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Abstract

We present a linearized method to study transverse instabilities due to electron clouds.
It is based on a compact characterization of the cloud dipolar and quadrupolar forces,
that can be easily obtained from quick single-pass numerical simulations. The long-term
stability properties of the bunch are predicted by solving the linearized Vlasov equation,
taking into account the dipolar forces introduced by the e-cloud along the bunch as well
as the betatron tune modulation with the longitudinal coordinate due to the e-cloud
quadrupolar forces. The identification of the beam coherent eigenmodes is achieved by
solving an eigenvalue problem. An expression for the tune shift of the rigid-bunch mode
is also derived.



1 Introduction

In this note we describe in detail the derivation of the Vlasov method applied in
Ref. [1] for the study of transverse instabilities driven by electron clouds. The method
is derived by extending the classical approach used for impedance-driven instabili-
ties, as described in Refs. [2, 3], in order to handle:

e quadrupolar forces dependent on the longitudinal position of the particle along
the bunch;

e dipolar coherent forces characterized by a discrete set of response functions.

2 First order Vlasov equation for arbitrary detuning

We consider the linearized Vlasov equation including a detuning term depending on
the longitudinal phase space coordinates AQ(r, ¢):
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oy Ny
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where we have used the following notation: A is the perturbation to the bunch phase
space distribution; polar coordinates in the longitudinal phase space (r, ¢) are defined
such that:

zZ=rcos¢, (2)
_ Ws
0= Z);71’smc,l>, 3)

polar coordinates in the transverse phase space (Jy, 6y) are defined such that:

X = 25;? cos Oy, (4)
x' =4/ ZIxRon sinfy; (5)

with ], being the horizontal action; wy is the revolution angular frequency; Qo is
the unperturbed betatron tune; ws = wpQ; is the synchrotron angular frequency; 5
is the slippage factor, my is the particle mass, v is its velocity and 7 the correspond-
ing relativistic factor; R = 27v/wy is the accelerator radius; the unperturbed bunch
distribution has been factorized as:

Yo(J, 1) = fo(Jx)Go(r); (6)
FS°h(z, t) is the transverse dipolar force due to the e-cloud:
F;Oh B _aAH B d_xl coh B 1 dPx coh (7)
moyv  ox  \ dt - moyv \ dt ’
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with AH being the corresponding perturbation to the Hamiltonian and Py being the
transverse momentum.
Generalizing the method discussed in [4], we search for solutions in the form:

lI] (]QC/ Qx,}" (P t — e]Qt Z fp e]]? (6x— AQ) i’(P Z Rp ]l(,f)’ (8)
p=—00 |=—00

where the complex frequency (), the phase shift A®(r, ¢) and the distribution func-
tions f7(Jx) and R!'(r) are to be found.
We compute the derivatives appearing in Eq. (I):
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Substituting Egs. (9)-(11) into Eq. (I) we obtain:

e]Qt Z fp e]pﬁx‘ Z RP —j(pAD(z,6)+1¢)

p=—00 |=—00
. . 0AD . .
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(12)

We can choose the function A® in order to match the phase shift introduced by the
term AQg (7, ¢), by imposing:
0AD

55 = o Al e). (13)



Assuming that such a function can be found (a practical procedure for cases of inter-
est will be illustrated in the following Sec.3), we can substitute Eq. into Eq.
obtaining:

et Z FP (]) efPPre=irAe(rg) Z RV (r)e " (jQ — jpwo (Qxo + AQR) — jlws)

p=—0o0 [=—00

_dfo 2] R (el — e7i0x\ Fol(z,t)
ar, 0y o (T3 ) e 09

As discussed in Refs. [3] and [5], it is possible to identify term by term the harmonics
in 6y, showing that all terms with |p| # 1 vanish. Assuming that the transverse beta-
tron tune is much larger than the synchrotron tune, we can neglect the fast-oscillation
term p = —1, as discussed in Ref. [4]. This allows retaining only the term p = 1, and
leads to:

dfO 2]xR

f (]X) d]x on :

(15)

Therefore Eq. (8) becomes

AY(Jx, 05,7, ¢, 1) = efMelfx =2 fo [2]xR  jne(rg) Z Ry(r)e 0 (16)
d]x QxO .

(where the proportionality constant in Eq. is absorbed in the unknowns R;(r)),
and Eq.(14) simplifies into

Z Ri(r)e M (O — Qyowo — woAQg — lws) = e 1OtdAT ) G (¢ )m (17)
1= 1r ’ 2myyv
3 Description of detuning sources
We consider detuning sources in the form:
N
AQ(z,6) = ) Auz" + By6", (18)
n=0
which can be written in polar coordinates as:
N w\"
AQ(r, ) = Y Anr" cos" ¢ + (v—;) B,r"sin" ¢ (19)
n=0

This expression is valid for several sources introducing a detuning along the bunch
(e-cloud, detuning impedance, RF quadrupoles) as well as for non-linear chromaticity
of any order.

The detunding given by Eq. can be decomposed in two terms, one responsible for
detuning with longitudinal amplitude, and one responsible for head-tail phase shift:

AQ(r,¢) = AQr(r) + AQa(r, ¢), (20)
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where the longitudinal amplitude-detuning term is defined as:

27
AQR(r) = %/0 AQ(r, §)dg 1)

and therefore the phase shift term AQg(7,¢) averages out over a full synchrotron

period:
1 27

— [ AQa(r,¢)dp = 0. (22)

27t Jo
From Eq. (20), the term responsible for the head-tail phase shift can be written as:

27
AQa(r, d) = AQ(r, @) — AQr(r) = AQ(r, ) — % /0 AQ(r,¢)dg.  (23)

Using Eq. (I9) we can write:

AQo(r,¢) = ZAnr (cos” ¢ — ;:_;) + ((:_;)" B, r" (sin” ¢$— 25—;) (24)
where:
Cn = /Ozn cos" pd¢, (25)
o 27
S, = /0 sin” @ dep . (26)

Under these conditions we will show that Eq. can be satisfied by a function A®
in the form:

-2 o (e () n sa0-5.2)]

(27)
This can be proven by substituting Egs. (19) and (27) into Eq. (13), obtaining;:

iA r' cos" ¢ + (ws> Bur'sin” ¢ = Zr (A Cu(p) + (&>HB S (4>)>
n 017 n = 4) n>-n 017 n<n .

n=1 8
Such a condition is automatically verified if:
Calg) = [ cos™¢'dg, (29)
Su(¢) = / sin” ¢/ dgp' . (30)
These integrals can be computed recursively using;:
/cos” pdp = cos”_lncp sin ¢ + 2 ; ! /cos’12 pdop, (31)
/ sin” ¢ dep = —Sinn_ln‘P cosg  n — ! / sin" 2 pdg, (32)



which can be rewritten in a compact form as:

LCoal9), 33)
sin" ! ¢ cos ¢ L=
n

Ca(9) = cos”1n<p sin ¢ L=

Su(¢) = — Ls, 2(9). (34)

The first terms of the sequence are:

Co9) =9, Ci(9) =sing, Cs(¢) =%+ jsingcos¢, 35)
So(¢) =¢, Si(¢p) = —cos¢, Sa(p) = % Isingcos¢.
The constants in Egs. (25) - 26) can be written as:
Cn = Cu(271) — Cu(0), (36)
Sy = Sn(27) — S,(0), (37)

which gives:
" (38)

Substituting the Egs. (36) and (37) into Eq. (27) shows that A®(r, ¢) is periodic in ¢:
AD(r,21t) = AD(r,0), (39)

which means that the accumulated phase shift over a single synchrotron period is
zero.

In the case of first-order chromaticity there is only one term that is non-vanishing
(B1 = Q). This gives:

/

AD(r, ) = 211 51(9) = reos(q), (40)

which coincides with the expression used in Refs. [3] and [4].
For the implementation in PYHEADTAIL, it is useful to express AQg (Eq. (24)) in
Cartesian coordinates:

AQo(z,6) Z A, (z - E—nr ) + B, (5“ 257’; <;U—;)nr”) 41)

2
r = z2+(ﬂ5> . (42)

where:



4 Description of the coherent force

To describe the coherent force from the e-cloud, we choose a set of real functions h,(z),
satisfying orthogonality condition:

/h 2)dz = H26,, (43)

where H), is the norm of the function £, (z).
We expand the average transverse position along the bunch as:

N
=Y anhy (2) . (44)
n=0
Using the orthogonality condition, the coefficient a,, can be written as:
1 7.
ay = F%/x (z) hy (z)dz. (45)

Replacing Eq. into Eq.]/44, we can write the following identity:

N
=Y h;{(%z) / 2 % (2) hy (2) (46)

As discussed in Ref. [1], we call k, (z) the dipolar response resulting from all e-clouds
along the ring to the test function h,(z). For sufficiently small amplitude of the trans-
verse distortion, the response of the e-cloud can be assumed to be linear and the re-
sulting transverse kick along the bunch can be written using the superposition prin-
ciple:

N N o hn (Z) 5

=Y anky (2) = Y ku (2) /x(z) 4z (47)
n=0 n=0 n
A suitable set of test functions is:

A, cos (271%%) if n is even
I (2) = N (48)

A, sin | 27T — |, ifnisodd.

2 Lpk

where A, are arbitrary constants and Ly, is the length of the RF bucket.
Assuming that Ax’ is the integrated effect over one turn (in the smooth machine ap-
proximation [3]]), we can write:

dP, dx’' Ax' mgyv?
coh __ o4 07 !
E™ = T = My yo—— 7t = myyv At AR X . (49)
Using Eq. we can write:
mO’)’U X' mO')’U hy (2) .
Pcoh _ — k /
Col(z,t) SR M =5 % Z 1) 0 dz, (50)
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where X (z') is the average transverse position of the bunch at the longitudinal posi-
tion z, which can be written as:

X (z,t) = %(Z) / / dxdx' / dé sAY (%,%'z,6,t) , (51)

where Ay(z) is the longitudinal bunch profile.
Substituting Eq. (51)) into Eq. (50), we obtain:

1 myyo? L hy (2)
coh 07 %1 < o s n
O (z,t) = (@) 27R // dxdz’ // dzdd'sAy (%,%',2,6,t) ;;)kn (z) o (52)

To express it in polar coordinates we recall the following identities [3]:

/ / dxdz = / / d7.df., (53)
/ dzd5 = ;"—17 / / Fdrdd, (54)

and we define f1,,(z) = h,(z)/Ao(z). This allows rewriting Eq. as:
N (1, ¢, 1) ’”OW“’S [ arad, [[ rarag

N o
2J:R cos 0xAY (Jx, 0y, 7, §) Z ky (rcos ¢) w . (55)
x0 n=0 n

We substitute the expression of Ay from Eq. (16)):

FOh (v, ¢, 1) = ’”0'”’“’5 / dJ.d0, // Fdrdg

dfo /2]x B g fiy (7 cos @)
¢/ /0 2J0 e IAS(T9) Ry (7)e ]l‘P ky (rcos¢p) ———"= (56

I'=—c0

cos 9

and we reorder:

P;Oh (V,(P,t) mo,)/ 5 ]Qt/d]x]xdfo /dgx ejgx COSéx

7T RQxO d]X
N b (7 cosd
//rdrdqb e IAP(TP) Z Ry(F)e " Y ky (rcoscp)w. (57)
I'=—c0 n=0 n
From [3]] we recall:
/ o d9~xej9~" cos by = T, (58)
dfy v evqbe (Y N
7 ah R = TR (15 [l () = 5 (59)



which allows writing the final expression for the coherent force:

F (r, ¢, 1) = A;TT;’S:;)S e/t // FArdd e 1AP(9)

X Z Ry (7 efl‘/’Zk rcosq))m.

H

I'=—c0

5 Integral equation

(60)

We substitute the expression of the coherent force from Eq. (60) into Eq. obtaining:

Z Ry (r)e 7 (Q — Quowo — woAQR — lws) = _ News

equ)(r/¢) Gol(r
l— oo 47117 Qx0 o(r)

N 15rd N ) 7 s
//rdrdcp e 1A, Z Ry(F)e "¢y ky (rcosgb)w.
n=0 n

I'=—c0

(61)

We multiply both sides by /¥ and integrate with respect to ¢. Using the orthogonality

condition R
T H -1/
/ dpel'Pe=1'¢ — 276
0
we obtain:
R;(7) (O — Qyowo — woAQRr — lws) = —%GO (r) /d¢eil¢ejA<I>(r,4>)
87t 77Qx0

Iy, (7 cos §)

AD(F g
//rdrd(pe] Z Ry (7 e]‘/’Zk (rcos¢) — i

I'=—c0

Using the re-normalization of Gy(z) given by Eq. (I10) in|{Appendix A}

we obtain the following integral equation:

N

Rl(r) (Q — Qrowp — woAQR — lws) = - 200

go / d(Pe]l‘Pe]AqD(r ‘P)

// Fdrd e 182 2 Ry (F)e 1"'? Z ky (r cos ) "(YH;ZOS(/S).
n=0 n

I'=—c0

6 Radial expansion

We expand the radial function R;(r) as follows:

R;(r) = Wi(r) i}blmflm(r)

(62)

(63)

(64)

(65)

(66)



where W(r) is an arbitrary regular function and the functions f;,,(r) satisfy the or-
thogonality condition:

[ S0 i (r)e0r (1) = FpGp (©7)

with w;(7) being a suitable weight function.
Using the orthogonality condition we obtain:

/d?’ wl(r)flm(r)%(:)) = blmFlm . (68)

7 Eigenvalue problem

In this section we consider the special case in which AQr = 0, while more general
cases will be treated in Sec.[8
Applying the integral

[ drea) fintr) i 9

to both sides of Eq. we obtain:

bimFim (Q = Quowo — lws) = / drdg w) (r) fu(r )gO((:)) jl9 o AP (1)

7T2Qx
N .
//rdrd4>e P jDR(7 Z Ry (7 Z (rcos ) w. (70)

I'=—c0

Using Eq. we can write:

N
b (0= Quawo — ) = — -5 [ dragn(r) o ()62 S50
X

Wi(r)
e —il'G o~ 7 cos
// rdrdgbe jl ‘Pe jAR(7.f) Wl’ IZ bl’m fl/m/ Z k 1"COS 47) % . (71)
/m/
Reorganizing, we obtain the following eigenvalue problem:
Nv
bimFim (O — Qrowo — lws) = —m
X Y by Z/ dr dg w; (1) fi (r)el>®09) SN2 30(r) ek, (r cos ¢)
U'm’ Wl(r)
Wi (7) _ _irzhy (Fcos @)
drdpe14® ’ o (e MO (72
//1’ r (PE /\O(T’COS(P)flm(r) H% 7 ( )
which can be rewritten in the compact form:
blm (Q — Qxowo — lws) = Z Mlm,l’m’bl’m’ y (73)
U'm!

10



where the matrix elements are expressed as:

N N
Mlm’l/m/ —mnzo/ drd(l)u)l(r)f (V)e]ACD(r(P) 5\(7)1((:))e]14)k (T’COS¢)
na g Wi (F) o —irghn (Fcos P)
< [[ rarage e U R = S

7.1 Laguerre polynomials

Following the approach implemented in the DELPHI code [3, 2], for each value of [,
we expand R,(r) as:

Ri(r) = (1)/\“' —ar? Z el (ar > (75)

p

where L,|1l| are the generalized Laguerre polynomials and a and A are tunable param-
eters.
The orthogonality condition for the Laguerre polynomials is:

/d(arz)e_arz >|z| Lm( ) L (arz)zmém,mn 76)

m!

which, by explicitly writing the differential becomes:

2 |1] I Il +m)!
/erare ar <ar ) Ll ( )Llﬂ', (ar2> = %%’mu (77)
Equations (75) and (77) coincide with Egs. (66) and (67) if we define:
A2
Wi = (£) e, 79
Ty
I
wy(r) = 2ar e’ <m’2> | , (79)
fin(r) = Lt (o) , (80)
I +m)!
f - ULEm )

We assume that the unperturbed distribution is Gaussian:

2
N -5
Ao(z) = e %, 82
0( ) \/E(Tb ( )
. 2
- 2(7% 83
80 (7’) 27T0'§e 7 ( )
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and we use Egs. (78) - (83) to compute the integrals in Eq. (74):

Wi (7) _ hy, (7 cos @)
iAD(F,9) l L i’ n —
//rdrohpe / To(7 cos @)flm (F)e™! I

243

V270, _ . 7\ *Wz )l _ighy (Fcos @
b//dd(PE ]A(I)r r_) 2 >L|( ) il'¢ n(HZ (P)

n

5.
27‘[0’ e f 14 _ - I —ﬂ?’z 1—% h 7 COS -
V - b/rdr (ﬁ) L,‘ﬂxl (ar2>/d4)e AR ) , ( 2 h) (HZ 4)) 4>,
(84)

/ drde w,(r )e]MD(””)a?((:))fl (r)e"k,, (r cos ¢) =
// dr dg > 9) gp (ar ) ! _;‘75 <r7b>A|l| L,l,lJ (ar2> 'k, (rcos ) =

2
# rdr a'”ré"”r(z’)‘)mL;'fJ <a72> e % /dqbejA(D(r"P) kn (rcos¢)el'? . (85)
b

7T0'b

This allows obtaining an explicit expression for the matrix of the eigenvalue problem:

M _ va m!
Im,'m A2 /—ono_b (|l| n 1’11)'
N N 7 . 2 o2 - - o
x Y / FdF ( r) L“ a?2> / e i) o " (1 20} )—h” (rczos D) o'y
n=0 b H”

x [rarallg eI (a7 e Ei /dqbefMW n (rcosg) e, (86)

which can be computed using numerical integration.

8 Effect of detuning with longitudinal amplitude

We now consider the more general case in which the term AQg in Eq. does not
vanish:

N .
Ri(r) (Q — Qrowo — lws — AQr(r)wo) = —87T2—50e1M>(n4>)g0(r)
N ~ - ~
/d¢ell¢ // Fdrdg e~ jAD(F, | 2 Ry(7)e —il'p Z%Jk” (rcos ¢) w_ (87)
'— oo e i

We apply the mtegral = f dr wy(r) fim (v ) j to both sides of Eq. (87) obtaining

Rl (T)AQR (1’

= My, 11, byr 1, (88
WZ(T) Z Im,'m'Yl'm ( )

I'm’

b1 (O — Qrowo — lws) — IC:‘I)_O /d?’ wi(r) fim ()
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where the matrix M, i, is given by Eq. (74)).
We substitute the expansion of the radial function from Eq.

—+00
Ry(r) = Wi(r) Y biw fine (1) (89)
m'=0
obtaining:
blm (Q — onwo lws Fl Z blm//dTZUl AQR( )flm( )flm’ ZMlm l’m’bl’ /.
m / l/ !
Y

By defining an auxiliary matrix:

~ (,(]O
My = Oy 3

Im

[ arwi(r)AQR(F)fun () fiw (1) (1)
we can rewrite the eigenvalue problem from Eq. as:

bim (Q — Qxowo — lws) = Z (Mlm,l’m’ + Mlm,l’m’) bl’m’ . (92)

I'm!

Using the expansion in Laguerre polynomials defined in Egs. (79) - (81), we can write
the following expression for M;,,

;;Z /erar e (ar2>|l| AQR(;’)L%| <ar2> LLZJ, <ar2> : (93)

where the integral can be evaluated numerically.

My = 01y

9 Rigid bunch tune shift

The average transverse position along the bunch can be expressed using Eq. (51)):

= %(Z) / / dxdx’ / dé Ay (%,%'z,6) . (94)

We substitute into Eq. (94) the expression of the perturbation from Eq. (16), obtaining:

. o o0 .
%(z) = giot 2R / dT, ]xdfo / ddy cos 0y /% / s - e IR N Ry(r)e
)\0 z) Qo

d]x I=—00

(95)
Using Egs. (58) and (59), we obtain

%(z) = 7Qt/dée AR(d) 3 R (r)e . %
(2) on )\o @ Z_Z:,oo I (96)

We substitute the expansion of R;(r) from Eq. (75) into Eq. (96), obtaining:

NR 1 . i ,

¥(z)=— /MY p /che]M)(“P)W r r)e 1P, 97
(2) O M2 ; b 1(r) fum () 97)
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We consider the special case in which we have an eigenvector having as only non-zero
element by, and we assume that there is no head-tail phase shift A®(r, ¢) = 0. In that
case:

NR 1 . -
%(z) = — /Uy /d(SW r). 98
(2) O Ao(2) 0000 o(7) (98)
If we choose: g ,
=2 5 &)

we have that Wy (r) is proportional to go(r) and therefore:
/ dEWo(r) = K / d5go(r) = KAo(2) . (100)

We substitute Eq. (100) in Eq. (98): obtaining;:

NR _ . ;
X (Z) = _Q Kejﬂtboof()o = Xp e/t (101)

x0

This shows that, under the mentioned hypotheses (in particular AD(r,¢) = 0), if
an eigenmode corresponding to a rigid bunch oscillation exists, the corresponding
eigenvector will be in the form:

bim = boo 610m - (102)

The corresponding complex frequency can be found substituting Eq. (102) into Eq.
obtaining: o .
Q) — Qxowo = Moo,00 + Moo,00 - (103)

Summary

We have derived a linearized approach for the study of transverse beam instabilities
driven by e-clouds using the Vlasov method. For this purpose the quadrupolar forces
introduced by the e-cloud along the bunch are described using a polynomial, while
the dipolar forces are described using a discrete set of response functions. With these
assumptions, the identification of the beam coherent eigenmodes is achieved by solv-
ing an eigenvalue problem. An expression for the tune shift of the rigid-bunch mode
is also derived.
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Appendix A go renormalization

The function Gy is normalized such that [3]:

o 1
| drGo ) = 5 (104
Taking into account that:
—— (105)
Ws
_ 2 Ws
]Z =r 2077 7 (106)
w
dJ, = v—;r dr, (107)
we obtain: )
d =1 - 1
/0 rdrGo (r) 0.2 (108)
We can introduce a renormalized function:
Ws
- . 1
go(r) o Go(7) (109)
Using Eq. (108), we obtain:
_ ws _1
/rdrgo(r) = /rdr Go(r) = o (110)
which is the normalization condition used in DELPHI [2].
A.1 Gaussian beam
For a Gaussian beam, we can show that the distribution
1 -2
= % 111
80(r) 27'((756 (1)

satisfies Eq. (110):

2

2
e 1 > 1 ey 5
rdrgo (r :—/ re 2‘7bdr:—/ —e Yidr
/o $o0(r) 2ot Jo 21t Jo o7
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Appendix B Perevedentsev formalism as a special case

E. Perevedentsev in Ref. [6] describes the dipolar effect of the e-cloud using a gener-
alized wake field:

Ax' =

27tR 2 di
Feoh /d~A N2 (WP (2 5 113
m0702 X mo,)/vz Z O(Z)X(Z) x (Z Z) ( )

or the corresponding generalized impedance defined so that:
Wi (z,2) = —# // dwd@Zi" (w, @) ¢! @z=@D)/v (114)

We can show that such a description is mathematically equivalent to the one intro-
duced in Eq. (47):

u hn (2) .
Yk, (z) = Eok" (2) /x(z) H(%Z)dz. (115)
In fact, Eq. (115) can be rewritten as
N hn =
Ax' (z) = / dZJE(Z)n;Jkn (2) H(%Z)
e IR o T ca hu (2)
N mo’rvz/dZ/\O(Z)x(Z) (ez)xo(i) Z%)kn =) H? > (116

Comparing Eq.[I16 with Eq. (113) we obtain:

2 N =
dip,_ =~ mMyyo hy (2)
W, " (z,2) = — k, (z , 117

which allows to write Perevedentsev’s generalized wakefield using our set of re-
sponse functions.

Conversely, the set of response functions k,(z) can be written in terms of ngp by
simply substituting %(z) = h,(z) in Eq. (113):

ky (z) =

mwvz / 2o (2)hn (D)WT? (2, 5) . (118)

We want to show that Perevedentsev’s coupling matrix is a special case of the one
derived in this work. We recall our matrix from Eq. , which can be rewritten as:

[ drdpan(r) fn(r)e o 0 gt

M ! 147!
Im,I'm WZ(T’)

87T2Qx0le

X // Fdrdpe T CCDIW) (F) firyy (Fe "7 [/\(N%

o(7cos ¢) =

Y kn (rcos¢) In(Poe9) (f;lgs )

(119)
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The expression in the square brackets can be rewritten using Eq. (117):

Ne? (r)
B JAD(r,¢9) SO\") gol¥ ]l(p
My irm 872mo700wFim //dr de w; () fiu(r)e Wir )

// Fdrdpe 18P Wl/( ) frrme (F)e™ ropwd lp(rcos<p Fcos¢). (120)
Using Eq. we obtain:

g Ne? / ina(re) 80(r) i
M1 drd ] ¢ el'P
il 4 82 im0 Q0 Frm rdwi(r) fin(rie W (r )
X // fdfd(Pe_]A@ 7,) Wl,(f)fl,m,(f)e—]l ¢ // dwdazzxi” (w, @) e i(wr cos p—wFcos ) /c
(121)
We reorganize the expression as:
_ L Ne? / ~ 7dip ~
Mg 1 = 47 872mo0QuFir dwdwZ," (w, @)

> /drwz(f)fzm(r) go(i’) /d(PejACI>(r,<p)+jwrcos<p/cejl¢
x / FdF Wi () fir (7 / A e IAPUG)—jaTcosd/c,—il'D (122

To proceed, we need to make the same assumptions as in Ref. [6], limiting ourself
to the head-tail phase shift from linear chromaticity and neglecting the quadrupolar
effects of the e-cloud, obtaining:

o Ne?
471 8712my Y0 Qo Fiyy

go(i’) j(w—wg)rcosd/c jld
X /drwl(r)flm(r) Wir /dcpe : e

X /fd?Wl/( fl’m’ /d(pe ]w wé)rcosgp/ce—]l(p (123)

where wg is the chromatic frequency shift:

Mlm,l’m’ = / dwd@ZilP (CU,(D)

QI

wg = "R (124)
By exploiting the following identity [3]:
27 o
/ de 1106l 050 — 27l (y) (125)
0

we can write:

2 o / S
/O nd(f)eiﬂ <p€](w7w§)rcos¢/v _ 27‘[jl Iy ((w a)ér)r)

0

2 7 cos 2 . . 7 cos
/ " d¢ g]'l47e*]'(w7wxi)7¢ = conj (/ nd(f) oI p(w—we) =3
0 0

0
(126)
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Substituting these results into Eq. (123) we obtain:

Neé*n lLl - dip .
My 1 = ]87T2m0’vaon1m / dwdwZ," (w, @)
< [ drwr gol(( )) i ((“’ _U“’é)r) | 77 Wy () e (P (—(“’ _v“’é)r) . (127)

Specializing for Gaussian beams and generalized Laguerre polynomials (Egs. -
(83)), with the choice of constants made in DELPHLI:

1
A=1, a 20, p o (128)

Eq. (127) coincides with the coupling matrix obtained by Perevedentsev, i.e. Eq.(26)
in Ref. [6].
Appendix C Impedance case

For the case of an impedance (assuming zero chromaticity) the dipolar coherent force
can be written as:

62 ™ . o ~ di
EMz,t) = 5 — / dzds / / dzdzy (%, 7,2,5,8) TWIP (2 - 2) (129)
ZR/dWlpz—z /dé//dxdxxgb (%,%,%6,t)  (130)
= / A2\ (2)2(z, HWIP (5 2). (131)

Using Eq. (49):
! 27R coh e* / = — 2\ 1A7AIP

= = - 132
Ax mQ’vaPx e dzZAo(2)x(2)Wy " (2 — 2) (132)

the response to a generic test function /1, (z) can be written as:

ku(z) =

dip
mowz / 2o (2)hn (2)WHP (2 — 2). (133)

From the definition of impedance:
Wi(z) = —2]—7_( /OO dwels 7. (w) (134)

we can write:

e

2
kn(z) = /dZ/\O (2)h / dwel” 5" 7, (w)

moyv?

— W / dwZ(w)e 1% / 200 (2)hn(2)el5 . (135)
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This can be substituted in Eq. (74), obtaining:

M = N /dr wy (1) fim( (7) frrm (F)
Iml'm" — 167T3mO’YUQx0F1m l Im\¥ 'm!
d Jl4>/d I [ ) rCOS‘P /d Z( Jw
/ pe (P)\O rcos¢) nz wZ( 2)e
NE o /d w/d "
= 16703mg79Q0F rwi(r) fim(r) (7) frm e ¢ (7 cos 4))
/dex w)e- ]wrcOS(P rcos4> /dz)\o ]w,. (136)
fo
Using Eq. (6], we can write
N
iwt h ~ iwZ -
Ao(Q)elYv = Z%) '}{(%C) /dz Ao(z)elvhy, (2) . (137)
n=

Substituting into Eq. (136) for { = 7 cos ¢ we obtain:

_ jNe> / 8o(r) / o s ~
My 11 = T67my 700w dr wy(r) fi(r) Wi(r) 7AWy () frrme (7)
. _ 1 g 7 cos ¢ rc05¢
jlo = Tjle jw—= jw e
X /d(,be /d(P/\o (Feosd) e /dex(w)e Ao(Fcosd)e
jNe? / g0(7) / _ 3
= T6:3mo70QuFin dr wy (1) fim (r )W ) F AP Wy (7) firme (F)

/dcpe]l‘p/d(pe ]l"’/de w)e 10 T 0 T (138)
Exploiting the following identity [3]:

Amzﬁkﬂwd““¢=:muﬁxc> (139)

we can write:

27 - E M I wf
/0 dpe 1Ml =271 I <7>

27
jlp—jw T ool _WrN ol g (T (140)
| dgeite =27y (- 2) =27 (1) ()

0

and therefore:

/d(Pejl(P/dqse_ﬂ/‘f’/da)Zx(w)g_]‘*’ C(Z)]szpe]wrcos(l, _
/dwzx(w)/dqbeﬂq’e—fw”i”’/dqr;e—il’q?ejw“‘;”’

= 42" l/de W)y (%) 7 (%) . (141)
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Equation (141) can be substituted into Eq. (138), obtaining;:

jNe?
47tmoyQxoFpm

Mlm,l’m’ = ]l B /d?’ wl(r)flm(r) gO((r)) /7d?wl’(7)fl’m’(7)

< [ dwzifw sz( )h( "), a4

which can be reorganized as:

M ! — d Z
o Ym 47fm0’YUQx0Flm] WZ(w)

[ ar w(@)fin(r )gO((r)) i () [ 7o) fome () (%) . (143)

With the assumptions described in Sec.[7.1, we can write:
go(r) , (wr
[ dr ) Wi ()

= /(;11’2611’6’”2 (ar2>|l| L) <ﬂ72> 8o(r) (%) i (%)

— ol /dw|1|+1 L (W >g0 (%) (144)

/drrWl/ fl’m’ )]l/ (%) = T’b_“/| / d??‘lll—'_le_a?lenl;,' ( (%) (145)

Substituting into Eq. (143) we obtain:

Pyl = ‘”Jrl |l|/ [1]+1 1] ﬂ
My im 4%% onFzm / dwZy(@)2a ! [ar L (ar2) o) (<)
X rb—| I/ d17;7|l’|+1e—a72LLl1’/\ ( )]l, (%) (146)

which can be rewritten as:

jNe mb e i+ |l|—|l’/
M gl — Z
I D@ (4 T ] A

/dr Pl )l <ar2> go(M)]; <%) / d??|l'|+1e—af2LLl1’/\ (a1’2> Ji <%?) . (147)

C.1 Check against DELPHI
We want to compare Eq.[147]against the matrix used in the DELPHI code, which is [2]:

=1 +oo

-+ 1) p:z_oon (wp) Gun (wp) L (wpra) - (148)

—i"Intxry
Mln,l’n’ =
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with:

. Nwge?
K = — _—, 14:9
T arymocQy (149)

—+o0
G (w,a) = (2a)|l|+1/ LI (arz) go(t)i(wT)dT, (150)
0
—+00
Iy (w,a) = / T1+|Z|LL” <ar2> e_“TZ]l(wT)dT. (151)
0

In the single-bunch approximation

wo Z / dew (152)

p_—OO
Eq. (148) can be rewitten as:

" 1|-|']
]z ln,TI\ ']

Mln,l’n’ =

dwZy (w) G Iy (w,
‘l|(n+|l|) ]47T’ym0ch0/ wZy (W) Gy (W) Iy (w, a)
s e

_ ] 'l Ne? l+1/
dwZ
2|’|(n+|l|) ]47T’YmoCQx0 24) wZi ()

+oo +oo , /
X / dr L (aT )go(r)]l(wr)/ ral |L7‘f,| <a72> e T I (wT)dT
0 0

jNe? nl g -1 /
= a T, dwZ, (w
27tymocQqo (1 + |l|)!] b x (@)

+o00 +o00 ’ /
X / dr L (arz) gO(T)]l(wT)/ dr !t |e_‘”2LLl,‘ (llT2> Ji(wT), (153)
0 0

which indeed coincides with Eq. (147).
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