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Models or theories that are stable, in the sense that they do not change in a
qualitative manner under a small change of parameters, are probably those with the
wider range of validity. This seems to be true not only for the dissipative systems
studied in non-linear dynamics but also for the fundamental theories of Nature. It is
well-known that the transition from non-relativistic to relativistic and from classical to
quantum mechanics may be interpreted as the stabilizing deformations of two unstable
algebraic structures. When these two algebraic structures are put together one finds
that the resulting relativistic quantum algebra is itself unstable and admits a two-
parameter stabilizing deformation. One of the deformations is related to the fact that
flat space is an isolated point in the class of constant curvature spaces, the other makes
the space-time coordinates non-commuting observables and introduces a parameter with
dimensions of length. In this paper some of the consequences of the deformed algebras of

observables are explored, in particular the geometric aspects of non-commutative space-

time.



1. Deformations and the instability of relativistic quantum
mechanics

It is probable that all physical theorics, developed so far, are mere
approximations to Nature. Therefore the theories that have the higher probability to
have a wider range of validity are those that do not change in a qualitative mauner for
a small change of parameters. Such theories are called stable or rigid. It is unlikely that
properties thai are too semsitive to small changes in the theoretical model (i. e. that
depend in a critical manper on particular values of the parameters) will ever be
observed. Alternatively if a fine tuming is reeded to reproduce soine natural
phenomenon, then it is raost certain that the model is basically unsound and its other
predictions are unrcliable. It is therefore a good methodological point of view to
concentrate on the robust properties of the models or, equivalently, on models which are
stable.

In general, a mathematical structure is said to be stable (or rigid) for a class of
deformations if any deformation in this class leads to an equivalent (isomorphic)
structure. The idea of stability of the structurcs provides a guiding principle to test
either the validity or the need for generalization of a physical theory. Namely, if the
mathematical structure of a given theory is not stable then, one should try to deform it
until one falls into a stable one, which has a good chance of being a generalization of
wider validity. The mathematical theory of deformations developed along several lines,
the most developed branches being the deformations of analytic structures, the
deformations of algebraic manifolds and the deformations of a.lgebras[l_al. In all cases

the cohomology groups play a key role in characterizing the stability of the structures.

The stable-model point of view had a large impact in the field of nou-linear
dynamics, where it led to the notion of structural stability[4]. As emphasized by Flato{sl
and Fa,ddeev16 the same pattern scems to occur in the fundamental theories of Nature.
In fact, the two most important physical revolutions of this century, namely the passage
from non-relativistic to relativistic and from classical to quantum mechanics, may be
interpreted as the transition from two unstable theories to two stable theories. From
non-relativistic to relativistic mechanics one notices that the second cohomology group
of the homogeneous Galileo group does not vanish and has a deformation leading to the

Lorentz algebra which, being seuiisimple, is stable. In turn, the transition from classical



to quantum mechanics may be regarded as a deformation of the Poisson algebra of
functions on phase space to the stable Moyal-Vey algebram. I will refer to these two
stabilizing deformations as the (1/c)-deformation and the #-deformation. The deformed
algebras are all equivalent for non-zero values of 1/c and 4. Hence relativistic mechanics
and quantum mechanics might have been derived purely from considerations of stability
of their algebras, but the exact values of the deformation parameters are fundamental
constants to be obtained from experiment. In this sense not only deformation theory is

the theory of stable theories, it also is the theory that identifies the fundamental
constants.

A review of deformation theory and of the transitions from non-relativistic to
relativistic and from classical to quantum mechanics as the deformation-stabilization of
two unstable theories is contained in Ref.[8]. Also, it is shown there that both
deformations may be studied in the context of finite-dimensional ‘Lie algebras, which is
simpler than the usual treatment of quantum mechanics as a deformation of an infinite-
dimensional algebra of functions. The algebra that results from the (1/c)-deformation is
the Lorentz algebra and the one coming from the A-deformation is the Heisenberg
algebra. When the two deformed algebras are put together one ends up with

My Mol = i (Mpuogup+MypEur — Myogup —Myuptue) (1.1a)
My, Pyl = i (Py g0~ Py 8,) (1.1b)
[Mw,,x,\] =1 (x,, Bya—Xu gw\) (1.1¢)
[PuP) =0 (1.1d)
[x,%,] = 0 (1.1e)
[Pux) = igu 9 (1.1)

Velocities and actions are already mecasured in units of ¢ and # (that is c=#=1) and 3
is the identity operator. The algebra ‘5!:0={M”,,,P,,,x,,,3} defined by Eqs.(1.1) is the
union of the Lorentz and the Hecisenberg algebras together with the compatibility
relations (1.1b-c), stating the four-vector nature of coordinates and momenta. %
generates the algebra of observables of relativistic quantum mechanics (as this theory is
understood today). Before internal quantum numbers are introduced, all local
observables are in the closure of the polynf)mial algebra generated by Rey)-



Two algebras, obtained through deformations that stabilize previously unstable
theories, are put together in Eqs.(1.1). A natural question is whether the whole algebra
is now stable or whether there are still non-trivial deformations leading to qualitatively
different theories. The answer is that the algebra in Eqgs.(1.1) is not stablc because there
is a 2-parameter deformation leading to

MuMpo) = i (Myotup + My s ~Muofiup~ Mypio) (1.2a)
MuPyl = 1(Puga-Pugn) (1.2b)
Mpxy] =1 (Xp Eu)— Xv ES,,,\:'J (1.2¢)
PuP) = i M, (1.2d)
X, = —ic M, (1.2¢)
Pux)) = i (1.26)
[P = —i—{l—',- X, (1.2g)
kol =iceP, (1.2h)
My,9 = 0 (1.2i)

The a.lgebra 9°¢ R » defined by Eqs.(1.2), is not equivalent to the one in Eqgs.(1.1) and,
being lsomorphjc to the conformal algebra, it is stable. The algebra % tR is obtained
from %, by a (¢/R?)-deformation and a (e£?)-deformation, R and ¢ being length
parameters and ¢,/ plus or minus signs. Notice also that the operator 3 which previously
was a trivial center of the Heisenberg algebra becomes now a mnon-trivial operator.
Therefore if, once more, the stable-theory point of view is adopted we are led to
postulate that % LR has a wider range of validity than %,. Hence ‘:‘R,t R - Of some
approximation thereof should be adopted as the “true” algebra of relativistic quantum

mechanics.

To understand the rolc of the two deformation parameters counsider first the
Poincaré subalgebra 9 = {M L ”} of “.R.f). It is well known that already this subalgebra
to the stable simple algebras of the De Sitter

groups O(4,1) or 0O(3,2). This is the deformation that leads to the commutation relation
(1.2d). This instability of the Poincaré algcbra is however physically harmless, at least

before general relativity effects are taken into account. It simply means that flat space

is not stable and may be deformed[ ’

is an isolated point in the set of constant curvature spaces. As long as the Poincaré



group is used as the kinematical group of the tangent space to the space-time manifold,
and not as a group of motions in the manifold itself, it is perfectly consistent to take
R-co and this deformation goes away. In contrast, the (e?)-deformation is not

removable by any such considerations. In conclusion: the algebra %,  defined by

MMyl = i(M,wg,,p+M,,ng—Mw,gﬂp—M”Pgw) (1.3a)
My.Pyl = i(Pyg,r-PygL) (1.3b)
Mpxy] = i (x4 80— %0 €,0) (1.3¢)
PPy =0 (1.3d)
[xpx,] = —ic M, (1.3¢)
Pux] = igu s (1.3)
P = 0 (1.3g)
[xwd = 1P, (1.3b)
M8 = 0 (1.3i)

seems to be a minimal candidate for a stable algebra of relativistic quantum mechanics,
because it contains the smallest changes that are required if stability of the algebra of
observables (in the tangent plane) is a good guiding principle. The main features are the
non-commutativity of the x, coordinates and the fact that 3, previously a trivial center
of the Heisenberg algebra, becomes now a non-trivial operator. The algebra %,  is
isomorphic to the algebra of the pseudo-Euclidian groups E(1,4) or E(2,3), dependix,lg on
whether ¢ is —1 or +1. In the following Sections one explores some of the consequences
of using %l,oo to generate the algebra of observables in relativistic quantum mechanics

and the non-commutative geometry aspects of deformed space-time.

2. Representations of the deformed canonical commutation
relations

The first step, to characterize the properties implied by %,  , is to construct

b
the Hilbert space representations of a set of bounded operators formed from the
unbounded generators. This is the same procedure as when, in ordinary quantum

mechanics, one constructs the (unique) unitary irreducible representations of the



canonical commutation relations. Let us consider only one of the space dimensions and

the modified canonical commutation relations following from (1.3), namely

[px] = -1 (2.1a)
p,) = © {2.1b)
X9 =iep (2.1¢)

which imply the modified Wey? rlations

eitp eisx eis(x-Ht) e}t.p

(2.2a)

ela! 15X _

islx+el20n)
P D) emd

(2.2b)
The unitary representations of (2.2) are obtained by uoticing that (2.1) is isomorphic to
the Lic algebra of the Euclidian (or pseudo-Euclidian) group in two dimensions and the
representations of this group are easily obtained by the induced representation method.
p and 3 are genecrators of iranslations in a 2-dimensional space (€4) and x is the

generator of rotations (e= — 1) or hyperbolic rotations (e==+1) in the (&) space.

To obtain the representations of {2.2) consider a basis «f sunultaneous
generalized eigenstates of p and 3, which may be realized as exponentials of (&m)
|1rv> = ei('£+w')
The generalized eigenstates |xv> are dense on the Hilbert space of square-integrable
f(¢,7) functions. Ope has two classes of inequivalent representations, those associated to
x=v=0 (class A) and those for which x or » #0 (class B). In the first case the isotropy
group of |00> is exp(isx) which acts as

elsX 00 u> = X 00 u> (2:3)
and in the second case the isotropy group of |sv> is the identity, exp(isx) acting on
“IV> by

Irv) ~+ I‘l”l«l}’

with
/ v

¥ = x cos(NTEls) — = sin(v=¢ &s;

V' = xN=e Lsin(N=e &8) + v cos(N=¢ ts)
One concludes that the most gencral representation of the commutation relations (2.1)
is

13 e o . g g —it 2
P~ 365 ;X ll(ﬁan-feqaf)JriE ;1 lt@q



3 being the phase operator associated to the representations of class A.

By the unitary transformation
0O~ e—m/t 0 em/t

one obtains

x:{+i¢(£%+fq—‘%)+lz (2.4b)
s=1+i¢ 2 (2.4¢)

which reduces to the usual representation of the Heisenberg algebra in the é&+0 limit. In
this notation, representations of class A act on vectors of the type exp(—in/¢)ju> and
those of class B on functions exp(-—in/t) f(¢,). When £=0, 3 cannot have a zero
eigenvalue and the representations of class A cannot exist. Therefore for ¢=0 there is
(up to unitary equivalence) only one type of representation, consistent with the von
Neumann uniqueness theorem. For ¢#0 Eqs(2.4) contain the most general
representation of the commutation relations. In this case there are several non-
equivalent unitary irreducible representations. The non-uniqueness is associated to the
phase operator £. A second source of freedom, in the implementation of the modified
canonical commutation relations, is the topology of the (¢,7) space. ¢ is associated by
(2.4) and the ¢=10 limit to the “coarse grained” topology of the physical configuration
space, but the n coordinate is not constrained. In particular we may distinguish the

compact and the non-compact cases for the n-coordinate.

The representation (2.4) is easily generalized to the full algebra %, _ as follows

P, = 1351‘+1DP” (2.5a)
M,, = i({,‘%, - z,,g%,,) + T {2.5b)
X, :gﬂ+ie(§#é‘%—¢54¥aﬂ)+¢zp4 (2.5¢)
3 -1+1¢a£4+1¢D€4 (2.5d)

where, for later convenience, 1 have replaced n = ¢* and en = ¢,. The set (EW,E,‘ 4) is an
“internal spin” operator for the groups O(4,1) (if ¢ = —1) or 0(3,2) (if e =+1) and DPII

and D ¢t are derivations operating in the space where (X 2“ 4) acts.

pv



3. Some simple consequences of the commiutation reiations
The non-commuting operator 3, that in the algebra %, replaces the center of
the Heisenberg algebra, has no familiar physical interpretation. However the folowing

commutators and double commutators involve only familiar measurable observables

Pepxy) = ~i e & My (1.%)
[[vaxulvxa] =el? By P, (3.1)
Hx;'uxu] Xl = € (g Xy~ B Xy) (3.2}

I have already mentioned in Ref.[8] that, by taking the expeciation value of Eq.(3.1) in

a normalized state ¢ for y=v = =12 or 3 , cne obtains a dipole momentum-type sita
rule

/ di k { [<ul x k> - Re (<9l ® Jk><k|>)} = § & <vlply> (3.3)

where generalized momentum eigenvectors were used for the decompositions of the unit
fdk |k><k| . If the state y has a large momentum component, the right hand side
becomes large and this sum rule may lead to observable effects.

Similarly, on a basis of angular-momentum eigenstates, one obtains from

Eq.(1.3¢)

2Im ¥ <mjxX}lm’><m’'p*|lm> = -¢ # m (3.4}
ml

m being the quantum number of angular momentui: along the 3 —axis.

Both in (3.3) and (3.4) the deviations from the usual quantum mechanical results
depend on the magnitude of the length parameter ¢ and are expected to be very small.
Therefore it would be interesting to look for effects which are not explicitly dependent
on the size of ¢ but only on the fact that ¢ #0. For this purpose oue starts by discussing

the eigenstates of the coordinate opcrators x¥.

Notice that, because of the uon-cominutativity in Eq.(1.3e}, ouly one of the
components of x* may be sharply defined each time. Consider a space component X
and take, for definiteness, e=-1. In the representation (2.4b), acting on functions
exp( —in/¢€) f(&,n), the eigenstates of @ are



k> =nt> = e ¢ (3.5)
the eigenvalue being nt (x'|nt> = n¢|ne>). By unicity of the angle in the (¢',9) plane, n
can only take integer values and the spectrum of the position coordinate is discrete.

This happens because, for e = —1, ' contains a rotation in the ({i,r))-pla.ne, For the time

0

coordinate x", one has an hyperbolic rotation and there is no discreteness constraint in

the spectrum. Conversely, for ¢ = + 1, it is the x0 coordinate that will have a discrete
spectrum and the position coordinates a continuous spectrum. Later, in the fully
relativistic treatment of Sect.4, we will see that the discrete eigenvalues of the

coordinate components may actually be either an integer or an half-integer multiple of
L.

Because of the discreteness of the spectrum the localized states ix“ > (localized in
one coordinate only} may be normalized. Taking the expectation value of the

commutators (1.3e}, (3.1) and (3.2) in such a state one obtains

0= € <xd M;; x> (3.6a)
0 = & <x| P | x> (3.6b)
0= & <x| K> k #i (3.6¢)

That is, when a particular space coordinate i is sharply localized, the resulting state has
vanishing expectation values for the angular momenta along the directions orthogonal to
i, for the momentum along i and for the other space components. These conclusions do
not depend on the magnitude of ¢, depend only on ¢ being different from zero. In the

case ¢ = 0 there are no similar restrictions on the corresponding expectation values.

If ¢ 13 very small one cannot, in practice, localize a state at a precise x value.
Therefore, we should concern ourselves with effects for states localized in an interval
Ax. Consider a plane wave (momentum eigenstate) |k> = X that is going to be
localized in the interval (-Ax/2,Ax/2), as in a slit diffraction experiment. For
simplicity use the representation x = — 1 ¢ ( ¢ ‘—% — gz ) , which is unitarily equivalent
to (2.4b). Denote ¢ = ta.n'l(f/r)), p= W and by P, the projector that filters the
states to the interval ( — Ax/2,Ax/2). Then

2] 1]
P ay Ik> = Jo(kp) +2 z_lezn(kp) cos(2n4) +i2 E_:OJ% +1(kp) sin((20+1)g)  (3.7)

AX] denoting the integer part of 2X . The momentum content of the filtered state is
4t & gcr p 4t



obtained by projecting on a generalized momentum eigenstate,
<K'|Ppxlk> = [d¢ exp(-ik'¢) P oy |k>. Using the addition theorem for Bessel functions
and performing the ¢ —integration

Ax]
<K|P p k> = _e(|k| ') {3 kn)+22.12] k,,)T2J(k)+2}: }: .1'2] 1 (k)T (k’)}

(3.8)

where Ty (z) = cos(n arcosz).

For a strictly localized state, the result that the expectation value of the
momentum vanishes should be recovered from (3.8). Consider, for example, that the

interval Ax contains only the state localized at x=0

<K’ o(Ikl-k]) {Jo(kn) +2 Z o) Ty ()} (3.9

One secs that, after the localization at x =0, the intensity of the diffracted wave is the
same for k' and —k’, hence the expectation value of the momentum is zero. The
intensity is peaked both at k=k' and k= -k’. A backward peak in the momentum
distribution is only expected for localization in small intervals Ax. For large Ax, many

terms contribute to the sums in (3.8) and their interference destroys the backward peak.
When Ax—co

lim  <KPp k> = (K -)

Similarly, for the ¢=0 limit (with fixed Ax), one has the usual quantum mechanical
result sin((k - k’) )/(k-X') and no backward peak. Hence, the occurrence of peaks
both at k =k’ and k — _X for small Ax would be a signature of the non-vanishing of the
length parameter ¢

4. The geometry of stable relativistic space-time

In the T algebra the space-time coordinates x, are no longer a set of
commuting va.rla.blm therefore the geometry of the space-time manifold is a non-
commutative geometry. In quantum theory the appearance of non-commutative

geometry is not new because already the phase-space of conventional quantum
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mechanics is a non-commutative space. Non-commutative geometry formulations have

recently provide new insights in solid-state physics[m]

and possibly in particle physics
as welllu]. However, the main reason why the non-commutative nature of quantum
geometry is usually not emphasized is because the explicit realization of the momentum
operators as differential operators puts the emphasis on the Hilbert space of functions
on a (commutative) configuration space. When the coordinates in configuration space
are themselves non-commuting entities, the non-commutative geometry aspect has to

come to the forefront.

Every geometrical property of an ordinary (commutative) manifold M may be
expressed as a property of the commutative C*-algebra C()(M) of continuous functions
on M vanishing at infinity. For example, there is a one-to-one correspondence between
the characters of C;(M) and the points of the manifold M, regular Borel measures on M
correspond to positive linear functionals on Cy(M), complex vector bundles over M are
given by the finite projective modules over Cj(M), etc. Similarly in non-commutative
geometry one starts from a non-commutative C*-algebra and uses the same
correspondence as in the commutative case to characterize the geometric properties of

[12,13]

the non-commutative space .

In the commutative case the points of the manifold M play the double role of
support of the pure states and of being in a one-to-one correspondence with the
character representations of the algebra. In non-commutative geometry the pure states
are associated to the rays in Hilbert space representations, the rays of unitary

representations playing the role of points in the non-commutative space.

Snyder[14] was probably the first to propose a definite non-commuting algebra
for the space-time coordinates[15]. The structure proposed by Snyder for the momentum
operators and the Heisenberg algebra is different from the %c’oo—algebra. defined in
Eqgs.(1.3). However, when restricted to set Ag = {waaﬁ}’ the commutation relations
coincide. Therefore, in the present context, I will refer to Ag as the Snyder algebra.
Actually, for ¢ =41 and ¢= —1 respectively, the Snyder algebra is isomorphic to the
algebra of the DeSitter groups 0O(3,2) and O(4,1). In Rog o the set Ag is the minimal
algebraically closed set containing the space-time coordinate operators. It is therefore
their representations that define the basic structure of non-commutative space-time. To
have a manifold structure we need however a family of derivations to play the role of

vector fields. Therefore we should also concern ourselves with the representations of the
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P, and 3 operators.

The operators in ‘:'ILC’ o are not bounded operators in a general representation.
However, once a representation of g 00 is obtained, there are standard ways to
construct bounded operators from unbounded ones T in the universal enveloping algebra
of &l, oo - For example, '

I - eal (4-1a)
or

—

r-r(1l+r*ry? (4.1b)
and to conmstruct from the latter, by norm-completion, the associated C*-algebra.

Therefore, for simplicity, the discussion of the representations will be carried out at the

Rg 00~ algebra level.

Consider the general represcutation of the operators given in Eqs.(2.5). They are

considered as operating in a tensor product Hilbert space

= {#(¢) o Im> : £(£) € L3(M;) ,Jm> € Vso(a 1)}
where |m> |m51z52m 41M4oMgMy> is a vector in the representation space
VSO(4,1) of SO(4,1) where (2,“,,}3“4) acts. For definiteness I am considering ¢ = -1 and
for the representations of SO(4,1) the notation of Ref.[16] is used.

For simplicity take DP _Df,,_O in VSO(4 1y £*(Mg) is a space of square-
integrable functions in a 5—d1mensmnal pseudo-Riemanian manifold of local metric
(1,-1,-1,-1,-1). Notice however that the geometry of the non-commutative space-
time manifold is pot obtained from the geometry of Mg (by dimensional reduction, for
example) but from the action on ¥ of the operators (2.5). 2*(Mg) is not irreducible for
a’l 00

Y
representations but the whole manifold is not irreducible for the algebra.

but this is as in the commutative case where points are associated to irreducible

The elementary geometric entitics in the non-commutative case are the rays in
%. From the representation space point of view the local points in the commutative case
are gencralized states 6%(x—a) e ¥ , in a Gelfand triplet formulation ¥ >3% > 9. In our
non-commutative case the entity closest to a “local point” is also a generalized ray, as
in Eq.(3.5), which however is only localized in one of the coordinates.

Given the reprecsentation space % and the explicit representation (2.5) for the
basic algebra elements, one has the necessary elements to construct all mathematical

structures in non-commutative space-time:
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1. Let us denote by A the universal enveloping algebra of E TIPS and by ¢, the
associative normed algebra of bounded operators formed from the elements of . by the
exponentiation (4.1a). The norm is obtained from the sup norm of the elements of € ; as
operators in %, induced by the Hermitean representation (2.5).

ITIl = Sup {|ITall : ne % |Inll <1} (4.3)

Non-commutative space-time is the pair X = {€ ;,%}. A probability measure on X 13 a
state, that is a linear form x : € .-+ C such that x(T*T)>0 vTec, and x(1) =1. The

simplest probability measures are the pure states

Xy = (v],Tf;) Te CJ nelk ”'I“ =1 (44)

2. Vector bundle is an important mathematical structure that corresponds to the
physical notion of quantum ficlds. In the commutative case a quantum field is a section
of a vector bundle and the space of sections is a representation space for the algebra of
functions on the base manifold (more precisely a projective module). The notion is

therefore carried over to the non-commutative case as follows. Let

&y ={¢e4®4@-»-®4:n¢=¢} (4.5)
The non-commautative version of a section (n-component quantum field) is an element of
the n-fold tensor product of the enveloping algebra restricted by the projector relation
Oy =y. (0—1)y =0 is the equivalent to a field equation.

Example: Scalar field

ged : [Pu[P*¢l] - m?s(2¢) = 0 (4.6)
S is a symmetrization operation on the operators of %, _ defined for arbitrary elements

of A through term by term symmetrization of a series expansion. For example

5(32 x7x4) = % (2 X%+ 3 X793 X +3 XX 3+ %7 £ x, +x73 x4 +x%x, )
(4.7a)

S(xFx,x7x,) = % (xx,xTxq + xFxTx Xy + xF XXX ) (4.7b)

The field equation (4.6) has the operator solution exp(i k'x,) with k¥ eC and
k"k” =m2. The solution that corresponds to the invariant function solution of the



13

commutative case 1s

_ 1\ n 2
o) = GO () (4 steme (49)

which may formally be written as

J,(m{xPx,,
By ) = 2 N # 4.9
é(x x#) 25( m\{x—"x—“ ) (4.9)

Similarly free spinor fields are to be defined by

veda®t . Pyl — mS(sp) = 0 (4.10)
the Dirac operator
D = [P, - | (4.11)
being the usual one becanse %, {.oc Preserves the Poincaré group structure.

3. To a derivation 3 we can associate a connection in & by a linear map

V88 such that

V(av) = d(a)v + av(v) aed Ve
Of particular interest are the connections associated to the P u-derivations. I will discuss
this in more detail in the context of the definition of gauge fields in the non-
commutative space-time. To define parallel transport and local gauge transformations we
need a notion of displacement in the non-commutative manifold X. The group generated
by the P, operators induces an automorphism in A that generalizes the (commutative)

notion of displacement. It acts on the x u operators as follows.
oD _iaHp
il X, € e Xy + a9 (4.12)

Let now ¢e A®D be a n-component field. By definition an infinitesimal displacement
in X is

v o by =¥ +id Py (4.13a)
with P, acting componentwise

Py aje- - way =[Py, a0 0[P, a (4.13b)
a. € A

1

P, being also an element of A it acts on a; by commutation. Let now A, be an
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element of another algebra ¥, also acting on A ®B which defines parallel transport in X.

v+ v +iadt ALy (4.14)
Similarly one defines gauge transformations by

v » ¥ =¥ +1AY (4.15)
with A € .

in the non-commutative contcxt a gauge transformation is said to be local if it

transforms non-trivially under displacements, that is

(1+1A,) = (1+ia®Py) (1+iA) (13 ot P,) # (1+iA) (4.16)
(14 i A,) acts on the displaced field v,. Comparing

(1+ i Ag) (141 ok Ay p = (141" AL) (L+iA) ¥

one obtains the transformation of the gauge connection A, under gauge transformations

Al = Ay + [Py, A] - i[AL, A (4.17)
Although the space-time manifold X is non-commutative, the displacement group (4.12)
is commutative. Therefore the gauge curvature may be obtained simply by comparing
the parallel transport along direction u followed by » with v followed by pu, without
having to subtract torsion terms. The result is the gauge field

Fo =i[Py, A - iPy, Ayl +i[A,, A (4.18)
as an operator acting on A®.. This construction of gauge fields in non-commutative

space-time is actually a particular instance of the pointless generalization of Yang-Mills
theory discussed by Hong-Mo and Tstmuﬂ.

4. With the above constructions and the definition of the Dirac operator (4.11)
other mathematical structures may be defined on X =(€,,3%) by the standard

techniques of non-commutative gcomctry[lz]. For example the distance between two
states on C ,

d(x¢) = Sup{lx(a)-¢(a)l s aec, || D] Il < 1} (4.19)

Concerning integration in X, for trace-class operators it may be defined as a

trace. For operators that are not trace-class one may use the Dixmuer trace.
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