] scheme with the matching scale set to 30 GeV for the
NLO MG5 aMC events.

GEANT4 [28] is used for CMS detector simulation. The simulation includes additional pp in-
teractions (pileup) in the current and nearby bunch crossings.

The simulated events are reconstructed with the same algorithms used for the data.

4 Object reconstruction and event selection
The particle flow (PF) algorithm [29] is used to reconstruct and identify individual particle can-
didates (physics objects) in an event, through an optimized combination of information from
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the various elements of the CMS detector. Energy depositions are measured in the calorimeters,
and charged particles are identified in the central tracking and muon systems.

Electrons are reconstructed from tracks, fitted with a Gaussian sum filter, matching energy de-
posits in the ECAL [30]. Identification requirements are applied based on the ECAL shower
shape, matching between the track and the ECAL deposits, and observables characterizing
the emission of bremsstrahlung radiation along the electron trajectory. Electrons are required
to originate from the primary vertex, which is the vertex candidate with the largest value of
summed physics-object pT

2. Longitudinal and transverse impact parameters for barrel (end-
cap) are required to be <0.10 (0.20) and 0.05 (0.10) cm, respectively. The electron momentum is
estimated by combining the energy measurement in the ECAL with the momentum measure-
ment in the tracker. The momentum resolution for electrons with pT ≈ 45 GeV from Z → ee
decays ranges from 1.7 to 4.5%. The dielectron mass resolution for Z → ee decays when both
electrons are in the ECAL barrel is 1.9%, degrading to 2.9% when both electrons are in the
endcaps.

Muons are reconstructed by combining signals from the inner tracker and the muon detector
subsystems. They are required to satisfy standard identification criteria based on the number
of hits in each detector, the track fit quality, and the consistency with the primary vertex by
requiring the longitudinal and transverse impact parameters to be less than 0.5 and 0.2 cm, re-
spectively. The efficiency to reconstruct and identify muons is greater than 96% [31]. Matching
muons to tracks measured in the silicon tracker results in a relative pT resolution for muons
with 20 < pT < 100 GeV of 1% in the barrel and 3% in the endcaps.

To reduce the misidentification rate, electrons and muons are required to be isolated. The
isolation of electron or muon is defined as the sum of the pT of all additional PF candidates
within a cone of radius ∆R =

√
(∆η)2 + (∆φ)2 = 0.3 (0.4) around the electron (muon) track,

where φ is the azimuthal angle in radians. After compensating for the contribution from pile-
up [32], the resultant sum is required to be less than 25% of the lepton pT.

Jets are clustered from PF candidates using the infrared- and collinear-safe anti-kT algorithm
with a distance parameter of 0.4, as implemented in the FASTJET package [33, 34]. The jet mo-
mentum is determined as the vectorial sum of all particle momenta in the jet, and, based on
simulation,is within 5 to 10% of the true momentum over the entire pT spectrum and detector
acceptance. To mitigate the effects of pileup, charged particle candidates identified as origi-
nating from pileup vertices are discarded and a correction [32] is applied to remove remaining
contributions. The reconstructed jet energy scale (JES) is corrected using a factorized model to
compensate for the nonlinear and nonuniform response in the calorimeters. Corrections are
derived from simulation to bring the measured response of jets to that of generator-level jets
on average. In situ measurements of the momentum balance in dijet, multijet, photon+jet, and
leptonically decaying Z+jet events are used to correct any residual differences between the JES
in data and simulation [35]. The jet energy in simulation is degraded to match the resolution
observed in data. The jet energy resolution (JER) amounts typically to 15% at 10 GeV, 8% at
100 GeV, and 4% at 1 TeV. Additional selection criteria are applied to remove jets potentially
dominated by anomalous contributions from various subdetector components or reconstruc-
tion failures [36]. Jets identified as likely coming from pileup [37] are also removed.

Events are selected online through a single electron trigger requiring at least one electron
candidate with pT > 27 GeV (electron channel), or a single muon trigger requiring at least
one muon candidate with pT > 24 GeV (muon channel). Offline, we require a pair of op-
positely charged electrons or muons each satisfying identification and isolation criteria, with
pT > 10 GeV and |η| < 2.4, and with an invariant mass close to the mass of the Z boson:
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71 GeV < mee or µµ < 111 GeV. To exceed the trigger threshold in the electron channel at least
one electron must have pT > 29 GeV, and in the muon channel at least one muon must have
pT > 26 GeV. Small residual differences in the trigger, identification, and isolation efficiencies
between data and simulation are measured using ”tag-and-probe” methods [38], and corrected
by applying scale factors to simulated events.

The event must contain at least one jet with pT > 30 GeV and |η| < 2.4, satisfying tight c
tagging criteria using the deep combined secondary vertices algorithm [6]. This algorithm dis-
criminates c jets from b and light jets based on jet properties such as the presence of secondary
vertices and tracks with large impact parameter. Data from W+jets, tt , and inclusive jet produc-
tion are used to measure the c tagging efficiency for c jets, and mistag rates for b and light jets.
These are compared with the simulation, where the reconstructed jet flavor is known from its
hadron content. Small differences between data and simulation are corrected by applying scale
factors to the simulation. The threshold applied in this analysis gives a c tagging efficiency
of about 30%, and misidentification probabilities of 1.2% for light jets and 20% for b jets, with
relative uncertainties between 5% and 15% depending on the pT of the jet. If several c-tagged
jets occur in the event, the one with the highest pT is selected.

The simulated events are classified according to generator-level information. Generator-level
jets are made by clustering all stable particles resulting from hadronization using the anti-kT
algorithm with a distance parameter of 0.4, and the jet flavor is defined by the flavor of the
hadrons within the jet. If an event contains a generator-level jet with pT > 10 GeV containing a
b hadron, the event is defined as a Z+b jet event. If there is no such generator-level b jet in the
event and there is at least one generator-level jet with pT > 10 GeV containing a c hadron, the
event is defined as a Z+c jet event. Other events in the DY sample are classified as Z+light jet
events. The generator-level leptons are dressed by adding the momenta of all photons within
∆R = 0.1 around the lepton directions.

5 Signal determination and data unfolding
Measurements of the differential cross sections of Z+c jet production as a function of the pT
of the Z boson and as a function of the c jet pT are performed in several steps. The first step
is to select c jet-enriched samples of Z → ee (electron channel) or Z → µµ (muon channel)
candidate events. The second step is to split the sample into different bins according to the pT
of the Z boson or c-tagged jet, and to measure the number of Z+c jet events in each bin. The
third step is to unfold the data, using the simulation of the signal to construct response matrices
to relate the observed distributions to those at the generator level. The final step is to combine
the resulting unfolded electron and muon channel pT distributions, and compare them with
predictions from different MC event generators.

Charm hadrons can decay at points displaced from the primary vertex. This secondary vertex
is reconstructed using the inclusive vertex finder algorithm [39]. The invariant mass of tracks
associated with the secondary vertex (MSV) in the c-tagged jet [6] are used to discriminate
between signal and background. Figure 2 shows the observed distributions of MSV in the
electron and muon channels, compared with the different signal and background contributions
predicted by the simulation. Although MSV is an ingredient in the c tagging algorithm, there
are sufficient differences remaining in the distributions for the c-tagged samples to provide
information on the flavor composition. The normalized distributions of MSV for Z+light jet,
Z+c jet and Z+b jet components are compared in Fig. 3.

The top quark and diboson background predictions are taken directly from simulation. The
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normalizations for the Z+c jet, Z+b jet and Z+light jet components are then obtained by fitting
templates of the MSV distribution obtained from simulation to the observed data. A maximum
likelihood template fit is performed separately in each bin of Z boson candidate or c-tagged jet
pT.

The values of the scale factor SFq, defined as the ratio of the fitted normalization to the pre-
diction from simulation, are presented in Tables 1–4 for each pT bin for each Z+q jet process.
The correlation coefficients between errors of different flavor SFs, found in the fit, are approx-
imately equal to −0.8, −0.35 and −0.25 for SFc and SFb , SFl and SFb , SFc and SFl respectively.
Sources of systematic uncertainty are discussed in Sec. 6. Figure 4 shows the distributions of
the Z boson candidate and c-tagged jet pT after applying these scale factors, assuming they
are constant across the pT range in which they are determined. The post-fit MSV distributions
are presented in Appendix A. Good agreement is observed between simulation and data after
applying these factors.
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Figure 2: Distribution of the secondary vertex mass MSV of the highest-pT c-tagged central
jet, for electron (left) and muon (right) channels.The observed data is compared with the dif-
ferent signal and background components in simulation, before normalization scale factors are
applied. Dashed area represents MC systematic uncertainties. The vertical bars on the data
points represent statistical uncertainties.

Table 1: Values of Z+light jet SFl, Z+c jet SFc , and Z+b jet SFb scale factors measured in the
electron channel, as a function of c-tagged jet pT. The first uncertainty in each case is the
statistical uncertainty from the fit, the second is the systematic uncertainty.

c-tagged jet pT (GeV) SFl SFc SFb

30–37 1.16 ± 0.05 +0.29
−0.21 0.70 ± 0.04 +0.09

−0.11 1.06 ± 0.05 +0.16
−0.12

37–45 0.79 ± 0.06 +0.26
−0.18 0.89 ± 0.03 +0.10

−0.08 0.92 ± 0.05 +0.16
−0.16

45–60 0.97 ± 0.06 +0.23
−0.19 0.74 ± 0.03 +0.08

−0.06 1.07 ± 0.06 +0.09
−0.09

60–90 0.99 ± 0.07 +0.24
−0.18 0.87 ± 0.04 +0.08

−0.08 0.95 ± 0.07 +0.09
−0.12

90–250 0.92 ± 0.07 +0.27
−0.19 0.98 ± 0.05 +0.11

−0.10 1.04 ± 0.07 +0.08
−0.08

The generator-level signal is defined to be Z+c jet events with two oppositely charged generator-
level electrons or muons with pT > 10 GeV (at least one with pT > 26 GeV), |η| < 2.4, and an
invariant mass 71 < mee or µµ < 111 GeV. There must also be at least one generator-level c jet
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Figure 3: Distribution of the secondary vertex mass of the highest-pT c-tagged central jet,
for electron (left) and muon (right) channels for Z+light jet, Z+c jet and Z+b jet components,
normalized to 1. Vertical bars represent statistical uncertainties.

Table 2: Values of Z+light jet SFl, Z+c jet SFc , and Z+b jet SFb scale factors measured in the
electron channel, as a function of Z candidate pT. The first uncertainty in each case is the
statistical uncertainty from the fit, the second is the systematic uncertainty.

Z candidate pT (GeV) SFl SFc SFb

0–30 0.86 ± 0.05 +0.24
−0.18 0.76 ± 0.04 +0.11

−0.09 1.25 ± 0.07 +0.17
−0.18

30–50 0.98 ± 0.05 +0.23
−0.17 0.80 ± 0.03 +0.08

−0.08 0.91 ± 0.05 +0.10
−0.08

50–65 0.85 ± 0.07 +0.21
−0.16 0.78 ± 0.04 +0.15

−0.11 1.04 ± 0.06 +0.17
−0.17

65–95 1.14 ± 0.08 +0.30
−0.22 0.97 ± 0.04 +0.08

−0.07 0.76 ± 0.06 +0.09
−0.11

95–300 1.01 ± 0.07 +0.26
−0.20 0.83 ± 0.05 +0.07

−0.07 1.13 ± 0.07 +0.08
−0.08

with pT > 30 GeV and |η| < 2.4. To avoid double counting, jets within ∆R = 0.4 of one of the
two leptons from the Z candidate are removed.

A fraction of Z+c jet events that are outside the signal phase space will migrate into the re-
constructed signal region, primarily events with c jets with generated pT < 30 GeV but recon-
structed pT > 30 GeV due to the finite detector resolution. The fraction of Z+c jet events that
are inside the signal phase space is estimated from the number of selected events in which
the c-tagged jet and lepton pair match within ∆R < 0.3 to a generator-level highest pTc jet
and lepton pair satisfying the phase space requirements. Figure 5 shows this fraction as func-
tions of Z boson and c-tagged jet pT, for electron and muon channels, calculated using MAD-
GRAPH5 aMC@NLO sample.

Response matrices are constructed using the Z+c jet events in the DY sample that is simulated
using the MG5 aMC (NLO) generator, and cross-checked using the MG5 aMC (LO) generator.
Each matrix entry represents the probability for an event generated in the signal phase space
within a certain c jet (or Z boson) pT range to end up within a certain reconstructed c jet (or
Z boson candidate) pT range. The unfolding was done with 5 detector-level pT bins and 4
generator-level pT bins. The TUNFOLD package v17.5 [40], which is based on a least-squares
fit, is then used to invert the response matrices and unfold the distribution of the measured
number of Z+c jet events.
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Table 3: Values of Z+light jet SFl, Z+c jet SFc , and Z+b jet SFb scale factors measured in the
muon channel, as a function of c-tagged jet pT. The first uncertainty in each case is the statistical
uncertainty from the fit, the second is the systematic uncertainty.

c-tagged jet pT (GeV) SFl SFc SFb

30–37 0.95 ± 0.04 +0.24
−0.17 0.82 ± 0.03 +0.12

−0.07 1.04 ± 0.05 +0.11
−0.19

37–45 0.93 ± 0.05 +0.26
−0.23 0.82 ± 0.03 +0.06

−0.06 0.96 ± 0.05 +0.12
−0.09

45–60 0.81 ± 0.04 +0.20
−0.15 0.79 ± 0.03 +0.09

−0.06 1.10 ± 0.04 +0.08
−0.07

60–90 0.88 ± 0.04 +0.23
−0.17 0.80 ± 0.03 +0.06

−0.08 1.25 ± 0.05 +0.12
−0.10

90–250 0.92 ± 0.05 +0.24
−0.17 0.79 ± 0.04 +0.07

−0.06 1.16 ± 0.06 +0.12
−0.12

Table 4: Values of Z+light jet SFl, Z+c jet SFc , and Z+b jet SFb scale factors measured in the
muon channel, as a function of Z candidate pT. The first uncertainty in each case is the statistical
uncertainty from the fit, the second is the systematic uncertainty.

Z candidate pT (GeV) SFl SFc SFb

0–30 0.97 ± 0.04 +0.24
−0.20 0.82 ± 0.03 +0.09

−0.08 1.09 ± 0.05 +0.11
−0.10

30–50 0.91 ± 0.04 +0.21
−0.16 0.80 ± 0.02 +0.07

−0.06 0.99 ± 0.04 +0.05
−0.06

50–65 0.63 ± 0.06 +0.17
−0.13 0.73 ± 0.03 +0.09

−0.06 1.24 ± 0.05 +0.09
−0.10

65–95 0.96 ± 0.05 +0.25
−0.18 0.85 ± 0.03 +0.09

−0.06 1.04 ± 0.05 +0.13
−0.14

95–300 0.89 ± 0.05 +0.23
−0.17 0.78 ± 0.04 +0.07

−0.07 1.33 ± 0.06 +0.08
−0.08

Figure 6 shows the efficiency (defined as the fraction of signal events generated in the fiducial
phase space that pass all selection criteria after reconstruction) as a function of the generator-
level Z boson or c jet pT for electron and muon channels, calculated using the MG5 aMC (NLO)
sample. The dominant losses are due to the c tagging and lepton selection efficiencies.

6 Systematic uncertainties
The systematic uncertainties are estimated by varying relevant parameters and then repeat-
ing the unfolding procedure, recalculating the values of the efficiency, response matrix, and
number of Z+c jet and background events in each case. The differences observed between
the unfolded distributions are assumed as the uncertainties. The following uncertainties are
included:

• QCD renormalization and factorization scales: The ambiguity in the choice of QCD
renormalization scale (µR) and factorization scale (µF) leads to uncertainty in the-
oretical predictions for the DY process. This uncertainty is estimated by chang-
ing the values of µR and µF by factors of 0.5 and 2 relative to the default values,
µF = µR = mZ , excluding the (0.5µF, 2µR) and (0.5µR, 2µF) combinations. Largest
deviations from the central values were used as uncertainty.

• PDF: The unfolding is performed with different PDF replicas and compared with
the nominal distribution.

• c tagging efficiency: The effect of uncertainties in the c tagging rates is estimated
by varying tagging and mistagging scale factors for the different jet flavors. Scale
factors for tagging c jets, and mistagging b jets and light jets are varied up and down
by one standard deviation. The combined c tagging uncertainty is then calculated
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Figure 4: The distributions of pT in data and corrected simulation, after applying the fitted
scale factors to the Drell-Yan components. The upper plots show distributions for the electron
channel, with the pT of the electron pair (left) and c-tagged jet (right). The lower plots show
distributions for the muon channel with the pT of the muon pair (left) and c-tagged jet (right).
Dashed area represents MC systematic uncertainties. The vertical bars on the data points rep-
resent statistical uncertainties.

as the sum in quadrature of these variations. The variation of scale factors is ≈15%
for light jets, and ≈5% for charm and bottom jets.

• Jet energy resolution and scale: Both the JES and JER corrections can affect jet pT and
the secondary vertex mass distributions used in the SFb and SFl measurements. The
uncertainty resulting from JES corrections is estimated by varying the pT- and η-
dependent scale factors within their uncertainty (up to ≈4%). The JER uncertainty
is estimated by varying the amount of jet pT resolution degradation applied to the
simulation up and down by one standard deviation (≈10%).

• Pileup: The corresponding uncertainty is estimated by changing the total inelastic
cross section by ±4.6% [41].

• Lepton identification and isolation: Uncertainties resulting from the modeling of the
identification and isolation of muons and electrons are estimated by varying the
corresponding scale factors within their uncertainties. For electrons the uncertainty
is less than 3%, while for muons uncertainties in identification and isolation are less
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than 2%.

• Top pair production cross section: The uncertainty because of the cross section used for
the modeling of top quark pair production is estimated by varying the normalization
of the top pair component of the background by ±10% [42].

• Luminosity: The uncertainty is obtained by changing the luminosity value used to
normalize the unfolded distributions by ±2.5% [43]

• Statistical uncertainties in MSV templates: The uncertainty is obtained by taking into
account statistical fluctuations in each bin of the simulated MSV distributions, used
in the fit of SFl, SFc and SFb .

The uncertainties in the integral fiducial cross section from the considered sources are listed in
Table 5.
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Table 5: Summary of the systematic uncertainties in the integral fiducial cross section arising
from the various sources.

Channel QCD PDF c tag/mistag JER JES Pileup Top Pair ID\Iso L MC stat.
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

µµ, pc jet
T 5.5 0.5 4.2 3.9 4.8 1.5 0.6 1 2.5 4.2

µµ, pZ
T 1.9 0.5 4.2 1.1 3.9 1.6 0.8 1 2.5 3.1

ee, pc jet
T 6.4 0.6 4.2 3.1 6.4 3 0.7 2.6 2.5 6.3

ee, pZ
T 2.6 0.5 4.1 1.1 4.8 1.8 0.6 2.6 2.5 3.8

7 Results
The total fiducial cross section is measured as

σfid =
NcharmPfid

εLB(Z → ``)
, (1)

where Ncharm is the integral number of measured charm events, Pfid is the integral fiducial
purity, ε is the integral fiducial selection efficiency, L is the integrated luminosity, and B(Z →
``) = 3.36% is the branching fraction of the Z boson to `` with ` = e or µ.

The fiducial differential cross sections are obtained from the unfolded distributions as
dσ

dpT
=

Ni
L∆iB(Z → ``)

, (2)

where Ni is the number of events in pT bin i of the unfolded distribution and ∆i is the width of
the bin.

The results of the measurements of total and differential fiducial cross sections from the electron
and muon channels are combined by a fit using the CONVINO tool [44], which includes statis-
tical and systematic uncertainties. The uncertainties relating to the c tag/mistag rates, JER,
JES, pileup, luminosity, and top quark pair cross section are assumed fully correlated between
the channels, whereas uncertainties from other sources are assumed to be uncorrelated. The
experimental systematic uncertainties are those related to c tag/mistag rates, JER, JES, identi-
fication and isolation, pileup, and luminosity. The rest are designated as theoretical systematic
uncertainties.

The total fiducial cross section value for Z boson pT < 300 GeV equals 405.4 ± 5.6 (stat) ±
24.3 (exp) ± 3.7 (theo) pb, where (exp) and (theo) denote experimental and theoretical sys-
tematic uncertainties respectively. This value is significantly lower than the MG5 aMC (NLO)
predicted value of 524.9± 11.7 (theo) pb. The theoretical systematic uncertainty includes un-
certainties in QCD scale and PDF.

The values of the cross sections as a function of pT of the Z boson and c jet after combining are
shown in Fig. 7. This also shows a comparison of the measured fiducial cross sections with pre-
dictions from the generators MG5 aMC (NLO), MG5 aMC (LO), and SHERPA. The prediction
from MG5 aMC at leading order shows good agreement with data, while both MG5 aMC and
SHERPA at next-to-leading order tend to overestimate the cross section.

The values of the measured differential cross sections are presented in Tables 6 and 7.

8 Summary
The first differential cross sections for inclusive Z+c jet production as functions of transverse
momenta pT of the Z boson and of the associated c jet are presented for collisions at

√
s =
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Figure 7: Measured fiducial differential cross sections for inclusive Z+c jet production,
dσ/dpc jet

T (left) and dσ/dpZ
T (right). Yellow band shows total systematic uncertainties. Pre-

dictions from MG5 aMC (LO) are shown with statistical uncertainties only. The vertical bars
on the data points represent statistical uncertainties.

13 TeV using 35.9 fb−1 of data collected by the CMS experiment at the CERN LHC. The mea-
surements pertain to a fiducial space defined as containing a c jet with pT > 30 GeV and pseu-
dorapidity |η| < 2.4, and a pair of leptons with each lepton having pT > 10 GeV, |η| < 2.4,
and at least one with pT > 26 GeV, and a dilepton mass between 71 and 111 GeV. The main
backgrounds correspond to Z+light jet, Z+b jet, top quark pair, and diboson (ZZ, ZW, or WW)
production. To provide a direct comparison with predictions from Monte Carlo (MC) event
generators, we unfold detector effects from our measurements.

The total fiducial cross section for the Z boson with pT < 300 GeV is measured to be 405.4±
5.6 (stat)± 24.3 (exp)± 3.7 (theo) pb, while the MADGRAPH5 aMC@NLO generator at next-to-
leading order predicts 524.9± 11.7(theo)pb for the same fiducial region. The theoretical uncer-
tainties include QCD scale variation and parton distribution function uncertainties. The predic-
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Table 6: Measured differential cross section as a function of pc jet
T for electron, muon and com-

bine channels. The first and second uncertainty values correspond to the statistical and sys-
tematic contributions, respectively.

pc jet
T (GeV) electrons (pb/GeV) muons (pb/GeV) combined (pb/GeV)

30–45 11.91 ± 0.54 ± 1.50 12.34 ± 0.44 ± 1.05 12.20 ± 0.34 ± 1.15
45–60 5.30 ± 0.63 ± 0.92 5.73 ± 0.49 ± 0.66 5.59 ± 0.39 ± 0.87
60–90 3.10 ± 0.25 ± 0.51 2.66 ± 0.19 ± 0.41 2.74 ± 0.16 ± 0.27
90–250 0.43 ± 0.03 ± 0.06 0.34 ± 0.02 ± 0.03 0.37 ± 0.02 ± 0.03

Table 7: Measured differential cross section as a function of pZ
T for electron, muon and combine

channels. The first and second uncertainty values correspond to the statistical and systematic
contributions, respectively.

pZ
T (GeV) electrons (pb/GeV) muons (pb/GeV) combined (pb/GeV)
0–30 2.28 ± 0.13 ± 0.28 2.40 ± 0.08 ± 0.24 2.37 ± 0.07 ± 0.31
30–50 5.91 ± 0.23 ± 0.54 5.90 ± 0.19 ± 0.46 5.93 ± 0.15 ± 0.45
50–95 3.69 ± 0.13 ± 0.27 3.32 ± 0.09 ± 0.22 3.44 ± 0.08 ± 0.23

95–300 0.32 ± 0.02 ± 0.03 0.30 ± 0.02 ± 0.02 0.31 ± 0.01 ± 0.02

tions from MC event generators were compared with measurements, which are in good agree-
ment with MADGRAPH5 aMC@NLO at leading order, while both MADGRAPH5 aMC@NLO and
SHERPA at next-to-leading order tend to overestimate the cross section. Predictions from all
three generators were normalized to the cross section calculated with FEWZ at next-to-next-to-
leading order. Since the prediction of inclusive Z+jets production at next-to-leading order is
in better agreement with data than that at leading order [45]. This could be an indication that
the parton distribution functions overestimate the charm content. These results can be used to
improve existing constraints on the charm quark content in the proton.
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A Post-fit secondary vertex mass distributions
Figures A.1 and A.2 show post-fit secondary vertex mass distributions for electron and muon
channels. The normalization scale factors from the fit of MSV were applied as a function of Z
or c-tagged central jet pT.
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Figure A.1: Distribution of the secondary vertex mass of the highest-pT c-tagged central jet,
for electron channel.The observed data is compared to the different signal and background
components in simulation, after normalization scale factors as function of Z pT (left) and c-
tagged central jet pT (right) are applied.
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Figure A.2: Distribution of the secondary vertex mass of the highest-pT c-tagged central jet,
for muon channel.The observed data is compared to the different signal and background com-
ponents in simulation, after normalization scale factors as function of Z pT (left) and c-tagged
central jet pT (right) are applied.
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T. Lenz, J. Lidrych, K. Lipka, W. Lohmann24, R. Mankel, I.-A. Melzer-Pellmann, J. Metwally,
A.B. Meyer, M. Meyer, M. Missiroli, J. Mnich, A. Mussgiller, V. Myronenko, Y. Otarid,
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M. Bartók26, M. Csanad, M.M.A. Gadallah27, S. Lökös28, P. Major, K. Mandal, A. Mehta,
G. Pasztor, O. Surányi, G.I. Veres
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3: Also at Université Libre de Bruxelles, Bruxelles, Belgium
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