Probing the ¹¹Li low-lying dipole strength via ${}^{9}Li(t,p)$ with the ISS

October 3, 2020

Y. Ayyad¹, E. Vigezzi², G. Potel³, R. Broglia^{4,5}, B.P. Kay⁶,

A.O. Macchiavelli⁷, H. Alvarez-Pol⁸, F. Barranco⁹, D. Bazin^{1,10}, P.A. Butler¹¹

M. Caamaño⁸, A. Ceulemans¹², J. Chen¹, H.L. Crawford⁷, B. Fernández-Domínguez⁸,

S.J. Freeman¹³, L.P. Gaffney¹¹, C.R. Hoffman⁶, R. Kanungo^{15,16}, M. Labiche¹⁷,

I. Lazarus¹⁷, C. Morse⁷, R.D. Page¹¹, O .Poleshchuk¹², R. Raabe¹², C.A. Santamaria⁷,

D.K. Sharp¹³, T. L. Tang⁶, K .Wimmer¹⁸, A.H. Wuosmaa¹⁹

- ¹ National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824, USA
- ² INFN Sezione di Milano, Via Celoria 16, I-20133 Milano, Italy
- ³ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
- ⁴ The Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Blegdamsvej 17, Denmark
- ⁵ Dipartimento di Fisica, Università degli Studi Milano, Via Celoria 16, I-20133 Milano, Italy
- ⁶ Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA
- ⁷ Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

⁸ Instituto Galego de Física de Altas Enerxías, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain

⁹ Departamento de Física Aplicada III, Escuela Superior de Ingenieros, Universidad de Sevilla, Camino de los Descubrimientos, Sevilla, Spain

- ¹⁰ Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, U.S.A.
- ¹¹ University of Liverpool, Liverpool L69 7ZE, United Kingdom
- ¹² KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200d, 3001 Leuven, Belgium
- ¹³ School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
- ¹⁵ Saint Mary's University, Halifax, Nova Scotia, Canada
- ¹⁶ TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- ¹⁷ STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, UK
- ¹⁸ Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain
- ¹⁹ Department of Physics, University of Connecticut, Storrs, CT 06269, USA

Spokesperson: Y. Ayyad (ayyadlim@nscl.msu.edu) Co-spokesperson: E. Vigezzi (enrico.vigezzi@mi.infn.it) Contact person: B. Olaizola (bruno.olaizola@cern.ch)

1 Introduction

In exotic, light nuclei lying along the neutron dripline, N = 6 becomes a magic number as a result of the phenomenon of parity inversion. Consequently, ⁹Li₆ is a single closed shell system. While ¹⁰Li, just one extra neutron is not bound, the nucleus ¹¹Li is, if ever so weakly bound ($S_n \approx 380$ keV). A fact whose origin points to pairing correlations of the two neutrons outside the closed shell.

The differential cross section for Coulomb breakup for ¹¹Li exhibits a pronounced peak at very low relative energy of the two neutrons, $E_{rel} \approx 0.35$ MeV –corresponding to an excitation energy $E_x \approx 0.75$ MeV– with a large cross section of almost 0.3 b/MeV [1, 2]. A low-lying E1 resonance in ¹¹Li was also observed in the inelastic processes -(p, p') and (d, d')– with centroid $E_x \leq 1$ MeV, width $\Gamma \approx 0.5$ MeV and carrying $\approx 8\%$ of the Thomas-Reiche-Kuhn (TRK) dipole energy weighted sum rule [3, 4, 5], which confirms the resonant character of the E1 transition strength observed in Coulomb excitation.

There is evidence which testifies to the fact that this E1 resonance $|1^{-}(^{11}\text{Li})\rangle^*$, acting as intermediate boson –together with the low-lying quadrupole mode of the core ¹¹Li, central in dressing the $s_{1/2}$ and $p_{1/2}$ single-particle states leading to parity inversion– provides an important part of the binding energy of the two halo neutrons. Within this scenario, and to a good approximation, the wave-function of the ground state of ¹¹Li is [6, 7, 8]:

$$|gs(^{11}Li)\rangle = 0.55|p_{1/2}^2\rangle + 0.45|s_{1/2}^2\rangle + 0.7|(s_{1/2}, p_{1/2})_{1^-} \otimes 1^-; 0^+\rangle + 0.1|(s_{1/2}, d_{5/2})_{2^+} \otimes 2^+; 0\rangle,$$
(1)

explicitly showing the importance of the E1 phonon[†].

While much have been learned concerning the low-lying E1-resonance of ¹¹Li through Coulomb-excitation and inelastic scattering experiments, key questions regarding its microscopic structure remain open. Among them one can mention:

- Viewed it as a two-quasiparticle state, which is the relative role played by particle-hole (ph), particle-particle (pp) and hole-hole (hh) components?
- To which extent can this dipole mode be viewed as a vibration of the halo neutrons against the nucleons of the core moving in phase and, within this context, how important is the contribution of the associated ground state correlations to the neutron (halo) skin of ¹¹Li?
- How important the role of vorticity is in the velocity field of this E1 mode?

^{*}In what follows it is assumed that the odd $p_{3/2}$ proton acts as a spectator. For this reason and for the sake of simplicity, it is omitted when writing the different states.

[†]The soundness of this description has been confirmed by the ${}^{1}H({}^{11}Li, {}^{9}Li){}^{3}H$ reaction [8], the 1⁻ component of Eq. (1) being essential to account, through normalization, for the absolute differential cross section of the ground state and the 2⁺ one for the direct population of the first excited state of ${}^{9}Li$, $|{}^{9}Li(1/2^{-}; 2.69 \text{MeV})\rangle$.

These questions can, to a large extent, be answered by probing the soft E1-mode through the reaction ${}^{9}\text{Li}(t,p)^{11}\text{Li}(1^{-})$, and compare the measured differential cross-sections with state of the art calculations [9, 10]. This is in keeping with the fact that ground state correlations of mainly (pp)-type contribute constructively coherent to the absolute twoneutron transfer cross section, the opposite being true in the case of mainly (ph)-modes. As expected, ground state correlations of (pp)-, (hh)- and (ph)- modes behave in an opposite fashion regarding their contribution to the absolute inelastic differential cross sections. Within this context, enhancements close to an order of magnitude are expected using correlated wavefunctions to describe the states associated with the soft dipole mode of ${}^{11}\text{Li}$ [11, 10] with respect to a single-particle $s_{1/2}p_{1/2}(1^{-})$ state. Further insight into these questions can be obtained by assessing the eventual role that two step inelastic processes, namely ${}^{9}\text{Li}(t,p)^{11}\text{Li}(\text{gs})(p,p')^{11}\text{Li}(1^{-})$ may play in the population of the dipole mode.

In summary, the two correlated halo neutrons in the ground state of ¹¹Li can be viewed as a nuclear realization of a Cooper pair. This nucleus has proved to be a unique system to discover unexpected features and correlations of both structure and reaction aspects of pairing correlations. Here, taking advantage of the unique capabilties of HIE-ISOLDE and the ISOLDE Solenoidal Spectrometer (ISS), we propose to study the ⁹Li(t, p)¹¹Li reaction, with particular interest in the population of the $|1^{-}(^{11}\text{Li})\rangle$ state. The experiment will, in an important way, shed light on the basic features characterizing the low-energy dipole response of the system, which appears to be a critical ingredient to bind ¹¹Li, as clearly seen in Eq. 1.

2 Experimental details

We will use the ISS to analyze protons from the (t,p) reaction on ⁹Li at 10 MeV/u. The specific details for the proposed measurement are discussed in the following sections.

Beam energy—A beam energy of 10 MeV/u has been chosen as a compromise between cross section and kinematics. The ${}^{9}\text{Li}(t,p)^{11}\text{Li}$ reaction has, somewhat counter intuitively, a large negative Q value of -8.1 MeV. This has the effect of lowering the energy of the outgoing protons compared to less negative Q values. At 10 MeV/u, protons populating states/resonances up to approximately 5 MeV in excitation energy will be detected by the Si array. The energies of the outgoing protons will greater than 500 keV for $10^{\circ} \leq \theta_{\text{c.m.}} \leq$ 40° . At this incident beam energy, the angular distributions for L = 0 and 1 transfer are distinctive.

ISOLDE Solenoidal Spectrometer status—The ISS was developed by a UK-European collaboration. Two experiments were completed at the end of 2018, just prior to the LS2. These experiments, a study of the ${}^{28}Mg(d,p){}^{29}Mg$ reaction at 9.4 MeV/u [12] and of the ${}^{206}Hg(d,p){}^{207}Hg$ reaction at 7.4 MeV/u [13], emphatically demonstrated the capabilities of the ISS for the measurement of transfer reactions in inverse kinematics with outstanding resolution. Prior to the next campaign of measurements, a new Si array will installed, providing ideal solid angle coverage.

Reaction kinematics and experimental setup—The Si array, which surrounds the beam axis, is upstream of the target inside the solenoid. Simulations, shown in Fig. 1, suggest that an optimal set up will use a field of 1.6 T, with the Si array covering a distance of approximately $-600 < \Delta z < -100$ mm from the target. The characteristic kinematic lines are shown in Fig. 1 in terms of proton energy versus Δz , the distance between the target and the point at which the emitted proton intercepts the array. These simulations assume a FWHM Q-value resolution of 150 keV for the ground state and ~500 keV for the L = 1 excitation. Recoil detection will be achieved by means of annular silicon detectors in a telescope arrangement to determine energy loss and residual energy. These detectors impose an cut of $\theta_{c.m.} > 10^{\circ}$, due to the inner diameter of the annular detectors. We note that the reactions to unbound states will be clearly separated in the recoil detector, appearing as ⁹Li as opposed to ¹¹Li. At these energies the (t,d) reaction is not clearly observed, with deuterons from just a small portion of the forward center-of-mass angles likely to hit the Si array. With recoil detection, the outgoing spectrum will be essentially background free and unambiguous.

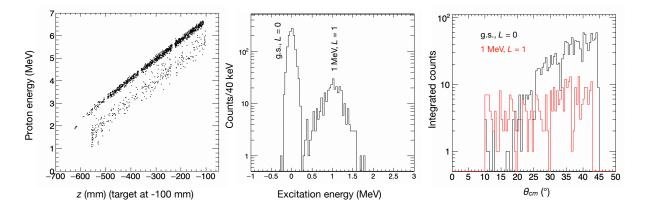


Figure 1: Simulations of the outgoing proton energy as a function of position along the beam axis (left) and the resulting excitation energy spectrum (middle). The integrated counts across the Si array for each state are shown in right-hand panel. All spectra are constrained by the condition of $\theta_{\rm c.m.} > 10^{\circ}$, imposed by the inner diameter of the recoil detector. The L = 1 excitation is simulated to have a FWHM of ~500 keV. A solenoidal field of 1.6 T was assumed, and a beam energy of 10 MeV/u.

The tritium target—We will use a tritium tritide target with an effective thickness of ~45 μ g/cm² in ~450 μ g/cm² of titanium. This amounts to about 1 Ci of tritium. This will have similar properties to the target used in the T-REX and Miniball study of ³⁰Mg(t,p)³²Mg [15] and the previous study of the ⁹Li(t,p)¹¹Li reaction at ISOLDE (IS561) [16]. The same type of target is used routinely in the HELIOS spectrometer, with similar beams (see Fig. 2). The tritium content of the target is monitored throughout the experiment using an annular monitor detector downstream of the target, and upstream of the recoil detector. The elastically scattered tritons are thus monitored continuously. The

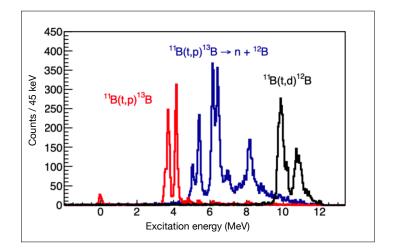


Figure 2: The outgoing proton spectrum following the ${}^{11}B(t,p){}^{13}B$ and ${}^{11}B(t,d){}^{12}B$ reactions recorded simultaneously in inverse kinematics at 8.6 MeV/u [14] using the HELIOS solenoidal spectrometer at Argonne National Laboratory. For this experiment, a tritium-implanted titanium target of thickness ~450 $\mu g/cm^2$ (~45 $\mu g/cm^2$ of tritium) was used —the same thickness as proposed here for the measurement of the (t,p) reaction on the isotone of ${}^{11}B$, ${}^{9}Li$. A *Q*-value resolution of 150 keV FWHM was achieved.

activity of the target complies with CERN Specification N⁰ 4229RP20070405-GD-00 [17].

Rate estimates and shifts required—Rate estimates are based on the assumption of an angular coverage of $10^{\circ} \leq \theta_{\text{c.m.}} \leq 30^{\circ}$, with a 70% efficiency in the azimuthal angle and 94% efficiency in the theta angle. The evaluation of the absolute value of the 2n transfer reaction implies the consideration of simultaneous and successive transfer contributions, along with non-orthogonality corrections. The cross section, calculated following Ref. [9], is about 0.1 mb at 10 MeV/u, around a factor of 4 lower than to the ground state. Assuming a beam intensity of ~1 MHz from the ISOLDE yield data base, and 45 μ g/cm² of ³H, then approximately 300 counts can be accumulated in the L = 1excitation in a 5-day (15-shifts) run. The spectra in Fig. 1, which are normalized to this value, demonstrate that this is sufficient to observe and determine the L value of this excitation.

3 Summary

We request 15 shifts of beam time to study the (t,p) reaction on ⁹Li at 10 MeV/u in inverse kinematics, with the main goal of populating the low-lying *E*1-resonance of ¹¹Li. We will use the ISOLDE solenoidal spectrometer to analyze the outgoing protons. In addition, recoil detection will be required to reject protons from reactions on titanium and other reaction channels. The number of shifts requested is based on a beam of 1 MHz of ⁹Li on target. We will use a titanium tritide target with an effective tritium thickness of ~45 μ g/cm². It is expected that a *Q*-value resolution of 150 keV will be achieved, though the states are expected to be broader than this.

Appendix 1

DESCRIPTION OF THE PROPOSED EXPERIMENT

The experimental setup comprises: The ISOLDE Solenoidal Spectrometer

Part of the	Availability	Design and manufacturing
ISOLDE Solenoidal Spectrometer	\boxtimes Existing	\boxtimes To be used without any modification
		\Box To be modified
	\Box New	\Box Standard equipment supplied by a manufacturer
		\Box CERN/collaboration responsible for the design
		and/or manufacturing

HAZARDS GENERATED BY THE EXPERIMENT (if using fixed installation:) Hazards named in the document relevant for the fixed ISS installation.

Additional hazards:

Hazards						
Thermodynamic and	Thermodynamic and fluidic					
Pressure						
Vacuum						
Temperature						
Heat transfer						
Thermal properties of						
materials						
Cryogenic fluid						
Electrical and electro	magnetic					
Electricity						
Static electricity						
Magnetic field	1.75 T					
Batteries						
Capacitors						
Ionizing radiation						
Target material	Deuterated polyethy-	Tritium tritide (45				
	lene (50-400 $\mu {\rm g/cm^2})$	$\mu g/cm^2$ tritium)				
Beam particle type	⁹ Li					
Beam intensity	1×10^{6}					
Beam energy	10 MeV/u					
Cooling liquids						
Gases						
Calibration sources:	\boxtimes					
• Open source	$\boxtimes (\alpha \text{ calibrations source} \\ 4236 \text{RP})$					
• Sealed source						

T .	14801 2390 2414	
• Isotope	148 Gd, 239 Pu, 241 Am,	
	²⁴⁴ Cm	
• Activity	1 kBq, 1 kBq, 1 kBq,	
	1 kBq = 4 kBq	
Use of activated mate-		
rial:		
• Description		
• Dose rate on contact		
and in 10 cm distance		
• Isotope		
• Activity		
Non-ionizing radiatio	n	
Laser		
UV light		
Microwaves (300MHz-		
30 GHz)		
Radiofrequency (1-300		
MHz)		
Chemical		1
Toxic		
Harmful		
CMR (carcinogens,		
mutagens and sub-		
stances toxic to repro-		
duction)		
Corrosive		
Irritant		
Flammable		
Oxidizing		
Explosiveness		
Asphyxiant		
Dangerous for the envi-		
ronment		
Mechanical		
Physical impact or me-		
chanical energy (mov-		
ing parts)		
Mechanical properties		
(Sharp, rough, slip-		
pery)		
Vibration		
Vibration Vehicles and Means of		
Transport Noise		
Frequency		
Intensity		

Physical				
Confined spaces				
High workplaces				
Access to high work-				
places				
Obstructions in pas-				
sageways				
Manual handling				
Poor ergonomics				

Hazard identification:

Average electrical power requirements (excluding fixed ISOLDE-installation mentioned above): N/A

References

- T. Nakamura, A. M. Vinodkumar, T. Sugimoto, N. Aoi, H. Baba, D. Bazin, N. Fukuda, T. Gomi, H. Hasegawa, N. Imai, M. Ishihara, T. Kobayashi, Y. Kondo, T. Kubo, M. Miura, T. Motobayashi, H. Otsu, A. Saito, H. Sakurai, S. Shimoura, K. Watanabe, Y. X. Watanabe, T. Yakushiji, Y. Yanagisawa, and K. Yoneda. Observation of strong low-lying e1 strength in the two-neutron halo nucleus ¹¹Li. Phys. Rev. Lett., 96:252502, Jun 2006.
- [2] T. Aumann, D. Aleksandrov, L. Axelsson, T. Baumann, M. J. G. Borge, L. V. Chulkov, J. Cub, W. Dostal, B. Eberlein, Th. W. Elze, H. Emling, H. Geissel, V. Z. Goldberg, M. Golovkov, A. Grünschloß, M. Hellström, K. Hencken, J. Holeczek, R. Holzmann, B. Jonson, A. A. Korshenninikov, J. V. Kratz, G. Kraus, R. Kulessa, Y. Leifels, A. Leistenschneider, T. Leth, I. Mukha, G. Münzenberg, F. Nickel, T. Nilsson, G. Nyman, B. Petersen, M. Pfützner, A. Richter, K. Riisager, C. Scheidenberger, G. Schrieder, W. Schwab, H. Simon, M. H. Smedberg, M. Steiner, J. Stroth, A. Surowiec, T. Suzuki, O. Tengblad, and M. V. Zhukov. Continuum excitations in ⁶He. *Phys. Rev. C*, 59:1252–1262, Mar 1999.
- [3] J. Tanaka, R. Kanungo, M. Alcorta, N. Aoi, H. Bidaman, C. Burbadge, G. Christian, S. Cruz, B. Davids, A. Diaz Varela, J. Even, G. Hackman, M.N. Harakeh, J. Henderson, S. Ishimoto, S. Kaur, M. Keefe, R. Krücken, K.G. Leach, J. Lighthall, E. Padilla Rodal, J.S. Randhawa, P. Ruotsalainen, A. Sanetullaev, J.K. Smith, O. Workman, and I. Tanihata. Halo-induced large enhancement of soft dipole excitation of 11li observed via proton inelastic scattering. *Physics Letters B*, 774:268 – 272, 2017.
- [4] R. Kanungo, A. Sanetullaev, J. Tanaka, S. Ishimoto, G. Hagen, T. Myo, T. Suzuki, C. Andreoiu, P. Bender, A. A. Chen, B. Davids, J. Fallis, J. P. Fortin, N. Galinski, A. T. Gallant, P. E. Garrett, G. Hackman, B. Hadinia, G. Jansen, M. Keefe,

R. Krücken, J. Lighthall, E. McNeice, D. Miller, T. Otsuka, J. Purcell, J. S. Randhawa, T. Roger, A. Rojas, H. Savajols, A. Shotter, I. Tanihata, I. J. Thompson, C. Unsworth, P. Voss, and Z. Wang. Evidence of soft dipole resonance in ¹¹Li with isoscalar character. *Phys. Rev. Lett.*, 114:192502, May 2015.

- [5] Aumann, Thomas. Low-energy dipole response of exotic nuclei. *Eur. Phys. J. A*, 55(12):234, 2019.
- [6] F. Barranco, P.F. Bortignon, R.A. Broglia, G. Colò, and E. Vigezzi. The halo of the exotic nucleus ¹¹Li: a single cooper pair. *Eur. Phys. J. A*, 11(4):385–392, 2001.
- [7] G. Potel, F. Barranco, E. Vigezzi, and R. A. Broglia. Evidence for phonon mediated pairing interaction in the halo of the nucleus ¹¹Li. *Phys. Rev. Lett.*, 105:172502, Oct 2010.
- [8] I. Tanihata, M. Alcorta, D. Bandyopadhyay, R. Bieri, L. Buchmann, B. Davids, N. Galinski, D. Howell, W. Mills, S. Mythili, R. Openshaw, E. Padilla-Rodal, G. Ruprecht, G. Sheffer, A. C. Shotter, M. Trinczek, P. Walden, H. Savajols, T. Roger, M. Caamano, W. Mittig, P. Roussel-Chomaz, R. Kanungo, A. Gallant, M. Notani, G. Savard, and I. J. Thompson. Measurement of the two-halo neutron transfer reaction ¹H(¹¹Li,⁹Li)³H at 3a MeV. *Phys. Rev. Lett.*, 100:192502, May 2008.
- [9] G Potel, A Idini, F Barranco, E Vigezzi, and R A Broglia. Cooper pair transfer in nuclei. *Reports on Progress in Physics*, 76(10):106301, oct 2013.
- [10] R. A. Broglia, F. Barranco, G. Potel, and E. Vigezzi. Characterization of vorticity in pygmy resonances and soft-dipole modes with two-nucleon transfer reactions. *Eur. Phys. J. A*, 55:243, 2019.
- [11] R A Broglia, F Barranco, A Idini, G Potel, and E Vigezzi. Pygmy resonances: what's in a name? *Physica Scripta*, 94(11):114002, aug 2019.
- [12] D. K. Sharp *et al.*, to be submitted.
- [13] T. L. Tang, B. P. Kay, C. R. Hoffman, J. P. Schiffer, D. K. Sharp, L. P. Gaffney, S. J. Freeman, M. R. Mumpower, A. Arokiaraj, E. F. Baader, P. A. Butler, W. N. Catford, G. de Angelis, F. Flavigny, M. D. Gott, E. T. Gregor, J. Konki, M. Labiche, I. H. Lazarus, P. T. MacGregor, I. Martel, R. D. Page, Zs. Podolyák, O. Poleshchuk, R. Raabe, F. Recchia, J. F. Smith, S. V. Szwec, and J. Yang. First exploration of neutron shell structure below lead and beyond n = 126. Phys. Rev. Lett., 124:062502, Feb 2020.
- [14] S. A. Kuvin, private communication.
- [15] K. Wimmer, T. Kröll, R. Krücken, V. Bildstein, R. Gernhäuser, B. Bastin, N. Bree, J. Diriken, P. Van Duppen, M. Huyse, N. Patronis, P. Vermaelen, D. Voulot, J. Van de Walle, F. Wenander, L. M. Fraile, R. Chapman, B. Hadinia, R. Orlandi, J. F. Smith, R. Lutter, P. G. Thirolf, M. Labiche, A. Blazhev, M. Kalkühler, P. Reiter, M. Seidlitz, N. Warr, A. O. Macchiavelli, H. B. Jeppesen, E. Fiori, G. Georgiev, G. Schrieder, S. Das Gupta, G. Lo Bianco, S. Nardelli, J. Butterworth, J. Johansen, and K. Riisager. Discovery of the shape coexisting 0⁺ state in ³²Mg by a two neutron transfer reaction. *Phys. Rev. Lett.*, 105:252501, Dec 2010.
- [16] Experimental study of ¹⁰Li with low energy (d,p) reactions. https://pure.au.dk/ portal/files/169530708/afhandling.pdf.
- [17] Th. Otto (cern, sc-rp), Official Memorandum to ISOLDE Physics Coordinator(2007).