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We find the complete set of conditions satisfied by the forward 2 → 2 scattering amplitude in

unitarity and causal theories. These are based on an infinite set of energy dependent quantities –

the arcs – which are dispersively expressed as moments of a positive measure defined at (arbitrarily)

higher energies. We identify optimal finite subsets of constraints, suitable to bound Effective Field

Theories (EFTs), at any finite order in the energy expansion. At tree-level arcs are in one-to-one

correspondence with Wilson coefficients. We establish under which conditions this approximation

applies, identifying seemingly viable EFTs where it never does. In all cases, we discuss the range of

validity in both couplings and energy. We also extend our results to the case of small but finite t.

A consequence of our study is that EFTs in which the scattering amplitude in some regime grows

in energy faster than E6 cannot be UV-completed.

Effective Field Theory (EFT) is the universal

framework to describe particle physics on the basis

of the principles of quantum mechanics and relativ-

ity. The EFT construction is nicely independent of

the detailed features of the microphysics lying above

reachable energies. Yet unitarity, causality and cross-

ing place robust constraints on the structure of its

couplings. In particular, these constraints take the

form of sharp positivity bounds from dispersion rela-

tions for the scattering amplitude both forward [1, 2],

and at finite angle [3–7], with a multitude of inter-

esting applications, e.g. [8–20].

In this article we extend the positivity conditions

on the forward amplitude to what appears to be a

complete set. This is made possible by: i) writing

the dispersion relations in terms of suitable energy

dependent quantities in the EFT, the arcs, which

are directly related to the Wilson coefficients at tree

level and capture features of the RG evolution at the

quantum level; ii) noticing that by unitarity the arcs

correspond to the sequence of moments of a posi-

tive measure over a compact interval. The resulting

setup precisely fulfils the hypotheses of Hausdorff’s

moment problem, whose known solution provides the

set of necessary and sufficient positivity constraints

on the forward amplitude. We also extend some of

our results beyond the forward limit, using the clas-

sic result in Refs. [21, 22] on the positivity of the t

derivatives of the imaginary part of the amplitude.

Our results are related and partly overlap with

those obtained by the geometric approach put for-

ward in Ref. [7]. An important difference is that our

method enables to identify optimal constraints that

involve a finite number of arcs/Wilson coefficients

only. This is the situation closer to questions of phe-

nomenological interest.

The constraints we present are most effective in

derivatively coupled theories, where the forward am-

plitude is finite in the massless limit. There, the

arcs are single scale quantities that purely depend

on the running couplings, and our constraints di-

rectly bound the RG flow (an aspect briefly touched

in Refs. [1, 15–18]). One well formulated hypotheses

that can be tested in this context concerns the ex-

istence of symmetries – exact, accidental or weakly

broken – which may appear in the low-energy EFT.

In particular, the non-linear transformations

φ(x)→ φ(x) + b+ bµ1
xµ1 + · · ·+ bµ1···µN

xµ1 · · ·xµN ,

(1)

with b′s traceless, are symmetries in EFTs where in-

teractions have many derivatives and, therefore, de-

liver soft amplitudes, i.e. amplitudes with a fast en-
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ergy E growth. The case N = 0 is familiar: U(1)

Goldstone bosons with 2 → 2 amplitudes M ∼ E4.

The same behaviour arises for the EFT of massless

particles with spin, like for the Euler-Heisenberg La-

grangian in QED, as well as the theories of Refs. [23–

25]. The N = 1 case corresponds to Galileons [26],

with M ∼ E6, and so on. We refer to theories

with large exponent in M ∼ E2n, n > 2, as super-

soft [2, 27]. Similarly, longitudinal polarizations in

theories with massive spin-J particles have supersoft

amplitudes with 2n ≥ 3J [17]. For example, ap-

proximate linear diffeomorphisms suppress the self-

interactions from the Einstein-Hilbert term, relative

to the super-soft linearised (Riemann)3 terms. Such

a scenario for gravity is incompatible with tree-level

UV completions [10]. In this work we will show

that supersoftness in general cannot emerge, neither

by structure nor by accident, from any reasonable,

weakly or strongly-coupled UV completion.

The case N = 0, with 2 → 2 amplitudes M ∼
E4, occurs in familiar cases like the U(1) Goldstone

boson or the neutral abelian massless spin 1, like in

the Euler-Heisenberg lagrangian. A ess familiar cases

involving massless massless spins and only irrelevant

interactions

This paper is organized as follows. In section I, fo-

cussing on the forward limit, we construct the neces-

sary general dispersion relations and derive optimal

bounds on the arc variables. In sections II A and

II B we apply our results, first assuming a weakly

coupled UV completion and then lifting this assump-

tion while focussing on the more specific case of an

abelian Goldstone boson. In section III we consider

a first foray of our methodology beyond the forward

limit. Finally in section IV we summarize our results

and offer an outlook.

I. ARCS AND THEIR CONSTRAINTS

We study the 2 → 2 scattering amplitude M of a

single particle of mass m (including the limit m2 → 0

if it exists). We discuss first the forward limit t→ 0

and define M(s) ≡ limt→0M(s, t); for concreteness

we focus on the spin-0 case, but our results carry

over to arbitrary spin and flavour structure [2]. Ex-

tensions to t 6= 0 are postponed to section III. We

will assume the following analytic properties of M:

◦ Crossing symmetry in s ↔ u with real analyt-

icity, namely M(s) =M∗(4m2 − s∗).

◦ The singularities of M(s) in the complex s-

FIG. 1. The semi-circle contour of Eq. (2) in the complex

upper ŝ′-plane. Wiggle lines denote the branch-cuts on

the real axis.

plane consist solely of a unitarity cut at phys-

ical energies s > 4m2, plus the crossing sym-

metric one at s < 0, see e.g. Ref. [28].1

◦ Unitarity, via the optical theorem, im-

plies ImM(s)> 0.

◦ The amplitude M(s) is polynomially bounded

as |s| → ∞. In particular, we assume

M(s)/s2 → 0 as s → ∞. In the gapped

case, validity of this condition is ensured by

the Froissart bound [29, 30].

Exploiting the analyticity of the amplitude in the up-

per half plane, we define the arc variables (or simply

“arcs”),

an(ŝ) ≡
∫

ŝ

dŝ′

πi

M̂(ŝ′)

ŝ′2n+3
, (2)

where ŝ ≡ s−2m2 is the crossing-symmetric variable,

M̂(ŝ) ≡M(s), and ŝ represents a counterclockwise

semicircular path in the upper half plane of radius ŝ,

as shown in Fig. 1.

The Cauchy theorem implies that the integral over

the closed contour C = ŝ + ∞+ l1 + l2 vanishes.

Thus, we deform the integral in Eq. (2) along ŝ into

an integral along ∞+ l1 + l2. For even n we can

use crossing symmetry and real analyticity to relate

the amplitude above the lefthand cut (path l2) to the

one above the righthand cut (path l1),

M̂(ŝ+ iε) = M̂∗(ŝ− iε) = M̂∗(−ŝ+ iε) .

1 Resonances with masses M2 < 4m2 below threshold, im-

ply additional poles at s = M2, 3M2. We ignore these for

simplicity; their inclusion is straightforward.
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Due to the Froissart bound, M̂/ŝ2 → 0, the inte-

gral along the semicircle of infinite radius vanishes

for n ≥ 0. Thus, we can write Eq. (2) as

an(ŝ) =
2

π

∫ ∞
ŝ

dŝ′
ImM̂(ŝ′)

ŝ′2n+3
, n ≥ 0 . (3)

On the one hand, the arcs as defined via the IR rep-

resentation Eq. (2) are IR quantities that can be sys-

tematically computed as an expansion in powers of s

in the domain of validity of the IR EFT s � smax,

with smax the cutoff. In the simple case of a tree-level

amplitude in the forward limit, M̂(ŝ) =
∑
n=0 c2nŝ

2n

and the arcs match simply to Wilson coefficients,

an(ŝ) = c2n+2. Moreover, the scale dependence of

arcs partly reflects the EFT RG flow, as we discuss

in section II.

On the other hand, according to the UV represen-

tation in Eq. (3), arcs receive contributions from all

microphysics scales up to the far UV. So, Eq. (2) ide-

ally represents something measurable in our low en-

ergy experiment, while the representation in Eq. (3)

requires knowledge of the theory at all scales. Nev-

ertheless, in this form, Eq. (3) has interesting prop-

erties that we now discuss.

A. All Constraints

From Eq. (3) it follows that the arcs are positive,

an(ŝ) > 0 , (4)

since the imaginary part of the forward amplitude is

positive. In fact, convoluting in (3) a positive func-

tion F , we have

2

π

∫ ∞
ŝ

dŝ′
ImM̂(ŝ′)

ŝ′3
F

(
ŝ

ŝ′

)
> 0 . (5)

For instance, F (ŝ/ŝ′) = [ŝ/ŝ′]2n(1 − [ŝ/ŝ′]2), with

ŝ < ŝ′, implies

an − ŝ2an+1 > 0 . (6)

Clearly, to every function F , positive in

(ŝ/ŝ′)2 ∈ [0, 1], correspond inequality constraints

relating arcs of different orders. Characterising the

most general such function will allow us to address,

Question 1: What is the complete set of constraints

the arcs an must satisfy?

To answer this question we will relate our problem

to the theory of moments. The following change of

variables

x ≡ (ŝ/ŝ′)2 dµ(x) =
dx

π
ImM̂(ŝ/

√
x)

simplifies the notation and defines a positive mea-

sure, so that we can write

ŝ2n+2an =

∫ 1

0

xndµ(x) . (7)

A sequence of dimensionless numbers, defined as in

Eq. (7) with dµ positive, is called a sequence of mo-

ments. In fact, we have a one-parameter family of

sequences because each moment is a function of ŝ.

We comment on the ŝ dependence below.

We introduce the discrete derivatives

(∆a)n = ŝ2an+1 − an , (8)

with higher order differences defined recursively,

∆k = ∆(∆k−1) and ∆0an = an. For instance,

(∆2a)n = an− 2ŝ2an+1 + ŝ4a2+n, etc. A sequence of

moments necessarily satisfies

(−1)k(∆ka)n =
1

ŝ2n+2

∫ 1

0

xn(1− x)kdµ(x) > 0

since the functions

F (x) = xn(1− x)k (9)

are positive in the whole integration domain. The

case k = 1 corresponds to Eq. (6).

The converse is also true, as implied by the Haus-

dorff moment theorem: if a sequence satisfies

(−1)k(∆ka)n > 0 ∀n, k ≥ 0, (10)

then there exists a unique measure dµ such that

Eq. (7) is satisfied.2 This theorem, following from the

fact that the functions in Eq. (9) – called Bernstein

polynomials – are a basis of all positive functions in

[0, 1], provides an answer to our Question 1.

As mentioned above, both the arcs and their dis-

crete derivatives depend explicitly on the scale ŝ, as

captured by,

d

dŝ
[(−1)k∆kan]=


− 2
π

ImM(ŝ+2m2)
ŝ3+2n (k = 0)

2kŝ[(−1)k∆k−1an+1] (k ≥ 1)

(11)

2 Arcs probing the theory at finite s are crucial for the map-

ping to moments on a compact interval (Hausdorff’s prob-

lem). Instead, a sequence made of amplitude’s residues at

s→ 0 (equivalent to arcs with vanishing radius) see e.g. [31],

maps to a non-compact domain (Stieltjes half-moment prob-

lem), and the solution is not unique.
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which is negative for all k, because of Eq. (10).

Therefore, as ŝ is increased, the arcs decrease – pro-

portionally to ImM. This implies that, given an

EFT, the constraints Eq. (10) for k ≥ 1 become more

stringent as s increases. Conversely, if the conditions

Eq. (10) are satisfied at one scale ŝ they are auto-

matically satisfied at smaller scales. This behaviour

will play an important role later on, when we discuss

constraints on the arcs in specific EFTs.

B. Optimal Bounds for a Finite Set of Arcs

In practice we often focus on a finite number of

arcs. For instance, in a typical EFT only the first

few powers of s are phenomenologically interesting

– at tree-level this corresponds to the first few arcs.

Thus it is natural to ask,

Question 2: Considering only a finite number N of

arcs, what are their optimal constraints?

Here optimal means the projection of all constraints

on the finite set. In the language of the previ-

ous section, we ask: assuming the components of

~a = {ŝ2a0, . . . , ŝ
2+2NaN} are moments, what is the

subspace A(N) ⊂ RN on which ~a takes values?

Of course Eq. (10) still holds and, for k+n ≤ N , it

involves only the first N arcs. The constraints with

k + n ≥ N imply however additional conditions on

the subset n ≤ N . In what follows we will show a

simple procedure to extract this information.

Similarly to Question 1 – that implied finding

the most general positive function in [0, 1] – Ques-

tion 2 requires finding a parametrizsation for the

most general polynomial p(x) =
∑N
i=1 αix

i of finite

degree≤ N , positive in x ∈ [0, 1]. Indeed, via Eq. (7),

each such p(x) leads to a condition on arcs,∫ 1

0

p(x)dµ(x) > 0 ⇒
N∑
i=0

αiai > 0 . (12)

One can prove that any such polynomial can be writ-

ten as [32],

p =
∑
J

q2
J,1︸︷︷︸

type-1

+ xq2
J,2︸ ︷︷ ︸

type-2

+ (1− x)q2
J,3︸ ︷︷ ︸

type-3

+x(1− x)q2
J,4︸ ︷︷ ︸

type-4

(13)

where qJ,k(x)’s are non-zero real polynomials – not

necessarily positive – such that p(x) is degree N ,

i.e. qJ,k has at most degree dk, with d1 = bN/2c,
d2 = d3 = b(N − 1)/2c and d4 = b(N − 2)/2c,
where bkc is the integer part of k ≥ 0. Since Eq. (13)

is a sum over positive terms, it is sufficient to dis-

cuss them individually. Therefore we drop the index

J and consider one by one generic polynomials qk of

each type-k in Eq. (13),

qk(x) =

dk∑
j=0

αkjx
j (14)

with arbitrary real coefficients αkj .

We define the Hankel matrix (H`
N )ij = ai+j+`, for

i, j = 0, . . . , b(N−`)/2c, so that H`
N involves arcs up

to aN for N − ` even and aN−1 for N − ` odd. For

instance,

H0
4 = H0

5 ≡

 a0 a1 a2

a1 a2 a3

a2 a3 a4

 . (15)

Now, polynomials of type-1 imply,

∫ 1

0

q1(x)2dµ(x) = ŝ2

bN/2c∑
i,j=0

ŝ2(i+j)α1i ai+j α1j > 0 .

Since the vector {α10, α11ŝ
2, α12ŝ

4, . . . α1,N/2ŝ
N} is

arbitrary, the following Hankel matrix must be posi-

tive definite,

H0
N � 0 . (16)

Following similar steps one finds that the positiveness

of
∫ 1

0
xq2

2(x)dµ(x) > 0,
∫ 1

0
(1− x)q2

3(x)dµ(x) > 0 and∫ 1

0
x(1− x)q2

4(x)dµ(x) > 0 imply,

H1
N � 0 , (17)

H0
N−1 − ŝ2H1

N � 0 , (18)

H1
N−1 − ŝ2H2

N � 0 , (19)

respectively. We refer to Eqs. (16-17) as homogeneous

and Eqs. (18,19) as inhomogeneous constraints.

Since (13) is an arbitrary positive polynomial for

x ∈ [0, 1], Eqs. (16-19) represent the optimal con-

straints, providing an answer to Question 2. For

instance, Eqs. (16-19) with N = 2 define the A(2)

region:(
a0 a1

a1 a2

)
� 0 , a1 > 0 , a0 > ŝ2a1 , a1 > ŝ2a2 .

(20)

This is illustrated in the left panel of Fig. 2. The

first constraint in (20) implies a0a2 > a2
1, and is sat-

urated by the lowest parabola in Fig. 2; the fourth

constraint in (20) is saturated by the upper line, the

other constraints imply that the coordinates lie in the
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FIG. 2. Allowed regions for the arcs a0, a1, a2 (LEFT) and including a3 (RIGHT), according to Eqs. (20,21). LEFT:

For fixed Wilson coefficients, as energy is increased, the theory spans a trajectory in the space of arcs: the blue

trajectories (arrows in the direction of increasing s) correspond to examples in the weak coupling limit Eq. (23), the

red trajectories are examples using Eq. (29) at strong coupling (with the explicit values Eq. (28) and large g2 from

Eq. (31)). Values of s4a2/a0 larger than the green solid/dashed/dotted lines are excluded by the conditions Eq. (10)

from Bernstein polynomials, up to k + n = 2, 3, 4 respectively. RIGHT: The projections into two dimensional planes

correspond to optimal bounds when only two coefficients are taken into account (the bottom projection corresponds to

the left panel). The volume of the allowed region is 1/180 w.r.t. the volume of the unit cube.

interval [0, 1]. For comparison, the green lines show

the constraints obtained using Eq. (10) and arcs up

to a2 (solid), a3 (dashed), and a4 (dotted), and then

projected onto the (s2a1/a0,s4a2/a0) plane: clearly

these converge to the optimal result A(2).

Similarly, evaluating Eqs. (16-19) for N = 3, we

find A(3):

(
a0 a1

a1 a2

)
� 0 ,

(
a0 − a1ŝ

2 a1 − a2ŝ
2

a1 − a2ŝ
2 a2 − a3ŝ

2

)
� 0 ,(

a1 a2

a2 a3

)
� 0 , a1 > ŝ2a2 , (21)

which we illustrate in the right panel of Fig. 2.

Eqs. (16-19) capture how the full constraint on the

arc sequence is projected on the first N arcs. Of

course we can consider the projection on any subset.

In particular for a sequence ak, · · · , aN that starts

at k 6= 0, Eqs. (16-19) are generalised by the substi-

tution ` → ` + k, e.g. Eqs. (16) becomes Hk
N � 0.

Eq. (6) belongs in this class.

To conclude this section we compare our results

to those of Ref. [7], which – considering the forward

amplitude – finds that consistent EFTs must satisfy

the set of homogeneous Hankel matrix positivity con-

straints, Eqs. (16-17). Indeed, the whole set of ho-

mogeneous constraints (i.e. for arbitrarily large N)

implies the ensemble of constraints in Eq. (10),3 and

thus by Hausdorff moment theorem is a necessary

and sufficient set. However, when only a finite num-

ber N of arcs/Wilson coefficients is considered, as it

is often the case, our equations Eqs. (16-19) repre-

sent the optimal constraints. For instance, if we are

interested in the allowed space for three arcs, as in

Eq. (20), the first two homogenous conditions cor-

respond to simple Hankel determinants and can be

easily obtained with the methods of [7]. The latter

two inhomogeneous conditions, instead, can only be

obtained by considering infinite many homogeneous

Hankel matrices.

II. BOUNDS ON WILSON COEFFICIENTS

Constraints on arcs translate, in principle, into

constraints on the Lagrangian’s Wilson coefficients.

3 That is because, for x ∈ [0, 1], the Bernstein polynomials in

Eq. (9) are arbitrarily well approximated by a combination

of polynomials of type-1 and type-2 in Eq. (13), with arbi-

trarily large degree, which precisely correspond to the com-

plete set of homogeneous constraints in Eqs. (16-17). For

instance F (x) = 1 − x is reproduced by q1(x) =
√

1− x =

1 − x/2 − x2/8 − x2/16 − · · · and q2 = 0, and corresponds

to an infinite Hankel matrix.
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In practice, this translation is complicated by the

fact that arcs might receive contributions from (in-

finitely) many Wilson coefficients. In what follows we

discuss under which circumstances this translation is

possible: section II A discusses the tree-level approx-

imation while section II B discusses sizeable quantum

effects.

A. Tree Level

As a first application of our bounds, we focus on

the forward limit in situations where we can consider

just the IR tree level amplitude – we will discuss in

the next section under which conditions this approx-

imation holds. At low energy this takes a polynomial

form4

M̂(ŝ) =
∑

cdŝ
d = c0 + c2ŝ

2 + c4ŝ
4 + · · · . (22)

We compute the an(ŝ) using the definition Eq. (2)

and Eq. (22) and find,

an =
1

(2n+ 2)!

∂2n+2

∂ŝ2n+2
M̂(ŝ)

∣∣∣∣
ŝ=0

= c2n+2 , (23)

independently of ŝ. So the constraints of the previous

sections can be read directly in terms of the coeffi-

cients appearing in the amplitude. From a practi-

cal point of view it is simpler to focus on a limited

number of coefficients (rather than the complete se-

ries), so that Eqs.(16-19) represent the relevant con-

straints. Of these, the homogenous constraints of

Eqs. (16-17) do not depend on ŝ and thus represents

properties of the UV theory that are intrinsic, i.e.

independent of the overall scale of the dynamics. In

particular they include Eq. (4), which implies that

all coefficients cn be strictly positive [1].

On the other hand, the energy scale ŝ appears ex-

plicitly in Eqs. (18-19) (this is translated in the nor-

malisation of Figs. 2 being ŝ-dependent). Given an

EFT, in the form of a set of cn satisfying Eqs. (16-17),

we can think of Eqs. (18-19) as defining the high-

est possible cutoff ŝmax where new dynamics must

modify our EFT amplitude.

For the simple case of the first three coefficients, in

addition to positivity of each of them, Eq. (20) and

Eq. (23) imply

c2 − ŝ2c4 > 0 , c4 − ŝ2c6 > 0 , c2c6 > c24 . (24)

4 In the single flavour case the amplitude is a function of s2 +

t2 + u2 and stu, and odd powers of s vanish in the forward

limit. See moreover footnote 1.

For fixed values of the Wilson coefficients, as ŝ in-

creases, the arcs track trajectories in Fig. 2 (blue

lines, for different values of cn), that start for ŝ→ 0

at the origin and evolve along parabolae. In this case

the cutoff must satisfy ŝ2
max < c4/c6.

The simplest inhomogeneous con-

straints c2ŝ
2 − cnŝn > 0, suffice to rule out any,

even approximate, supersoft behaviour, where the

tree-level forward amplitude is dominated by the

O(sn) growth, n > 2. First of all, positivity already

implies that supersoft symmetries Eq. (1) are never

exact: they are always explicitly broken by a (possi-

bly small) c2 > 0. They could in principle have been

appreciable in the regime of energy ŝ & (c2/cn)
1

n−2 .

However our bounds forbid that: super-soft theories

cannot consistently be UV-completed at weak

coupling, as the expansion in s must be strictly

decreasing, see also [17, 33]5. We will see in the next

section that the same conclusion holds also beyond

the weak coupling approximation.

As a concrete example, consider for instance inter-

actions of the form (∂∂φ)4, which is invariant under

the Galilean symmetry φ→ φ+ b+ bµx
µ, and giving

M(s) ∼ s4. Purely on the basis of symmetries,

these terms could have naturally dominated the

more relevant (∂φ)4 interactions, which break the

Galilean symmetry. This is however inconsistent

with the first inequality in (24) which forces (∂∂φ)4

to be subdominant.

Faster UV convergence. So far the bounds in this

section do not depend on c0 in (22). This changes if

we assume that lims→∞ M̂(s) ≡M∞ is finite. This

is the case, for instance, if the theory in the UV is

described by a finite number of resonances in the tree-

level approximation.

For a finite M∞ we can extend the definition of

arcs in Eq. (3) to n ≥ −1. Then we can repeat an

analysis similar to the one that we did in the previ-

ous section for the subtracted amplitude M̂ −M∞,

finding that the arcs define a sequence of positive

moments {a−1, a0, a1, . . . }.
Note in particular that a−1 = M̂(0)−M∞ can be

regarded as the difference of effective couplings de-

fined by the value of the forward amplitude in the IR

and in the UV respectively, according to the weak

5 The version derived in Ref. [33] constraints operators that

contribute to the 2-point function under the assumption of

convergence of the Källén-Lehmann spectral representation.
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coupling intuition. Since the first of the homoge-

neous conditions on the arcs is now a−1 > 0, the IR

forward amplitude is larger than the UV one. More-

over, a−1a1 − a2
0 > 0 must be satisfied and can be

regarded as an upper bound on c22/c4 if the tree-level

approximation of Eqs. (22,23) holds.

An interesting case that we consider in detail in

the next section is the theory of a single Goldstone

boson for which c0 = 0. If the UV completion is

perturbative −M∞ � 16π2, then we have

0 <
c22
c4
≤ −M∞ � 16π2 , (25)

on the Goldstone theory. 6 The upper bound on c22/c4
is in agreement with the expectation that RG run-

ning effects on c4 – that we will see Eq. (28) – are

expected to be small in a weakly coupled theory.

The boundary. Which theories saturate Eqs. (16-19)?

Hausdorff theorem implies that the integration mea-

sure (the imaginary part of the UV forward ampli-

tude) is uniquely determined if all arcs are known.

If the measure has support on finitely many points,

then a finite number of arcs suffices to determine the

measure uniquely.

Physically, a measure that consists of P distinct

delta functions, ImM̂(ŝ) = π/2
∑P
k=1 g

2
kM

2
kδ(ŝ −

M2
k ), is realised in the tree-level approximation

when integrating out heavy particles with P distinct

masses M1 < M2 < . . . < MP and effective squared

couplings g2
k > 0. This situation corresponds to 7

an =

P∑
k=1

g2
k

M4n+4
k

. (26)

These arcs lie at the boundary of the A(2P ) region,

as we now show.

In the variable x ∈ [0, 1] of section I B, the mea-

sure dµ(x) consists of strictly positive delta functions

located at xk = ŝ2/M4
k for k = 1, . . . , P . In the

EFT, i.e. ŝ < M2
1 , there are thus P such delta’s

within (0, 1). Recalling Eq. (13), Hankel matrices

6 As example, consider a potential V = λ/4(|Φ|2 − v2)2

for a canonically normalized complex scalar field Φ. The

tree-level forward scattering of the Goldstone bosons gives

M(s) =
[
s2/(s+m2

h)− s2/(s−m2
h)
]
/(2v2) where m2

h =

λv2. Therefore, M∞ = −λ and cn = λ/m2n
h , so that

c22/c4 = λ, which saturates the bound (25).
7 For P →∞, finiteness of a0 requires that g2k/M

4n+4
k decays

sufficiently fast as k → ∞. Considering a large but finite

number of particles is therefore a good approximation.

of order P̄ correspond to the quadratic forms gener-

ated by integrating xa(1−x)bqP̄−1(x)2 in dµ(x), with

qP̄−1(x) a generic polynomial of order P̄ − 1. This

integral gives a vanishing result only if all the P̄ − 1

zeroes of qP̄−1(x) coincide with the P delta’s in the

measure. This can only happen if P̄−1 ≥ P , in which

case the corresponding Hankel matrix has order > P :

Hankel matrices of order ≤ P are strictly positive

definite, while they are only positive semi-definite if

their order is > P . Considering then Eqs. (16-19), we

conclude that, for ŝ within the EFT, the arcs are in

the interior of A(N) for N < 2P and at the boundary

of A(2P ).

This implies that – in weakly coupled theories –

the measurements of the arcs in the IR allows to in-

directly count the number P of resonances in the UV:

P is just the smallest P̄ for which detH0
2P̄

= 0.

The same reasoning as above also implies that for

ŝ = M2
1 , just at the edge of the EFT, the arcs are

at the boundary of the A(2P − 1) region. Indeed,

when ŝ approaches M2
1 from below, x1 = ŝ2/M4

1 ap-

proaches the edge x = 1 of the integration region,

and the contribution of the lightest resonance drops

out when integrated against the type-3 polynomial

(1 − x)qP̄−1(x)2 of Eq. (13). Then, for P̄ = P the

zeroes of qP̄−1(x) can be chosen to coincide with the

location of the remaining P − 1 heavier resonances,

hence det
(
H0

2P−2 −M4
1H

1
2P−1

)
= 0. On the other

hand, for P̄ < P , qP̄−1(x) has fewer zeroes than there

are resonances. This implies that for N < 2P − 1

Eq. (18) is still strictly satisfied for ŝ = M2
1 and that

ŝ > M2
1 is needed in order to violate it: N = 2P − 1

arcs allows an optimal estimate of the EFT cut-off

M1, while for N < 2P − 1 the estimate is always

suboptimal.

In fact, the whole UV spectrum and couplings can

be extracted in the IR by determining the roots of

the P -th order polynomial in ŝ2 saturating Eq. (18),

det
(
H0

2P−2 − ŝ2H1
2P−1

)
= 0. 8

As an example, consider two heavy particles ϕi=1,2

of masses Mi and trilinear vertex gi√
2
(∂π)2ϕi/Mi,

8 According to eq. (26), the k-th resonance contributes to

the ij entry of any Hankel matrix a term proportional

to M
−4(i+j)
k . The determinat associated to Eq. (18) is

thus given by sum of terms εi1...iPM
−4i1
k1

M
−4iP
kP

(hence

fully antisymmetric in the ki) weighed by the product

of g2ki
(1 − ŝ2/M4

ki
). The sum over ik therefore vanishes

for s = Mk2 since only P − 1 distinct 1/M4
ki

terms appear

in the antisymmetric tensor. Then, the couplings g2k can be

extracted by solving Eq. (26) in terms of the arcs.
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matching Eq. (26) – here π is the massless state as-

sociated with the 2 → 2 amplitude. The first 3 arcs

a0,1,2 populate the bulk of the allowed region A(2) of

Eq. (20) and Fig. 2, even for ŝ = M1. An estimate

of the cutoff using only these 3 arcs, ŝ2 < a1/a2,

produces values that are always above the true cut-

off ŝ = M2
1 . By instead considering 4 arcs a0,1,2,3,

the estimated cutoff becomes exact: Eq. (18) is sat-

isfied for ŝ = M2
1 . Including 5 arcs, Eq. (16) is found

to be marginally satisfied, i.e. detH0
4 = 0, thus de-

termining the number of states.

B. Beyond Tree Level

Under which circumstances is the tree-level for-

mula, an = c2n+2, a good approximation, and when

do the conclusions of the previous section hold?

To answer this, we study an EFT including RG

effects, restricting for simplicity to the massless case

(where ŝ = s). Moreover, in order for the forward

limit to be well-defined, we focus on the case of a

derivatively coupled scalar, i.e. a Goldstone boson φ

with symmetry φ→ φ+ b. Indeed, the explicit com-

putation that we present below – up to two loops

and O(s6) – does not exhibit any IR divergence.

Moreover, for the Goldstone theory, the tree-level

amplitude is finite at t = 0, and divergences could

originate only from collinear emissions (soft emission

does not affect the total cross section and hence nei-

ther the imaginary part of the amplitude). Using

collinear factorization (SCET, see e.g. [34]), it is easy

to see that these are finite, as the positive powers

of collinear momenta associated with the Goldstone

derivative interactions always compensate putative

divergences in collinear propagators. We therefore

assume that the forward amplitude is well-defined.

In the upper half plane, up to O(s6), the most

general Goldstone boson amplitude starts at order

O(s2) and reads,

M(s)=c2s
2 + s4 [c4+β4 log(−is)]− iπs5β5/2 (27)

+s6
[
c6 + β6 log(−is) + β′6 log2(−is)

]
+O(s7) ,

where log is defined in the standard way, with the

cut on the negative real semi-axis. Then we have

2 log(−is) = log(s) + log(−s) for Ims ≥ 0 and

log(s)− log(−s) = iπ. For ease of notation we set the

RG scale µ = 1, but the generic choice is reinstated

through log(−is) → log(−is/µ2), cn → cn(µ). An

explicit calculation in the Goldstone case gives 9

β4 = − 7

10

c22
16π2

, β5 = − 4

15

c2c2,1
16π2

,

β6 = −83

70

c4c2
16π2

− 1

30

c22,1
16π2

− 319

175

c32
(16π2)2

, (28)

β′6 =
83

200

c32
(16π2)2

,

where c2,1 is the coefficient of s2t in the non-forward

amplitude. At O(s6) in the energy-expansion,

Eq. (27) does not receive any further correction at

any number of loops. From (27), the first three arcs

read,

a0 =c2 +
s2

2
β4+

s3

3
β5+

s4

4

(
β6+

β′6
2

(4 log s−1)
)

+· · · ,

a1 =c4(s) + sβ5 +
s2

2

(
β6 + β′6(2 log s− 1)

)
+ · · · ,

a2 =− β4

2s2
− β5

s
+ c6(s) + · · · , (29)

where

c4(s) ≡ c4 + β4 log s (30)

c6(s) ≡ c6 + β6 log s+ β′6(log2 s− π2

12
) .

These functions are RG invariant by construction,

and are the natural extensions of c4,6 in the interact-

ing theory.

The dots in Eq. (29) denote higher powers of s, of

which there are a priori infinitely many. If all such

contributions were important, the EFT would have

no predictive power. A meaningful EFT exists only

under certain assumptions on the convergence of the

series. To this aim, a first unavoidable assumption,

is the perturbativity of the dimensionless couplings

g2
n ≡ cn(s)sn that control the IR loop expansion,

g2
n ≡ cn(s)sn � (4π)2 . (31)

This condition, which we assume throughout this

work, implies that many of the higher order terms

that (could) enter Eq. (29) must be small. For

instance it implies that β4s
2 and the contribution

∝ s4c4c2/16π2 in β6s
4 – see (28) – are subleading

in a0.

9 By a slight abuse of notation, c4 in Eq. (27) differs from the

tree-level amplitude in Eq. (22) by a finite one-loop piece:

c
(27)
4 = c

(22)
4 + 449c22/(300(16π2)).
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Nevertheless, Eq. (31) does not yet imply the va-

lidity of the tree-level approximation for the arcs.

Indeed, the corrections to the tree level result an =

c2n+2, are controlled by a broader set of parameters

given by the ratios

βns
n

cm(s)sm
. (32)

We will refer to the situations where these parame-

ters are small as strong perturbativity . For n < m

these parameters grow in the IR and become smaller

in the UV, and viceversa for n > m: in the stan-

dard RG parlance they respectively correspond to

relevant and irrelevant deformations away from tree-

level. For n = m, they capture instead the logarith-

mic RG running of Wilson coefficients (they mea-

sure the interaction strengths at the cutoff – see (25)

for the weakly coupled case). For instance, in the

sigma-model example of footnote 6, cn = λ/m2n
h and

βn ∼ (λ2/16π2)/m2n
h are characterised by one scale

and one coupling so that the ratios in Eq. (32) are of

order (λ/16π2)(s/m2
h)n−m. Then, given λ/16π2 � 1

and s/m2
h < 1, for n ≥ m the parameters of Eq. (32)

are always small (strongly perturbative). However,

for for n < m, they can be larger than unity at small

enough energies,

s . m2
h

(
λ

16π2

) 1
m−n

. (33)

In fact, these quantum effects always dominate the

far IR s→ 0, where the arcs asymptote to

a0 → c2 , a1 → β4 log s , an≥2 → −
β4

(2n− 2)s2n−2
.

For c2 > 0, and given β4 < 0, as implied by unitarity

within the EFT

0 > −s−4 2

π
ImM(s) = β4 +O(s) , (34)

these arcs fulfil all the constraints. What happens

is that for s → 0, the arcs are fully dominated by

the IR tail of the spectral density, which is positive

and fully determined by the leading term ∝ c22 in the

2→ 2 cross-section. The Hausdorff condition is then

trivially satisfied and, as graphically represented in

Fig. 2, all red trajectories flow to a common attractor

as s→ 0.

When higher energies are considered, predictivity

is only retained if contributions above a certain finite

positive power of s remain negligible, in particular

when considering the arcs (29). In view of that, we

will now discuss two scenarios for omitting higher

order terms. We dub them Simplest EFT and Next-

to-Simplest EFT . In the first case we assume that

all irrelevant contributions to the arcs are negligible,

namely

βns
n � cm(s)sm for n > m . (35)

This is the standard situation in the context of EFTs.

Instead, more complex scenarios arise by allowing

irrelevant parameters to sizeably contribute to the

arcs. In the Next-to-Simplest EFTs, we will allow

βns
n ∼ cm(s)sm for some n > m , (36)

while all the other β coefficients still fulfil Eq. (35).

Simplest EFT. The IR relevant contribution to the

arcs drastically modify the allowed region for the run-

ning Wilson coefficients cn(s). This is however not

apparent in the first two arcs a0 and a1. Indeed, for

the first arc alone we have a0 ' c2, since there are

no possible relevant nor marginal perturbations that

enter. Therefore the positivity constraint on a0 gives

c2 > 0, equivalent to the tree-level case.

Consider now the first two arcs. The size of

β4/c4 controls the logarithmic running in a1 ≈ c4(s).

The bounds of section I A, in particular the optimal

bounds in Eqs. (16-19), read

c4(s) > 0 (37)

c2 − c4(s)s2 > 0 , (38)

in addition to c2 > 0. Written in term of the running

coefficient c4(s), Eqs. (37,38) have the same form as

at tree-level constraints of Eq. (24). Notice in partic-

ular that c4(s) (the lowest running Wilson coefficient)

cannot be negative. Moreover, the second inequal-

ity, together with perturbativity defined in Eq. (31),

justifies our neglect of the term ∝ s6c24/16π2c2 in

β8s
6/c2. In other words, it implies that these terms

automatically respect strong perturbativity (35).

In a causal and unitary theory, violation of any

of eqs. (37,38) must correspond to the failure of the

hypothesis, Eq. (35). This implies that either the

EFT is at its cutoff, or that it is non-standard, in the

sense that irrelevant higher derivative terms must be

included, as we will discuss below in an example.

Starting with the third arc, the distinction between

arcs and running Wilson coefficients becomes appar-

ent. Indeed, the third arc a2 ≈ −β4/2s
2 + c6(s),10

10 For simplicity we neglect c2,1 – this is consistent because
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FIG. 3. In colour the allowed area for (combinations of) Wilson coefficients c2, c4(s) and c6(s), evaluated at a

scale s. In all panels β4/c4(s) = 0.1. Left and center panels: warmer colours denote points where the distance to

the cutoff (i.e. the energy smax where bounds are saturated) is larger; grey contour lines in the central plot have

smax/s = 2, 3, 4, . . . The black dashed curve denotes the tree-level expectation Eq. (24). The region above the black

lines have β4/c6(smax)s2max < 0.1, 0.2, 0.4 respectively. The inset in the center panel shows a wider region of parameter

space. Right panel: the same as in center panel but with logarithmic scale.

includes a relevant deformation from its tree-level ex-

pectation a2 = c6. The bounds read,

c4(s)− c6(s)s2 > −β4

2
, (39)

c6(s)− c4(s)2

c2
>

β4

2s2
. (40)

Given c4(s) and c6(s) at an energy s, the first ex-

pression is stronger and the second is weaker than

the tree-level conditions in (24). The weaker condi-

tion implies that the determinant c2c6(s) − c4(s)4,

and indeed even c6(s), can be negative. In fact the

RG effects in Eq. (30) alone, already violate the naive

tree-level bounds: in the far IR s→ 0, RG evolution

leads to c6(s) → β′6 log2 s > 0, but makes the deter-

minant negative,

det

(
c2 c4(s)

c4(s) c6(s)

)
→ (β2

4 − c2β′6) log2 s < 0 , (41)

where we have used the explicit values for β4 and β′6
from Eq. (28). Indeed it is now possible to have con-

sistent EFTs where the determinant is so negative

that, as energy increases, Eq. (40) is violated before

Eq. (39): a radical difference w.r.t. the tree-level

approximation, where only the inhomogeneous con-

ditions depend on s. This is possible because quan-

tum effects imply that arcs manifestly depend on the

c2,1 is not renormalised by the other parameters. We in-

clude sizeable c2,1 below, as a case study for the Next to

Simplest EFT.

energy scale: Eq. (11) implies that all constraints be-

come more stringent as s increases, so that both ho-

mogeneous and inhomogeneous conditions play now

a role in defining the theory’s regime of validity.

This is illustrated in Fig. 3, where coloured regions

correspond to Eqs. (39,40) and black dashed curves

report the naive tree-level expectation.

We can therefore identify two interesting classes

of theories. First, theories that possess a regime in

which the parameters in Eq. (32) are small (in par-

ticular β4/c4 � 1 and β4/c6s
2 � 1 in the case of

three arcs) and can be approximated by the tree-

level expressions. Weakly coupled theories where the

EFT is obtained by integrating out massive particles

at tree-level (like discussed on page 7), or at loop

level (like for the Euler-Heisenberg Lagrangian), be-

long in this class.11 In theories of this class, it is

the inhomogeneous bounds (Eqs. (38,40) for three

arcs) that are violated first, as s increases. This

state of things is illustrated in Fig. 3, where we have

chosen β4/c4(s) = 0.1, and where the region above

the solid black lines correspond to varying sizes of

β4/c6(smax)s2
max, as indicated in the figure.

On the other hand, in theories in which the rele-

vant perturbation β4/(c6(s)s2) never becomes negli-

gible, it is possible for c2, c4(s), c6(s) to lie at O(1)

11 The discussion in section II A corresponds to the idealized

limit where the coupling goes to zero and the tree level

regime for the arcs extends to arbitrarily small energies.
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outside of the tree-level naive boundary Eq. (24). In

the central and right plots of Fig. 3, these theories

feature at all energy scales a value of c2c6(s)/c4(s)2

significantly below its tree-level bound of 1, and in-

clude the option of a negative value, implying c6(s) <

0. All in all, even in the Simplest EFT scenario,

quantum effects open a qualitatively new region in

parameter space. In these theories, as energy in-

creases, it is the homogeneous conditions Eq. (40)

that are saturated first. This is illustrated by the red

trajectories in Fig. 2 exiting from the lower parabola.

Next-to-Simplest EFT. We now study the simplest

case in which there exist a sizeable effect associated

with irrelevant parameters, as in Eq. (36)(i.e. a size-

able βns
n ∼ cms

m for some n > m). The Galileon

limit, in which c2,1s
2 � c2, is an example of this.

Since c2,1 doesn’t enter in the forward amplitude at

tree-level, it is not directly bounded by our discussion

in section II A (in section III we discuss the amplitude

away from the forward limit, but we anticipate that

a positive c2,1 is unbounded by those arguments). In

this limit, the part of β6 involving c2,1, which we de-

note β̂6 = −c22,1/(30(16π2)), can be potentially large

and depart from strong perturbativity at sufficiently

high energy within the EFT – though we still assume

(strong) perturbativity for all higher coefficients.

Considering the first arc, keeping only the most

important contributions in the Galileon limit (β5 in

Eq. (II B) is suppressed w.r.t. β̂6 in this limit), posi-

tivity of a0 ≈ c2 + β̂6s
4/4 implies

c2 & s4 |β̂6|
4

, (42)

thus c2,1 can be at most a loop factor larger than

c2, i.e. c2,1s
2 . 8π

√
30c2, as already discussed in

Refs. [2, 4, 13]. Eq. (42) dictates that strong per-

turbativity between β6 and c2 can be violated only

marginally.

Including also a1 ≈ c4(s) + β̂6s
2/2, we find the

further conditions

− β̂6

2
s4 . c4(s)s2 . c2 − s4 β̂6

4
. (43)

The first inequality implies that c4(s)s2 must still be

positive. It also implies another bound of the form

of Eq. (42), that can be written explicitly as,

c2,1s . 8π
√

15c4(s) , (44)

and is stronger than the one implied by Eq. (42),

for c4(s)s2 < 2c2.

The second inequality in Eq. (43) shows that

c4(s)s2 can now be larger than c2. However, compat-

ibly with Eq. (42) it cannot exceed 2c2. Therefore the

violation of the bound c2 > c4(s)s2 is only marginal,

implying that supersoftness c4(s)s2 � c2 remains

forbidden. These results are summarised in Fig. 4.

If we further include information for the third arc,

a2 ≈ c6(s) (where c6(s) is dominated by β̂6 and we

neglect the term ∝ β4/s
2 � β̂6), we have the inho-

mogeneous bound,

c6(s)s4

c2

(
1 +

β̂6s
4

2c2

)
&

(
c4(s)s2

c2
+
β̂6s

4

4c2

)2

(45)

So, a sizeable (negative) β6 makes the lower bound

on c6(s)s4/c2 stronger, and shifts it towards larger

values of c4(s)s2/c2. These effects, however, appear

in a relatively uninteresting regime of the theory. In-

deed, the quantum effects ∝ β4/s
2 discussed above

were sizeable in the IR and allowed for theories that

depart from the tree-level approximation, while still

being valid over a relatively large energy regime. In-

stead, the effects discussed here, are controlled by the

s2β̂6 term, that is sizeable only at high-energy, when

the theory is already close to the cutoff.

The couplings c2,1, c4 and c6 are all compatible

with Galilean symmetry; c4 and c6 are exactly in-

variant while c2,1 is a sort of Wess-Zumino-Witten

(WZW) term [26, 35]. Instead, c2 violates the sym-

metry. Our analysis shows that c2,1 can be at most

a loop factor larger than c4, while the exactly invari-

ant couplings c4 and c6 are directly limited by c2.

In some sense, our constraints privilege the WZW

couplings over the exactly symmetric ones.

III. BEYOND FORWARD

In this section we extend our methodology to the

class of amplitudes that are also analytic in t in a

finite region around t = 0. This trivially includes

the case of tree level amplitudes generated by the

exchange of massive states, but it also includes the

general case of finite mass. Indeed, for fixed physical

s ≥ 4m2 the amplitude M(s, t) is analytic for com-

plex cos θ ≡ 1 + 2t
s−4m2 inside the so called Lehmann

ellipse, namely an ellipse with foci at cos θ = ±1 [21],

see also e.g. [36].

For t finite and real, s↔ u crossing symmetry and

real analyticity dictateM(s, t) =M∗(4m2−s∗−t, t).
Further constraints on the t and s dependence are

given by the partial wave expansion, which diagonal-
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FIG. 4. The Galileon case c2,1 6= 0, for fixed

−β4/c4(s) = 0.1. Orange Region: allowed from bounds

on RGE of the forward (t = 0) amplitude (for compari-

son the upper dashed curve shows the upper bound from

Ref. [13]). Blue region: allowed by the tree-level t 6= 0

bounds of section III (for comparison the lower dashed

curve reports the results of Ref. [5]). The solid black curve

shows the intersection. Notice that upper and lower parts

of the plot have different scales.

izes the unitarity condition on the S-matrix. In the

physical s-channel region the expansion reads

M(s, t) =

∞∑
l=0

P`(cos θ)f`(s) (46)

while a similar relation also holds in the u-channel.

Then, unitarity of the partial waves

Im(f`(s)) > 0 ∀` for s ≥ 4m2 , (47)

together with positivity of the Legendre polynomials

and their derivatives at t = 0, Eq. (47) imply [22]

∂kt ImM(s, t)
∣∣
t=0

=

∞∑
`=0

∂kt P`(cos θ)|t=0Imf`(s) > 0 ,

(48)

for all k and for s along the s-channel cut. The above

additional positivity conditions can be exploited as

we now discuss.

Considering the above properties we extend the

definition of the arcs (2) to

an(ŝ, t) ≡
∫

ŝ

dŝ′

πi

M̂(ŝ′, t)

(ŝ′ + t
2 )2n+3

(49)

where we recall ŝ ≡ s − 2m2, M̂(ŝ, t) = M(s, t)

and ŝ is now a contour with radius ŝ+ t/2 centred

at −t/2. The conditionM(s, t) =M∗(4m2−s∗−t, t)
ensures the reality of the arcs. Furthermore using

that M̂(ŝ, t)/s2 → 0 for s → ∞ (as dictated by the

analog of the Froissart bound at finite t [37]), the

arcs can be expressed by a dispersive integral like in

Eq. (3), 12

an(ŝ, t) =
2

π

∫ ∞
ŝ

dŝ′
ImM̂(ŝ′, t)

(ŝ′ + t
2 )2n+3

n ≥ 0 . (50)

At this point we can take t-derivatives at t = 0 and

use Eq. (48) to obtain positivity conditions

∂tan(ŝ, t)|t=0 = a(1)
n (ŝ)− 2n+ 3

2
an+1/2(ŝ) , (51)

∂2
t an(ŝ, t)|t=0 = a(2)

n (ŝ)− (2n+ 3)a
(1)
n+1/2(ŝ)

+
(2n+ 3)(2n+ 4)

4
an+1(ŝ) ,

and so on; where we have defined

a(k)
n (ŝ) =

2

π

∫ ∞
ŝ

dŝ′
∂kt ImM̂(ŝ, t)|t=0

ŝ′2n+3
, (52)

and a
(0)
n ≡ an. Notice that while the arcs an(ŝ, t)

are defined for integer n and can be written purely

in terms of IR data according to Eq. (50), the a
(k)
n (ŝ)

of (51), are defined for half-integer n ≥ 0 and only

through the UV representation in (52).

For every k, {ŝ2n+2a
(k)
n }, with half-integer n ≥ 0,

is a series of moments because the measure in (52)

is positive according to (48). Therefore, they fullfil

versions of the positivity constraints, analogous to

Eqs. (16-19), but including half-integer arcs. More

precisely, half-integer arcs fulfil Eqs. (16-19), recast

for new Hankel matrices
(
h`N
)

2i2j
= ai+j+` where

2i, 2j = 0, 1, . . . , bN − `c (here both N and ` can be

half-integers). The matrices h`N contain both integer

and half integer arcs, e.g.

h0
1 =

(
a0 a1/2

a1/2 a1

)
. (53)

12 Since the amplitude is analytic also for 0 ≤ t ≤ 4m2

[22], ImM̂(ŝ, t) =
∑

n ∂
n
t ImM(s, t)|t=0tn/n! > 0 is posi-

tive there [3, 4], so that the constraints of section I apply

up to replacing an(ŝ) → an(ŝ, t) for 0 ≤ t ≤ 4m2. In what

follows we provide stronger constraints than these, by using

that each derivative in Eq. (48) is separately positive.

Notice also that it is in principle possible to build disper-

sion relations for other combinations that respect real ana-

lyticity, such as ∂tM̂−∂ŝM̂/2. These also lead to Eq. (51).
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Half-integer arcs an+1/2 (n integer) and all a
(k)
m (m

integer or half-integer for k > 0) are not calculable

in the EFT because they are defined in terms of UV

integrals (52), and have no IR counterpart like (49).

On the contrary, an and ∂tan, with integer n, can be

computed directly within the IR. Our goal is there-

fore to understand the constraints on an and ∂tan for

arbitrary values of a
(k)
m and an+1/2, compatible with

their being moments. In appendix A, we outline an

analytic procedure to do so, from which the bounds

below are derived, but that applies in principle to all

N . For more t-derivatives this procedure becomes

cumbersome: in Ref. [38] we propose a numerical

technique, based on semi-definite programming, to

extract the bounds efficiently.

For instance, for N = 0 we find the constraint on

arcs t-derivatives to be ∂ta0 > − 3
2
a0
ŝ , a condition

that appears in different form already in Ref. [5].

For N = 1 our conditions constrain the space

{∂ta0, ∂ta1} as,

∂ta0 > −
3

2

√
a0a1 , ∂ta1 > −

5

2

a1

ŝ
,

∂ta0 − s2∂ta1 >
5

2

√
a1

a0
(ŝ2a1 −

3

5
a0) , (54)

which we illustrate in Fig. 5 for negative ∂ta0 (for

∂ta0 > 0, the allowed region is unbounded: the dis-

tance between the upper and lower boundaries of

the projection on the {ŝ2a1/a0, ŝ
3∂ta1/a0} plane in-

creases with ŝ∂ta0). These conditions are more strin-

gent than just ∂ta0 > − 3
2
a0
ŝ (which corresponds to

the left boundary of the box in Fig. 5), as shown also

in Fig. 4.

We illustrate an application of these bounds to the

Wilson coefficients at tree-level13

M̂(ŝ, t) =
∑

n+m>0

cn,mŝ
ntm . (55)

Eq. (54) reads at t = 0,

c2,1 > −
3

2

√
c4c2 ŝ c4,1 > −

5

2
c4

c2,1 − ŝ2c4,1 >
5

2

√
c4
c2

(ŝ2c4 −
3

5
c2) (56)

13 At one loop, for a U(1) Goldstone boson (i.e. with c0 = 0),

∂tM| t→0
m→0

= c2,1s
2−

i41πc22
60(16π2)

s3+

(
c4,1−

11c2c2,1

15(16π2)
log(−is)

)
s4

with t → 0 before taking m → 0, is finite. Therefore, for

statements up to O(s4t), the use of the tree-level expressions

is justified. We postpone a more refined discussion of these

loop effects to Ref. [38].

FIG. 5. Allowed region in the space of arcs and their

first t-derivative for ∂ta0 < 0, according to Eq. (54); 2D

projections in grey. At tree level we have a0 = c2, a1 = c4,

∂ta0 = c2,1 and ∂ta1 = c4,1.

where we have identified cn ≡ cn,0 to match the no-

tation of the previous sections.

Eq. (56) implies that c2,1 can be negative but not

arbitrarily so, as it is limited in magnitude by
√
c4c2.

To further illustrate the constraining power of

Eq. (56), we can for instance use it to test the consis-

tency of a theory where the amplitude is dominated

by ∝ E10 terms for sufficiently large E within the

EFT domain of validity. By Lorentz invariance the

only option is M' stu(s2 + t2 + u2), corresponding

to a c4,1s
4t term dominating c2s

2, c2,1s
2t and c4s

4.

This hierarchy appears natural, since it is protected

by one of the approximate symmetries in Eq. (1),

see [27]. Such example is not constrained by our

tree-level forward bounds in section II A, simply be-

cause the largest contribution to the amplitude van-

ishes at t = 0. However, Eq. (56) provides upper and

lower bounds on c4,1ŝ
5, controlled by more relevant

Wilson coefficients, see Fig. 5 and its caption. In

the physical region |t| < s, these bounds imply that

c4,1s
4t can never dominate the terms with lower pow-

ers of E. In other words, supersoft amplitudes that

vanish in the forward limit and have more powers of

energy than c2,1s
2t, are excluded by our bounds.

The same arguments lead to constraints on higher

t-derivatives of arcs. The structure is always the

same: ∂kt a0 are bound from below, but can be ar-

bitrarily large when positive. Instead ∂kt an, n > 0

are bound from below and from above. At tree-level

this implies that the coefficients c2, c2,1, c2,2, etc.
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TABLE I. Schematic summary of tree-level results. The grey

area encompasses coefficients which are not independent be-

cause of crossing symmetry in the single-flavour case. c0 is

unconstrained, c2 is constrained to be positive, c2,1 is con-

strained to be larger than a combination of the other coeffi-

cients. All other coefficients are bounded below and above.

are unbounded from above, while all the others are

bounded. We illustrate this in table I.

In the single flavour case considered here, crossing

symmetry implies that c2,k with k ≥ 2 are related

to c2+k,0 (for k even) or c1+k,1 (for k odd), which

are already bounded from above from our constraints

(grey area in table I). For instance, the amplitude

M(s, t) ∝ (s2 + t2 +u2)2 implies c2,2 = 3c4, and c4 is

bounded from above. In other words, only c2 and c2,1
are unbounded from above by tree-level arguments;

all other coefficients are instead bounded from below

and above.

As pointed out in Ref. [7], Eq. (48) contains more

information than just positivity, which is what we

have exploited so far. Indeed, the ∂kt |t=0ImM(s, t)

(and their integrals a
(k)
n (ŝ)) are not merely positive,

but are the sum of positive parameters with known

coefficients: ∂kt P`(cos θ)|t=0 = (`+ k)!/(`− k)!k!.

This implies more bounds involving at least three

a
(k)
n (ŝ), with k + n = constant [7]. Because they

involve at least three different t-derivatives, and be-

cause they are saturated by the crossing symmetry

condition in the simplest cases, these bounds didn’t

play a role in our discussion of supersoftness; for a

relevant application see [39]. In Ref. [38] we will

show how these bounds emerge in the language of

moments.

IV. SUMMARY AND OUTLOOK

In this paper we introduced a set of energy de-

pendent quantities, the arcs an(s) of Eq. (2), that

conveniently encode the constraints of causality, uni-

tarity and crossing on the forward 2 → 2 scattering

amplitude. A dispersion relation, Eq. (3), allows to

express the arcs as the moments of a positive measure

in the range [s,∞). Hausdorff’s moment theorem

then establishes the set of necessary and sufficient

conditions the arcs must satisfy, given the positivity

of the measure. Both the arcs and the constraints

are infinite sets. However we derive the projection

of the full set of constraints on the subsets of the

lowest arcs, a0, . . . , aN for any N . These are ex-

pressed by Eqs. (16-19) and fall into two classes, in-

homogeneous and homogeneous, according to their

explicit, or only implicit, dependence on s. These

projections are interesting within EFTs, because the

lowest an’s encode the effects of the correspondingly

lowest Wilson coefficients.

Our result is particularly relevant to determine the

acceptable range of validity of EFTs in both cou-

plings and energy. Concerning the latter and as im-

plied by Eq. (11), the energy dependence of the arcs

leads to stronger bounds on the EFT parameters as

the energy is increased. Satisfaction of the positivity

constraints at a certain s, automatically implies sat-

isfaction at lower s but not at higher s. When the

parameters of a given EFT violate the constraints

above a certain scale, the only option to respect pos-

itivity is the breakdown of the EFT description at or

below that scale.

In the idealized limit where the tree level approx-

imation holds exactly, the arc series is in one to one

correspondence with the series of Wilson coefficients

in the expansion of the forward amplitude. The en-

ergy dependence of the arcs arises at the quantum

level from two sources: the RG evolution of the Wil-

son coefficients and collinear radiation from the ini-

tial state. The latter induce effects that typically go

like powers of ln s/m2, and thus diverge in the mass-

less limit, corresponding to the IR divergence of the

total cross section. There are however situations, in

particular when the interactions are purely deriva-

tive, where these IR divergences are absent and the

arcs energy dependence is purely controlled by RG

evolution. It is this simpler situation that we have

mostly considered for illustrative purposes, focussing

on the theory of one abelian Goldstone boson. We

could have similarly considered the case of massless

vectors or fermions, where gauge invariance or super-

symmetry mandate derivative interactions.

The constraints are conveniently described by

grouping EFTs into two broad classes. The first

are EFTs that emerge from a weakly coupled UV
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completion, either at tree level or from loops. Here,

for s not too much below the physical EFT cut-off,

the arcs are reliably approximated by the Wilson co-

efficients at tree level. Eqs. (16-19) then translate

directly into sharp constraints on the Wilson coeffi-

cients. In particular, the energy dependent inhomo-

geneous constraints dictate the strict convergence of

the s expansion of the forward amplitude M(s) and

rule out the possibility for supersoft EFTs, where

M(s) grows faster than s2. Indeed the energy de-

pendent constraints, through their violation, also al-

low to infer the maximal cut-off of the EFT. As we

discussed, even in these weakly coupled EFTs the

tree level approximation for the arcs breaks down at

sufficiently low s because of mixing at the quantum

level with more relevant Wilson coefficients. Con-

sequently in the far IR the allowed region for the

running Wilson coefficients differs significantly with

respect to the near cut-off region. This fact is also

directly related to the existence of the second class

of EFTs, for which the tree level approximation for

the arcs is never realized in their domain of validity.

Positivity still implies strict constraints in couplings

space and in particular rules out supersoft EFTs, at

least under the simplest assumptions we could check.

In this second class of theories the homogeneous con-

straints, now energy dependent because of quantum

effects, can control the maximal allowed UV cut-off.

Our study mostly concerned the forward ampli-

tude, but in section III we extend it to t 6= 0. We

studied the arc first t-derivative; in derivatively cou-

pled theories, this too is free of IR-divergences. The

bounds we obtain complete our analysis into the

realm of theories with suppressed forward amplitude.

In particular they show thatM(s) can be dominated

over a limited range of energies by ∝ s2t behaviour,

but that anything softer is forbidden. More bounds

than those presented here can be derived using the

explicit form of Legendre polynomials (in addition to

positivity of their derivatives) [7], but always involve

at least two t-derivatives. These involve quantities

that are IR divergent in the m → 0 limit, and goes

beyond the scope of the present study (see comments

further down).

Our investigation could be furthered in a number

of ways. One could be to try and connect to the

S-matrix bootstrap [40–42]. The latter approach ex-

ploits the full 2→ 2 unitarity equation, schematically

2ImT > |T |2, while our analytical bounds purely ex-

ploit positivity ImT > 0. Besides trying to imple-

ment full unitarity one could perhaps use an ansatz

for the 2→ 2 amplitude similar to the S-matrix boot-

strap approach of [40].

An obvious way to extend our work would be to

more systematically study other instances of deriva-

tively coupled theories. In particular one could con-

sider cases involving states of different helicity and

with a flavor structure. Here it would be interesting

to consider the forward amplitude for superpositions

of helicity and flavor. A less obvious one would be

to consider non derivatively coupled EFTs where the

cross section is affected by collinear divergences. In

this case the bounds on the Wilson coefficients at

some scale s will seemingly have a dependence, to be

determined, on the mass m providing the IR regula-

tion. Alternatively one could treat the mass m itself

as the RG scale and work with s ∼ m2.
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Appendix A: Analytic Results at Finite-t

It is convenient to rearrange the Hankel matrices(
h`N
)

defined above Eq. (53), in terms of blocks of

either half-integer or integer arcs, by extending the

definition of section I to
(
H`
N

)
ij

= ai+j+` where now

` and N can be half-integer or integer, and i, j =

0, 1, . . . , b(N − `)/2c, e.g.

H
1/2
5/2 =

(
a1/2 a3/2

a3/2 a5/2

)
. (A1)

In this way, for N integer, the constraints Eqs. (16-

19) on h`N (involving both integer and half-integer
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arcs) can be written in terms of constraints on H`′

N

(integer arcs only for `′ integer) and H
`′+1/2
N (half-

integer arcs only):

H1/2 � 0 , H1 � H1/2(H0)−1H1/2 ,

H3/2 � H1(H1/2)−1H1

∆H0 � 0 , ∆H1/2 � 0 ,

∆H1 � ∆H1/2(∆H0)−1∆H1/2 ,

∆H3/2 � ∆H1(∆H1/2)−1∆H1 , (A2)

where we defined ∆H`
N ≡ H`

N−1/2 − ŝH
`+1/2
N and

used Schur’s complement. The lower label of Hankel

matrices is implicit and corresponds to N .

All half-integer arcs in these conditions are re-

placed using Eq. (51),

an+1/2 =
2

2n+ 3

(
a(1)
n − ∂tan

)
. (A3)

Together with the positivity bounds for a
(1)
n , involv-

ing a
(1)
n up to bN − 1/2c, they define the space of

allowed arc derivatives, once we eliminate all the a
(1)
n .
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