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Abstract

In this report three separate studies on the topic of orbit correction are presented for the
HL–LHC V1.5 layout and 15 cm β ∗ optics for protons. It is shown that the constraints put on
the error correction for the assumed machine imperfections distribution, together with the im-
plementation of the desired orbit knobs, are compatible with the available corrector strengths.
Results based on a simplified model of the present LHC orbit feedback are presented, show-
casing its efficiency in maintaining beam collisions and the inherent orbit stability expected
in LHC and in HL–LHC. Finally, necessary short-term beam position monitor stability for
adequate position-based correction of beam separation is investigated and estimated to be
under one micrometre.
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1 Introduction

This document accounts for beam orbit studies performed on the HL–LHC version 1.5
optics [1, 2]. Three complementary studies are being reported in this document. Firstly,
results from studying the orbit corrector budget will be discussed, that is, how the closed
orbit in the machine can be corrected and all orbit knobs be implemented while the or-
bit corrector usage lies within given constraints. Secondly, a simple model of the orbit
feedback system used in LHC will be used to estimate its impact on the beam orbit stabil-
ity at Interaction Points (IPs). Lastly, estimates on the necessary beam position monitor
(BPM) stability to correct adequately orbit at Interaction Point 1 and 5 (IP1 and IP5) will
be provided.

Unless otherwise stated, all studies have been performed for proton beams at 7TeV
and for the fully squeezed optics with β ∗ = 15cm in IP1 and IP5.

This document will be oriented towards results and less so towards the underlying
assumptions and technical details. For a more detailed account of the treatment, see the
corresponding Master’s thesis [3]. The analysis was conducted using a Python package
POCKPy [3], designed for closed orbit analysis of HL–LHC.

2 Orbit Corrector Budget

The objective is to implement a set of orbit knobs and to correct for closed orbit per-
turbation caused by machine errors, both of which require the use of orbit correctors.
Each orbit corrector has, by design, an upper limit on its strength, hence it makes sense
to talk of an orbit corrector budget, which enforces a constraint to be respected across
both problems. This orbit corrector budget problem will be stated, analyzed, and solved
for HL–LHC optics, version 1.5. Unless otherwise specified, computations will be per-
formed assuming the nominal collision energy of 7 TeV where the correctors are the least
effective in kicking the beam.

All analyses are based on orbit response matrices for the machine imperfections and
orbit correctors, RMe and RMc, respectively. In response matrix jargon, the set of machine
imperfections are stored in a vector eee and the set of orbit corrector strengths are stored in
a vector ccc. The problem of error correction can therefore be written as:

rrr = RMeeee+RMcccc (1)

where the closed orbit residual rrr is retrieved by finding a suitable correction ccc given the
machine imperfections eee. Similarly, the problem of implementing an orbit knob can be
stated as:

kkk = RMc
†ccc (2)

where † denotes taking a subset of rows, corresponding to the positions in the accelerator
where the closed orbit is to be set to a given value, and subset of columns, corresponding
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to the correctors that are available for implementation, and kkk encodes the requisite values
at the subset of rows.

2.1 Boundary conditions and specifications

For the investigation of the orbit corrector budget the Octant 5 was investigated, from Q25
to Q25. Because the interaction regions in Octant 1 and 5 are the main area affected by the
HL–LHC upgrade, and since they are symmetric once the horizontal and vertical planes
are exchanged, it suffices to consider one of them. In treating the error correction, element
errors are assigned to applicable elements up to Q20 on either side of IP5, assuming
uniform distributions tabulated in Table 1.

Table 1: Assumed distributions of element errors. All distributions are taken to be uniform
distributions on intervals specified by the values tabulated. The error of any given element
is taken to be independent of all other elements and errors, unless otherwise stated.

Element type Error type Uniform distribution boundaries

Dipole Relative field error ±0.002
Roll along beam axis ±0.5mrad
Horizontal misalignment ±0.5mm
Vertical misalignment ±0.5mm

Quadrupole Relative field error ±0.002
Roll along beam axis ±1mrad
Horizontal misalignment ±0.5mm
Vertical misalignment ±0.5mm

BPM Horizontal misalignment ±0.5mm
Vertical misalignment ±0.5mm

The values assumed in Table 1 are compatible with studies on previous versions of the
HL–LHC layout and optics, e.g. [4, 5]. Longitudinal misalignment of elements has been
withheld from the analysis due to its small impact on the result and the complexity of
including it in the computations with the current analytical framework. A complete and
more accurate evaluation of the expected misalignment is being carried out by the HL–
LHC Alignment Working Group. The acceptance criteria specified in [6] for the MBRD
magnets (D2) for the roll are ±2mrad, instead of ±0.5mrad specified in Table 1. This
should not have a major impact on the results discussed in this document, as such an error
can be easily compensate by order of 10mTm strength on the nearby orbit correctors.

The BPM misalignment will be strongly correlated with the misalignment of neigh-
bouring quadrupoles and dipoles to which most BPMs are mechanically attached. Based
on [7], it is possible to associate almost all BPMs with a dipole or quadrupole, and then
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proceed to posit some relations between their transverse misalignments. Table 2 shows
the mapping between BPMs and the corresponding magnetic element, based on [7]. Sub-
sequent assumptions on how misalignments are interrelated between linked elements is
discussed in Section 2.2.

Table 2: Mapping between BPM and corresponding quadrupole or dipole, based on infer-
ences from [7]. BPM elements mapping to ’NONE’ implies that the element is assumed
to be not connected to any quadrupole or dipole.

BPM Quadrupole/Dipole

BPMQSTZA.1 MQXFA.1
BPMQSTZB.A2 MQXFB.A2
BPMQSTZB.B2 MQXFB.B2
BPMQSTZB.A3 MQXFA.3
BPMQSTZB.B3 NONE
BPMQSTZB.4 MBXF.4
BPMQSTZW.4 NONE
BPMQBCZ[AB].4 MBRD.4
BPMYA.4 MQY.4
BPM(R).5 MQML.5
BPM(R).6 MQML.6
BPM(R).7 MQM.7
BPM.8 MQML.8
BPM.9 MQMC.9
BPM.10 MQML.10
BPM.(≥11) MQ.≥11

For the error correction, the following constraints are put on the residual orbit:

• Zero residual orbit at IP5.

• Zero residual orbit at the Crab Cavities (CCs), ACFGA.[AB][LR]5.B[12].

• No orbit leakage at the end of the accelerator segment (i.e. zero residual orbit and
angle at Q25), in practice enforced by setting zero orbit at Q20.

• 2*RMS residual orbit along the accelerator segment within the limits on the avail-
able aperture (see Sec. 2.1.1).

The zero orbit at IP5 is enforced because of the collisions, whereas the zero orbit at the
CCs follows from beam loading considerations of those devices [8]. To enforce the zero
orbit and angle, BPMs close to the specified element positions were corrected to zero.
If two BPMs are corrected to zero, and no source of closed orbit perturbation is situated
between them, it then follows that the perturbation between these BPMs is zero. Enforcing
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no orbit leakage at the extremities of the segment under consideration is in line with the
assumption that each octant can be treated independently.

To enforce a certain length of the orbit knobs, it was chosen to limit the allowed orbit
corrector to use by the optimisation algorithm. The knobs to be implemented, together
with the respectively allowed correctors, were:

• IP_CROSSING: Implement a crossing angle (up to±295 µrad) in the vertical plane
for both beams in IP5. Allowed correctors: every corrector from IP5 up to and
including those in Q4 on each side of IP5.

• IP_SEPARATION: Implement a separation of the beams (up to ±0.75 mm) at IP5
in the horizontal plane. Allowed correctors: every corrector up to Q4 on each side
of IP5, excluding all correctors of type MCBY.

• CC_MOVE_B1/CC_MOVE_B2: Implement an orbit at the CCs (up to ±500 µm) in
the horizontal and vertical plane, independently for each beam. Allowed correctors:
all correctors up to Q6 on each side of IP5.

• IP_OFFSET_REMOTE: Implement an offset of both beams (up to ±2 mm) in the
horizontal and vertical plane at IP5 when offsetting every quadrupole from Q4 on
the left to Q4 on the right of IP5 by±2 mm, and Q5 by±1 mm. Allowed correctors:
every corrector from Q4 to Q8 on each side of IP5, excluding all correctors of type
MCBRD.

• IP_OFFSET_CORR: Implement an offset of both beams (up to ±0.5 mm) in the
horizontal and vertical plane at IP5. Allowed correctors: all correctors up to Q8,
excluding all correctors of type MCBRD.

• LUMISCAN_B1/LUMISCAN_B2: Implement an orbit at IP5 (up to ±100 µm) in
the horizontal and vertical plane for each beam, independently. Allowed correctors:
every corrector from Q4 to Q5, on each side of IP5.

The corrector budget, i.e. how much corrector strength in Tm is allotted to each cor-
rector, is given in Table 3. The corrector strength allocated for the knob implementation
is the total strength reduced by the amount needed for orbit correction (i.e. 2 times the
RMS corrector strength needed to correct a uniform distribution of errors, see LHC [11]).

2.1.1 APERTURE

The available aperture is computed using MAD-X [12] and following the approach from [13]
where the phase advance between the TCTs and the dump kickers determines the needed
aperture around IPs. The rationale is that if a horizontal dump kicker ’misfires’, the im-
pact will be an orbit perturbation with local impact dependent on phase-advance. Using
the aperture values tabulated for different phase advances directly provides estimates on
the necessary aperture for a given dump kicker failure around the IPs.
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Table 3: Orbit corrector budget in HL–LHC. Corrector names are provided as regular
expressions [9] and corrector strength is given in units of Tm [10].

Corrector name Corrector strength limit [Tm]
MCB[HV] 1.895
MCBC[HV].9 1.895
MCBC[HV].[78] 2.8
MCBC[HV].[56] 2.1
MCBY[HV].[AB]?4 2.25
MCBRD[HV] 5.0
MCBXFA[HV].3 4.5
MCBXFB[HV].[AB]2 1.87

In the approach taken here, we use the tabulated values from [13] for the region de-
limited by
TCTPH.6[LR][15].B[12] for IP1 and IP5, and by TCTPH.4[LR][28].B[12]
at IP2 and IP8, whereas for the remaining machine circumference, a constant aperture
limit of 19.4σ is posited. As there are a total of fifteen dump kickers per beam, we take
the approach of letting the aperture limit at a given position correspond to the maximum
value across all kickers. The resulting aperture limit can be seen in Fig. 1.
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Figure 1: Aperture limit shown globally (a) and around IP5 (b). s = 0 corresponds to IP3,
and the Gray dashed vertical lines in (b) correspond to Q5.

With a lower limit on aperture, it is possible to compute the maximum allowed closed
orbit in HL–LHC using the APERTURE command in MAD-X. In practice, this is done
by scanning the added closed orbit (COR parameter in MAD-X), where the available orbit
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budget at a location is equal to the maximum closed orbit value such that the minimum
aperture is still attained. Doing this for the 15cm β ∗ round collision optics, where the
crossing knobs at IP1 and IP5 were set to ±295 µrad, results in the closed orbit limits
shown in Fig. 2. This limit on the orbit becomes the effective bound on the error cor-
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Figure 2: Maximum allowed radial closed orbit shown globally (a) and around IP5 (b)
for 15cm β ∗ round collision optics. s = 0 corresponds to IP3. Gray dashed vertical lines
correspond to Q5.

rection, where we require that the 2*RMS residual after error correction is less than the
limit provided in Fig. 2b. As regards the asymmetry between IP1 and IP5 in Fig. 2a,
it is caused by the choice of crossing plane. Since IP5 has a vertical crossing plane and
dipole apertures have a greater margin in the horizontal plane, the net result is a worsening
of maximum tolerable radial orbit distortion budget around IP5 compared to that around
IP1. This is also the motivation why the corrector budget is studied for Octant 5 and not
Octant 1: the error correction in Octant 5 has tighter orbit constraints.

2.2 Error correction

For the error correction, two methods have been implemented in POCKPy:

1. Linear correction based on a weighted pseudoinverse of the corrector response ma-
trix.

2. Constrained convex optimization.

The first method constitutes a direct approach and has been used before [5]. However, it
has the drawbacks of not being adaptable (the same mapping will be applied to the most
pathological as well as the most easily corrected machine realisations) and of lacking
functionality for mapping weights and singular value cutoffs to given constraints. Granted
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these limitations, the linear approach is still preferable as it is used in practice, and allows
for direct computation of the residual orbit and corrector strength covariance matrices.
For these reasons, the linear correction is the method that will be used in this study. More
information and use of the convex optimization are reported in [3].

2.2.1 CHOOSING A LINEAR CORRECTION

For the linear correction, the choice of parameter values is important. It is possible to
pseudoinvert the corrector response matrix, evaluated at each BPM, directly with all sin-
gular values and define it as the correction strategy. This is unfeasible in practice for the
reasons that:

1. Some BPMs have to be corrected down to zero (i.e. at the IPs and CCs).

2. Some regions of the machine may have tighter orbit constraints, and thus need to be
corrected more aggressively (e.g. the triplet areas).

3. Regions with fewer BPMs will be less favoured in the least-squares solution if they
are not weighted.

4. The smallest singular values form a basis in orbit space that is ’expensive’ to correct,
and may be dominated by numerical noise.

To address these issues we weight the BPMs in the machine and constrain the number of
singular values used. By providing additional weight to BPMs the residual orbit at these
positions is prioritized in the least-squares minimization, and if a weight is much larger
than most other weights, the result is that such a BPM will be corrected to zero where
possible. To make the parameter search a tractable problem, we limit the weights to three
cases: zero orbit, triplet and arc BPMs.

To enforce zero orbit constraints, we weight the corresponding BPMs as 1.0, and the
remaining BPMs in the arc as 10−6. The last parameters, the weight of the triplet BPMs
and the number of singular values, were determined by exploring the corresponding two-
dimensional parameter space. The process for choosing these parameters is covered in
Appendix A, with the final result being a triplet weight of 1.25× 10−6 and 47 out of 57
singular values (per plane).

An alternative approach to weighting differently the BPMs of the triplet and those
of the arc, is to perform two independent orbit corrections: one global correction over
the whole machine, one more local dedicated to each IR, and by scanning the number
of singular values for both corrections similarly to what explained in Appendix A. This
latter approach is that normally used in operation in the LHC [14], and it is expected to
be equivalent to that used in this study.
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2.2.2 ERROR CORRECTION RESULTS

For the error correction results shown here, we first consider the following three cases,
where the distributions involved are those of Table 1:

1. Only BPM errors are present.

2. Only dipole and quadrupole errors are present.

3. BPM, dipole, and quadrupole errors are present.

In the third case, we make the assumption that BPMs attached to any other element (as per
Table 2) share misalignment with that element. BPMs that are not attached to any other
element have a misalignment that is independent of all other misalignments. The first
case reveals the impact of BPMs error, independently from any actual source of magnetic
error, i.e. it shows the residual orbit and corrector strength usage just due to attempting
to correct to zero a false non-zero orbit. The second case considers only misalignments
of the magnetic elements, assuming to have perfect BPMs perfectly aligned on the ideal
orbit. The fact that most BPMs are mechanically linked to a nearby magnet (see Table 2)
introduces a fundamental correlation between part of the BPM error and magnetic element
misalignments, which is modelled by the third case. The most complete and probably
more realistic scenario is a combination of those three cases. Assuming those cases are
independent from each other, the RMS residual orbit and corrector usage can then be
computed by opportune scaling and adding in quadrature of the single effects.

Correcting for these three cases leads to the arc residual orbits shown in Fig. 3.
In the arc, the error correction evidently allows for a great margin with respect to the

constraints on orbit. The same result is shown for the triplet in Fig. 4. Here the orbit
is, while permissible, greater than expected, and strongly affected by the BPM errors.
The underlying reason for the spike in the residual orbit entering the triplet can be traced
to the zero-orbit constraint at the IP. In the current formulation of the error correction,
we correct to the center of the BPMs next to the IP, but granted that these positions are
perturbed away from the ideal orbit, correcting them down to zero will not necessarily be
attractive.

The correction strategy must thus be modified to account for this added complexity.
Here we consider the two following alternatives:

1. We do not focus on correcting at the IP, i.e. the closest BPMs have equal weights as
every other BPM in the triplet.

2. We assume that the BPM error for the closest BPMs to the IP is zero, and we still
correct there with high weight.

The first of these two options is intuitive: correcting for the IP caused the orbit to explode,
therefore not correcting at the IP could be an interesting alternative. Indeed, this is also the
strategy that is typically adopted in the LHC for the first steering in the Interaction Region
(IR), while the problem of finding collision is addressed at a second stage, independently
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Figure 3: Residual orbit in the right-hand side arc shown for Beam 1, evaluated at all
dipoles and quadrupoles after applying the linear correction. Each line represents a dif-
ferent scenario, i.e. assuming that only BPM errors are present (green), only quadrupole
and dipole errors (orange) and dipole and quadrupole errors fully correlated with BPM
(blue). The gray dashed vertical lines correspond to the position of Q7 to Q17.

from the bare orbit correction [14]. The second variant follows from the assumption that,
with experience, one will be able to find the misalignment of the BPMs next to the IP
with respect to the ideal orbit passing by the ideal IP. This comes out the same as saying,
in this framework of analysis, that these BPMs have no alignment error.
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Figure 4: Horizontal residual orbit in the triplet shown for Beam 1, evaluated at all dipoles
and quadrupoles after applying the linear correction. Each line represents a different
scenario, i.e. assuming that only BPM errors are present (green), only quadrupole and
dipole errors (orange) and dipole and quadrupole errors fully correlated with BPM (blue).
The gray dashed vertical lines correspond to Q1 to Q6 on each side of the IP, and the
thicker blue dashed lines correspond to the CCs.

Considering the most realistic case of having all quadrupoles and dipoles error, and
BPMs attached to the nearby magnet (as per Table 2), the result of these two variants
compared to the initial scenario are shown in Fig. 5. As expected, assuming to know the
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Figure 5: Horizontal residual orbit in the triplet shown for Beam 1, evaluated at all dipoles
and quadrupoles after applying three different variations of the linear correction. Each line
represents a different strategy for correcting at the BPMs next to the IP, i.e. forcing the
beam going through the center of those BPMs, even if they are misaligned with respect
to the ideal orbit (blue), not forcing the beam to go through the center of those BPMs
(orange) and assuming to know and forcing the ideal target at those BPMS (green). The
gray dashed vertical lines correspond to Q1 to Q4 on each side of the IP, and the thicker
blue dashed lines correspond to the CCs.

alignment information of the IP BPMs leads to the best orbit.
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The corrector strength used to achieve the correction is showcased in Fig. 6. The
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Figure 6: Corrector strength usage shown for correctors on the right-hand side of the IP
when the three different variations of the linear correction strategy are employed.

result of the corrector usage matches our expectations. If we insist on correcting to the
center of the IP BPMs, ignoring their alignment, then we are almost surely attempting to
implement a nonphysical orbit and we will use additional corrector strength to this end.
Not enforcing zero orbit at the IP is, as expected, a cheaper option, and enforcing zero
orbit at the IP BPMs where they are static lies in between the other two cases.

It should be noted that the orbit in the CCs shown in Fig. 5 is not necessarily desir-
able. So far, to minimize the orbit at the CCs, the surrounding BPMs are corrected to
zero. However, similarly to the case of the IP, these BPMs are assumed to move and
therefore correcting them to zero will necessarily imply a non-zero orbit at the cavities.
Alternatively, we can assume to have these BPMs and CCs to be on the ideal reference
orbit, i.e. they are treated as static. The residual orbit resulting from combining this setup
with static IP BPMs is shown in Fig. 7. Knowing the alignment of the BPMs next to the
CCs improves the residual orbit at the CCs considerably. The impact of this approach
on the corrector budget usage is shown in Fig. 8. As for the case of the IP, the residual
orbit between Q3 and Q6, as measured with respect to the ideal orbit, is driven to a large
extent by an excessive corrector strength usage from forcing the orbit through the center
of the BPMs next to the CCs in case they are misaligned. Unlike the correction of the
IP, where we assume that the alignment of the adjacent BPMs will be known at some
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Figure 7: Horizontal residual orbit for Beam 1, evaluated at all dipoles, quadrupoles and
CCs, assuming either that the BPMs next to the CCs are static on the ideal reference or
moving together with the associated magnet. The gray dashed vertical lines correspond
to Q1 to Q10 on each side of the IP, and the thicker blue dashed lines correspond to the
CCs.

point, correcting for the orbit at the CCs is not a settled question, as the CC themselves
could be used as quasi-BPM (measuring the beam-induced Radio Frequency power) and
they could be remotely aligned around the beam. Therefore, for the remaining studies we
keep the pessimistic scenario of “Moving CC BPMs” in Figs 7 and 8. Naturally, should
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Figure 8: Corrector strength usage shown for correctors on the right-hand side of the IP
when the BPMs next to the CCs are assumed either static or moving.

the “Static CC BPMs” scenario be the most realistic one, the corrector usage would drop
considerably for the correctors in Q4 to Q6, which would allow for greater margins in the
corrector budget and a crossing knob with less orbit in the CCs.

Summarizing, for subsequent studies we make the assumption that IP BPM alignment
information is available, but not for the CC BPMs, resulting in the expected corrector
strength usage shown in Fig. 8 for moving CCs.

2.3 Knob implementation

The implementation of IP_CROSSING was retrieved from the v1.5 round optics (choos-
ing the crossing knob to be a 80%/20% combination of the “long” and “short” versions
defined in the MAD-X model [2]), and the remaining knobs were implemented using the
convex optimizer in POCKPy. The optimizer was run with the goal of minimizing the
L2-norm of the total corrector usage, with increased weights on the MCBY correctors, re-
sulting in Fig. 9. As the figures demonstrate, all knobs can be implemented within the
provided bounds on corrector strength. The corresponding orbits of all the implemented
knobs can be seen in Appendix C, but the crossing knob in particular can be seen in
Fig. 10. The crossing knob used, achieves a beam separation at the CCs which is less than
1mm, and achieves a beam separation in the triplet which is above 12σ .
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Figure 9: Bar plot of the corrector strength used for implementing all knobs and a 2*RMS
error correction. Red triangles represent the strength limit for each corrector. Shown for
all correctors up to Q14 on the right-hand side of IP5.

Detailed numerical tables summarising the corrector budget used by knobs and resid-
ual orbit are reported in Appendix B.

2.4 Corrector failure scenarios

In this section we will investigate whether individual orbit corrector failures still result
in an operable machine. The process for assessing this will proceed as follows: remove
one orbit corrector at the time and verify that the orbit corrector budget still holds. This
provides an estimate of how dispensable each corrector is.

As a first step, each corrector was withheld for the error correction and a linear error
correction was performed with the same scaling, except that the withheld corrector was
weighted as zero (thus not being used in the correction). For this correction, it was as-
sumed that the BPMs closest to the IP were static and corrected down to zero, while the
BPMs closest to the CCs were supposed to move together with their associated magnet.
Only the correctors up to Q18 were tested. The resulting 2*RMS residual for Beam 1 in
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Figure 10: Orbit of the IP_CROSSING knob. Gray dashed vertical lines show the posi-
tion of the CCs and D1, and gray horizontal lines correspond to 6σ .

the vertical plane is shown in Fig. 11.
For the correctors showcased in the given beam and plane, it is only the removal of

MCBXFAV.3L5 that causes the residual orbit to violate the aperture constraints. The
same analysis conducted for the other beam and planes resulted in that the Q3 correctors
could not be removed without violating the aperture constraints. In essence, from a strictly
error correction point of view, the Q3 correctors are the only essential ones.

No detailed study was performed in case of loss of more correctors at the same time.
In first approximation, one can assume that loosing two correctors simultaneously (with
exception of Q3 correctors) is tolerated if the correctors are “far enough” from each other
or they act on orthogonal planes.

To further investigate the robustness of the orbit correction, the previously defined
knobs were subsequently implemented by the same routine as before: reserving the
2*RMS corrector strength employed in the error correction, then using the remaining
corrector strength to implement the required knobs. Before discussing the results of this
endeavour, it should be stated that this is an artificial approach, in the sense that the orbit
knobs as defined presume all correctors being available. If one corrector is removed, one
or more orbit knobs may become impossible to implement within the constraints on cor-
rector usage. If such a corrector were to fail, in practice the orbit knobs would have to be
redefined. A second comment to these results is that, while knobs were implemented as
advertised, the orbits themselves were not checked in detail. In practice, even provided
a guarantee that an orbit knob functions as defined, the overall orbit shape can still be
undesirable to implement in the machine. Bearing these caveats in mind, the corrector
failures that resulted in unfeasible knob implementations were: all MCBRD correctors, in
Q4 MCBY[HV].4[LR]5.B[12], and all Q3 correctors.
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Figure 11: Plot of 2*RMS residual orbits, for Beam 1 in vertical plane, when removing
a single corrector, where the upper black curve corresponds to the maximum tolerable
radial orbit distortion in the machine as reported in Section 2.1.1. Each curve of a different
color corresponds to the residual orbit achieved without the given corrector. The orbit is
provided at the actual transverse center of all quadrupoles and dipoles.

2.4.1 Q9 CORRECTOR FAILURES

In practice, the correctors that deserve particular attention are those in Q9, as these cor-
rectors, in Octant 1 and 5, will have absorbed enough radiation dose to run a risk of failure
in Run 4 [15]. For this reason, the failure of the Q9 corrector is here taken into account
separately, beginning with the residual orbit shown in Fig. 12.

The increment in orbit from losing the Q9 correctors is still well-within the constraints
on orbit in the arc. The updated corrector budget plot is shown in Fig. 13. As no orbit knob
uses the Q9 correctors, the only effect of their failure is shifting around corrector strength
to implement the new error correction. This results in additional corrector strength usage
for the Q5 and Q7 correctors, but it constitutes such a small increment that the previous
knob implementation does not need to be recomputed.
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with respect to the center of quadrupoles and dipoles, and the three vertical lines in the
plot correspond to Q7, Q9 and Q11.

2.5 Flat optics

Using the same aperture limit as that of Fig. 1, the maximum tolerable radial orbit distor-
tion for the alternative “flat optics” [16] is reported in Fig. 14. The maximum tolerable
radial orbit distortion shown here is worse than that of the round optics, due to the larger
beam size. It is worth pointing out that the region considered for the corrector budget
(up to Q25 on each side of IP5) does not differ noticeably between the round and flat op-
tics, with the only notable difference being an exchange of crossing planes between IP1
and IP5 (IP5 has a horizontal crossing plane in the flat optics). Because the quadrupole
strengths are the same for the two optics, the error correction yields the same results for
both optics, and by symmetry the corrector budget can be extended from the round optics
to the flat optics. Importantly, even though the flat optics yield a degradation of maximum
tolerable radial orbit distortion in the machine below the 2mm threshold set in [13], the
2*RMS error correction provides an orbit (see for example Fig. 13) which still allows for
a considerable margin with respect to the closed orbit available in the machine (Fig. 14).

2.6 Conclusion

Under the given assumptions, the orbit corrector budget holds. There is a sufficient
amount of orbit corrector strength allotted for error correction and implementing the
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Figure 13: Bar plot of the corrector strength used for implementing all knobs and a
2*RMS error correction where no Q9 correctors were used. Red triangles represent the
strength limit for each corrector. Shown for all correctors up to Q14 on the right-hand
side of IP5.

listed knobs for the HL–LHC optics version 1.5. In all cases investigated for the error
correction, even the most pessimistic one, the residual orbit with respect to the center of
the elements is well-within the maximum tolerable radial orbit distortion as provided by
aperture computations. The orbit corrector budget is also quite robust in the sense that
individual corrector failures do not in general result in a machine violating the budget,
with the exception of correctors in Q3 and Q4. In particular, the case of failure of the
most irradiated Q9 correctors would result in an error correction with good margins and
without affecting implementation of the various orbit knobs.
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Figure 14: Maximum allowed closed orbit for the flat optics shown globally (a) and
around IP5 (b). s = 0 corresponds to IP3. Gray dashed vertical lines correspond to Q5.
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3 Orbit Feedback System and Orbit Stability at IPs

Currently in LHC there is a feedback system employed for stabilizing the closed orbit
during operation, referred to as the Orbit Feedback System (OFB) [17, 18]. It is run
throughout the different phases of the machine cycle, from beam injection to dump at the
end of collisions. Here the focus will be on the phase of Stable Beams, when beams are
in collision.

During Stable Beams the global orbit is not a concern: the order of the usual closed
orbit perturbation accrued over Stable Beams is too small to cause any beam loss. Excep-
tions to this are abrupt events (e.g. great ground motion, or equipment faults), but they are
outliers and not the topic of this analysis. The issue is instead that the typical perturbation
causes the beams to drift away from each other at the collision points, which could lead
to luminosity loss. The object of analysis is therefore not the usual global orbit, but rather
the beam separation at the collision points.

HL–LHC will also profit of the same orbit feedback system for closed orbit stabiliza-
tion, which will be eventually consolidated [19]. As a first approximation of the feedback
system in HL–LHC, we will transfer the OFB as defined in LHC to HL–LHC and com-
pare the two implementations. This allows for some insight to be gained into how the
OFB impacts luminosity and how this can be expected to scale for HL–LHC.

3.1 Model assumptions

The orbit feedback was modeled as a simple linear correction using the available orbit
correctors [3]. The signal yyy measured at BPMs can be expressed as:

yyy = Beee+www , (3)

where eee represents machine errors that, under the effect of a transfer matrix B, induce
a closed orbit perturbation and www is noise added to the signal, i.e. BPM reading errors.
Assuming a corrector response matrix, A, the corrector strength used for a given signal
can be written as

ccc = pinv(A)yyy = pinv(A)Beee+pinv(A)www , (4)

where pinv(A) is the “pseudoinverse” of A which is computed by using the Singular
Value Decomposition (SVD) of A. Depending on the number of singular values retained
for the inversion, the needed corrector strength and the actual residual orbit after correc-
tion can vary drastically. The following data and assumptions were then used:

1. The LHC OFB does not use any corrector that is shared between the beams [20].
For HL–LHC, all shared correctors are assumed to be included in the OFB.

2. The OFB uses 40 out of 520 singular values (per transverse plane) for the pseudoin-
verse of the corrector response matrix [20].
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3. All closed orbit perturbation taking place during collision is, or can be treated as
being, caused by transverse movement of quadrupoles.

4. All transverse quadrupole movement is Independent and Identically Distributed (I.I.D.)
in each dimension, which is what typically assumed for ground motion studies, e.g.
[21].

5. All BPM reading errors are I.I.D.. in each dimension, assuming that those errors are
dominated by the BPM signal acquisition chain.

6. As reference values, σquad = 0.3 µm is taken as the RMS quadrupole movement
during a typical collision time of 12 hours and σBPM = 20 µm as the RMS BPM
error for one reading [22].

7. LHC optics uses: β ∗ = 30 cm, εN = 2.5 µm and E = 6.5 TeV.
8. HL–LHC optics uses: β ∗ = 15 cm, εN = 2.5 µm and E = 7 TeV.

Under these assumptions, the RMS beam separation at an IP can be shown to satisfy
the following equation [3]:

σd =
√
(a×σquad)2 +(b×σBPM)2 , (5)

where a and b are functions of the response matrices and the number of singular values
employed in the pseudoinverse. For the residual orbit at an arbitrary point, there exists an
analogous equation where a and b are functions of longitudinal position. Equivalently, if
the orbit is not corrected there exists a linear relation as per:

σd = c×σquad , (6)

where c is a function of only the error response matrix.

3.2 Global residual orbit

Given the previous assumptions, an example result for the residual orbit in the full ma-
chine can be seen in Fig. 15 where LHC and HL–LHC are compared when using 40
and 400 singular values for the linear correction strategy in the OFB. The plots shown in
Fig. 15 are normalized in units of beam size. For HL–LHC, the β -functions around IP1
and IP5 are greater than for LHC, which has the effect that quadrupole misalignments in
these regions have a greater impact on the closed orbit at every other position, including
the IPs. In addition, the same values of the normalized emittance for the two machines
and the slightly different beam energy further contribute to the difference between the
machines. Overall, the results shown in 15a are expected: there is a worsening of the
orbit at IP1 and IP5 where the beam size has been shrunk in HL–LHC. To quantify why
the beams are not corrected more aggressively, see Fig. 15b where the same scenario is
plotted but for 400 singular values. In essence, the errors in the BPM readings propagate
to the orbit, worsening it substantially, unless the number of singular values is adequately
constrained for Stable Beams.
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Figure 15: RMS horizontal residual orbit (with respect to the ideal reference) for Beam 1
at the end of collision using the OFB, measured in beam size and compared between
LHC and HL–LHC for σquad = 0.3 µm, σBPM = 20 µm for 40 (a), and 400 (b) singular
values used. S = 0 corresponds to IP5 and the leftmost peak corresponds to IP1 (note the
difference in vertical scale).

3.3 Beam separation at IP1 and IP5

Figure 16 shows the beam separation at IP1 and IP5 in LHC for 40 singular values, and
different values of the RMS quadrupole movement and BPM noise using Eq. (5). Note
that even for perfect BPMs, the OFB with 40 singular values is only able to reduce the
beam separation by roughly 20% for a given magnitude of the quadrupole error. This is
a direct result of the correction strategy being global and unweighted. If the OFB is to
have the ability to considerably correct for beam separation, then it needs to weight the
corrector response matrix and possibly change the number of singular values. In practice
however, this added capability to correct for beam separation would necessarily propagate
more BPM errors, and so the real bottleneck is the level of noise in the BPMs and not so
much the choice of correction strategy.

It should be emphasized that the x-axes in Fig. 16 should not be directly associated
with time. Even if the assumption is made that the RMS quadrupole error increases
linearly with time (contrary to e.g. a Brownian motion where it is proportional to the
square-root of time), it would be a stretch to claim any continuity. Rather, the graphs
should be seen as scans over possible quadrupole errors by the end of collision and what
the respective impact on beam separation would be.

For a given beam orbit separation d at the IP, the relative luminosity loss (L/L0) is
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Figure 16: RMS beam separation measured in beam size at IP1 (a) and IP5 (b) using the
OFB with 40 singular values, plotted versus σquad for several values of σBPM.

given by Eq. (7):
L
L0

= 1− exp
(
− d2

4σ2

)
. (7)

Therefore, a beam separation of 0.1 beam σ corresponds to about 0.25% luminosity loss
and 0.2 beam σ corresponds to about 1% luminosity loss. To be noted in Fig. 16 that
with the present OFB running and an assumed BPM noise of the order of 20−50µm,
then one would loose of the order of 0.25% luminosity even if the quadrupoles would
not move. In reality, the OFB is typically run with a gain much lower than one1. This is
equivalent to averaging over several orbit acquisitions, effectively reducing the BPM noise
and therefore reducing the minimum achievable RMS beam separation with OFB on in
Fig. 16. Additionally, other effects than orbit could play a role in the 0.1% luminosity-
loss/-noise level, therefore the contribution of the OFB to luminosity loss is probably
not observable. If higher OFB gain would be used in LHC, and according to the results
presented here, a luminosity jitter would be visible.

Fig. 17 shows a comparison between LHC and HL–LHC for the same settings. From
the perspective of beam separation at IP1 and IP5, HL–LHC performs worse, but com-
parably, and, as expected, there is no notable difference between the two IPs. In terms
of just maintaining collision, beams are expected to remain in collision for the whole
duration of a typical fill (i.e. even after the quadrupole-displacement-equivalent errors

1For the LHC OFB a gain of one is defined as the gain required for damping a static orbit error in 12-14
seconds from 100% to about 10% [14]. In this document, instead, a gain of one means to dump a static
orbit error in a single correction iteration.
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Figure 17: RMS beam separation at IP1 (a) and IP5 (b) using the OFB with 40 singular
values as a function of the RMS quadrupole error, measured in beam σ ’s for σBPM =
20 µm. Here plotted against the benchmark of using no correction.

have grown up to 0.3 µm), even without OFB. In this case, at the end of an HL–LHC fill
the beams would have separated by 0.4σ which, according to Eq. (7), would give a 4%
instantaneous luminosity loss by the end of collision for HL–LHC, which would not be
acceptable.

Clearly, the actual dynamics during an HL–LHC fill will be much more complex,
also due the expected operational scenarios including luminosity steps [23]. Already in
LHC, luminosity scans are used during the fill to re-establish head-on collision, effectively
cancelling any accumulated quadrupole-equivalent accumulated errors. A key property of
the luminosity scans is that they can be performed on top of the OFB. In other words, if
a luminosity scan is performed with the OFB active, the OFB does not cancel the orbit
knob. This is a consequence of the OFB using a global correction, and the luminosity scan
modifying the orbit localized around IPs. Due to the availability of the luminosity scan,
operating virtually independently of the OFB, beam separation can and is made smaller
than what is predicted here for LHC.

Lastly, it is worth mentioning that for Run 1 (2010-2013), LHC was run with the OFB
inactive during collision and still proved stable [20]. This was however for other param-
eters; the collision energy was lower at 3.5TeV, the beam sizes at collision were bigger,
and no Achromatic Telescopic Squeezing (ATS) optics [24] was used, so that iteration
of LHC was overall more resilient to closed orbit perturbation. Nevertheless, there are
grounds for believing that LHC could remain operational even without the OFB during
collision. This could be verified with a dedicated Machine Development slot during Run3.
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3.4 Beam separation at IP2 and IP8

The procedure for determining the beam separation at IP2 and IP8 is analogous to that of
IP1 and IP5, but it is not the quantity of interest from the perspective of luminosity. IP2
and IP8 undergo offset leveling, in the horizontal and vertical plane, respectively, during
collision. Due to the luminosity’s dependence on beam separation, the plane being leveled
will be more sensitive to orbit perturbation, and so the quantity of interest is not the beam
separation considered before, but rather the perturbation in the leveled plane. Here the
following optical conditions were assumed (proton run):

1. LHC optics: β ∗ = 10m, and 3m for IP2 and IP8, respectively.

2. HL–LHC optics: β ∗ = 10m, and 1.5m for IP2 and IP8, respectively.

The nominal separation between the two beams was considered to be 4σ and 2σ for IP2
and IP8, respectively.

Once more using Eq. (5), it is possible to compute the RMS perturbation of the orbit
in their respective leveling planes for IP2 and IP8 in LHC, which is done in Fig. 18. In
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Figure 18: RMS beam separation measured in beam size at IP2 (a) and IP8 (b), in their
respective leveling plane, versus σquad for several values of σBPM. The OFB is assumed
to run with 40 singular values.

relation to IP1 and IP5, IP2 and IP8 appear to be more sensitive to BPM errors. The
efficacy of the OFB appears greater for IP8, where under the assumption of an RMS
BPM error of 50 µm, it is capable of improving the orbit already for an RMS quadrupole
movement of 0.2 µm versus the corresponding 0.3 µm of IP2.

By the same procedure, a comparison between the OFB performance between LHC
and HL–LHC is provided in Fig. 19. For head-on collisions, fluctuations in beam separa-
tion take the expression of direct loss in luminosity whereas for offset-leveled collisions,
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Figure 19: RMS beam separation at IP2 and IP8, in their respective leveling plane, mea-
sured in beam σ ’s as a function of the RMS quadrupole error, assuming σBPM = 20 µm
and using the OFB with 40 singular values. Here plotted against the benchmark of using
no correction.

fluctuations in separation can result in either increased or reduced luminosity. More im-
portantly, for a given RMS beam separation in the leveling plane, the RMS luminosity
loss will be proportional to the target beam separation, and this latter changes over a fill
and may differ between fills. In summary, translating the results in Fig. 19 to luminosity
is non-trivial and will not be performed here.

3.5 Conclusion

The results derived here indicate that the OFB used in LHC improves the beam separation
stability at IP1 and IP5 during collision, but not significantly. This result largely translates
to IP2 and IP8 where the OFB is somewhat more effective. Transferring the OFB as
currently implemented for the LHC to HL–LHC leads to similar results, with a general
worsening of beam separation driven in part by a reduced beam size at collision points
Eq. (7). If one were to improve OFB performance in stabilising the orbit separation at the
IPs, one would need to rely on better BPM stability. How much better is the argument of
the next study.
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4 BPM Stability Requirements for Improved Orbit Stability at IPs

The integrated luminosity over a fill can be viewed as a benchmark for the performance
of a collider. In the previous chapter it was shown that the present BPM and OFB per-
formances together with the remarkable stability of the LHC allow for maintaining col-
lision with no significant losses of luminosity. Among others, potential new sources of
closed orbit perturbation that could worsen the situation in HL-LHC are the new IR1
and IR5 triplets mechanical design, which could be more sensitive to mechanical vi-
brations, and the extensive use of luminosity levelling for those IPs. The latter will be
achieved by changing in steps the β -function (β ∗-levelling) and/or the beam separation
(orbit-levelling) at the IPs. At each step, non-negligible closed orbit perturbation might
be induced. Because of this, using a luminosity scan might be necessary to bring the
beams back into head-on collision. Performing a luminosity scan takes in the order of a
minute [14], and in this process some luminosity is inevitably lost as the luminosity itself
is used as the signal to optimize over. During LHC Run 2, a few β ∗-levelling steps were
performed, and at times, no luminosity scans were necessary to recover head-on collision
condition, therefore the associated integrated luminosity loss was probably negligible. In
HL–LHC, the levelled luminosity will be increased nominally by a factor five while the
number of bunches is kept constant [25]. This will increase the event pile-up and so the
β ∗-levelling used in HL–LHC will be more involved, with many more levelling steps,
thus potentially increasing the number of luminosity scans performed during collision
and thus the probability of losing a significant amount of integrated luminosity.

One alternative to luminosity scans, and in general to stabilise the orbit at the IPs
independently of external sources of orbit perturbation, could be to deploy a more aggres-
sive OFB that make use of the BPMs closest to the IP and correcting them to the design
orbit using orbit correctors. Such an approach would require highly accurate and stable
BPMs close to the IPs. The subject of this study is therefore to estimate how accurate
these BPMs would have to be in order to find and maintain optimal collision, without, for
example, continuously make use of luminosity scans.

4.1 Model assumptions

As luminosity scans are performed to bring beams into head-on collision, any local IP
correction employed as a substitute has to reduce the beam separation sufficiently. As a
benchmark of this, we use 0.1σ beam separation, corresponding to a 0.25% instantaneous
luminosity loss. In other words, if a local IP correction can achieve a 0.1σ RMS beam
separation, it is considered a valid substitute for luminosity scans.

To study these corrections, the following setup was used and model assumptions were
made:

1. Only Octant 5 is considered from Q25 to Q25, with quadrupole errors from Q20 to
Q20.
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2. All closed orbit perturbations are, or can be treated as being, caused by transverse
movement of quadrupoles.

3. All quadrupoles’ transverse movements are I.I.D. in each plane.

4. All BPM reading errors are I.I.D.. in each plane.

5. As a reference value, σquad = 0.3 µm is taken as the RMS quadrupole movement to
correct for during collisions [22].

6. HL–LHC optics for protons: β ∗ = 15 cm, εN = 2.5 µm and E = 7 TeV.

The choice of considering only one octant is mainly due to computational reasons.
The underlying assumption is that local errors are assumed to be the dominating source
of errors at the corresponding IP. In practice, the whole machine errors will contribute to
the worsening of the orbit at one IP. However, the orbit perturbation will be dominated by
the movement of the triplet quadrupoles of IP1 and IP5.

For the extent of this study, pairs of BPMs will be used where one pair is defined as
per Fig. 20. In other words, the ith BPM pair is the pair of BPMs formed by taking the
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Figure 20: Definition of the BPM pairs in the interaction region around IP5.

ith BPM away from the IP, on each side of the IP and for both beams. Each single BPM
is assumed to be able to measure the beam position for both counter rotating beams with
the same accuracy.

4.2 Single BPM pairs

Under these assumptions, Fig. 21 shows the residual RMS beam separation at IP5 when
using a single pair of BPMs as a function of RMS BPM error. Each point in the graph
is computed using the optimal number of singular values for the orbit correction for that
particular configuration, which also explains why all curves saturate to the level of not
correcting at all. In those cases, the scanning procedure finds more beneficial to use zero
singular values, i.e. not correcting at all, than attempting any correction that would just
worsen the beam separation. No strategy on how to find the best number of singular
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values in practice is provided. In fact, this aims to represent the best-case scenario one
could achieve scanning over the number of singular values. In practice this is what is
typically done also empirically in LHC [14]. If one uses only one BPM pair at a time,
the trend is clear: the closer the BPM pair is to IP5, the more effective it is at correcting
the beam separation. The underlying reason has to do with the number of error sources
between each BPM pair. The closest BPM pair performs the best as there is no error
source between the BPMs, and the further away a BPM pair is the more error sources.
Because of this relation, the correction of the closest pair is in fact independent of the
level of closed orbit perturbation; if the closed orbit is corrected to zero at these BPMs,
it directly follows that the closed orbit at IP5 is zero too. In the same manner, correcting
to zero at a BPM pair when there is an error source in between will invariably lead to
a residual at the IP. This is most clearly seen in Fig. 21 at the leftmost points where the
BPMs are perfect: pair 1 corrects to zero beam separation, every other pair does not with
a performance worsening with distance from the IP.
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Figure 21: RMS beam separation at IP5 after local correction as a function of RMS BPM
error for σquad = 0.3 µm, plotted for different single pairs of BPMs used for the correction.
The dashed blue line is the expected beam separation assuming no correction. The dashed
black line corresponds to 0.25% luminosity loss.
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Figure 22: RMS beam separation at IP5 after local correction as a function of RMS BPM
error for σquad = 0.3 µm, plotted for different sets of BPM pairs used in the correction.
The dashed black line corresponds to 0.25% luminosity loss.

4.3 Multiple BPM pairs

If one has access to several imperfect BPMs close to each other with no sources of orbit
perturbation in between, then it is possible to reduce the level of noise in the readings
based on the collective reading being nonphysical. A naive schematic of this is shown in
Fig. 23. The figure assumes that any physical orbit must be a straight line for the region. In
such a system, the orbit can be estimated based on the line with the least-squares distance
to every measurement, i.e. the error would scale with a 1/

√
n law, where n is the number

of BPMs.
In practice, in an accelerator having several BPMs with no other elements in between

is normally not affordable. Instead, a single BPM is placed in between two magnets
that could be source of orbit perturbation. Still, one could imagine that not all orbits are
physically possible, and so using several BPMs instead of a single one per side of the
IP should provide some benefit. This principle is used in Fig. 22 where groups of BPM
pairs are used in the correction. Here it becomes evident that one can improve the result
the single BPM next to the IP up to about 40% by using all the six BPMs available in
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Figure 23: Schematic of beam measurement by imperfect BPMs. The gray blocks corre-
spond to BPMs, the full red line corresponds to the actual closed orbit, the black crosses
correspond to the BPM reading and the red dashed line corresponds to the reconstruction
of the closed orbit based on the readings.

the IR for a given quadrupole and BPM errors, which is compatible with the 1/
√

n law
mentioned before. Note that the gain saturates already after using the first four BPM
pairs. This can be understood by the fact that the BPMs in the IR are interleaved by
quadrupoles, which are sources of orbit distortion, therefore one cannot discern between
all combination of BPM noise and quadrupole movements. To be stressed, once again,
that each point in Fig. 22 is obtained by scanning over the number of singular values used
for the correction and by choosing the number that minimize the beam separation at the
IP. In a real machine this could be found by keep adding a singular value to the error
correction until perturbations on the luminosity signal are seen.

The results from Fig. 21 and 22 are summarized in Table 4. The table provides the
tolerated RMS BPM error that still allow for maintaining collision with a luminosity loss
below 0.25% for the assumed quadrupole error of σquad = 0.30 µm, and assuming a dedi-
cated local OFB. This stability would need to be kept over the full collisions period, which
is in the order of ten hours, or over a shorter period after which a luminosity scan could
be performed to re-set the reference orbit.

It is worth noting that the correction performs worse when including the sixth pair of
BPMs. The underlying reason is likely to be the fact that the trade-off between utilizing
more information and prioritizing the correction of the new BPM: when the sixth BPM
pair is added, we manage to filter away more BPM errors, but we also correct more at the
BPM which is detrimental to the IP orbit. Looking at Fig. 22, it is evident that adding the
sixth BPM pair pays off for greater BPM errors, but this payoff becomes tangible at beam
separations greater than what we are here interested in.
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Table 4: Table over tolerated RMS BPM error to achieve a beam separation at IP5 corre-
sponding to a 0.25% instantaneous luminosity loss for σquad = 0.3 µm for different BPMs
employed in the correction.

BPM pairs used Required RMS BPM stability [µm]
1 0.50
2 0.45
3 0.27
4 N/A
5 N/A
6 N/A
1 through 2 0.56
1 through 3 0.70
1 through 4 0.79
1 through 5 0.80
1 through 6 0.76

4.4 Finding Collision

A separate use of local IP correction that has not been mentioned is as a means of finding
a luminosity signal. If HL–LHC is not operated for an extended period of time, or some
equipment fault takes place between two fills, then the closed orbit in the machine might
be large enough that collision cannot be found after the ramp. Luminosity scans are also
performed in these scenarios, but finding collision can take considerably longer than a
minute since there is no luminosity signal. Once a luminosity signal is found, head-on
collision can be achieved in around a minute [14]. If the stability of the closest BPM pair
around IPs is good enough, it would be possible to correct down to the design orbit at
these locations and a luminosity signal would be attained instantly.

A beam separation of 4σ still gives a sufficient luminosity signal to be able to quickly
find head-on collision [14]. As correction using the closest BPM pair is independent of
the closed orbit in the machine, the result from Table 4 can be scaled directly to compute
the necessary BPM stability to find always collision:

Required BPM stability σBPM to find collision = 40×0.50 µm = 20 µm (8)

where the factor 40 is the quotient between 4σ and 0.1σ . The timescale of this stability
dictates how useful the local IP correction can be to find collision. If it is less than a day,
then it is not very useful, whereas if it is longer than a day then one can possibly save
time using this approach. Note that the value computed here is for the β ∗ = 15cm optics,
which is normally expected to be in use at the end of collision. For a higher β ∗ optics,
one should expect to relax the obtained value by the square root of the β ∗ ratio.
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4.5 Conclusions

Based on the results presented, the BPMs closest to the points of collisions would need
a stability in the order of 0.5 micrometer on a timescale of around ten hours to be used
as a means of steering and maintaining beams into head-on collision (luminosity loss be-
low 0.25%; 1 micrometer BPM stability for ensuring luminosity loss below 1%) using a
dedicated local OFB. The BPM pairs most effective at correcting orbit at the points of col-
lision are the closest ones, with their effectiveness degrading with distance. Note that the
stability requirement is given assuming an instantaneous orbit correction, without giving
specific boundary for the OFB bandwidth. Depending on the source of BPM acquisition
instability, one could achieve the desired stability by averaging the BPM acquisition over
time at the expense of the maximum bandwidth of the OFB. Additionally, using up to the
first four BPMs next the IP on each side could be beneficial.

If one is interested in using local IP correction as a means of finding collision, then
the minimum BPM stability is around twenty micrometers for whatever timescale is con-
sidered.

The results presented here are compatible with those of a previous study on older
HL–LHC optics and under different assumptions [26]. For that study, the necessary BPM
stability to replace luminosity scans during collision was estimated to be ±2µm (cri-
terium: luminosity loss smaller than 1%), and ±44µm to find back collision after a fill
(criterium: find 1% of luminosity at the beginning of the fill). For finding collision after
a long stop, the operational experience is that 20−50µm BPM stability is enough to find
back collision [14], which is also compatible with the value of 20µm suggested by this
study.

As to the larger question of whether it is worthwhile to implement such a local OFB
in HL-LHC, the following items have to be performed:

1. Assess if a degradation of machine stability is expected in HL–LHC compared to
LHC.

2. Investigate the feasibility of micrometer stability for the BPMs near the collision
points.

3. If it proves feasible to upgrade the BPMs to this precision, quantify the cost of doing
so, which can be favorably compared to integrated luminosity.
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Appendices
A Search for error correction parameters

In this appendix, the process and heuristics for choosing the error correction parameters
are covered. As stated in the error correction Sec. 2.2, the weights for equality constraints
was set to 1.0 and those for arc BPMs to 10−6, and subsequently the number of singular
values were 47 out of 57 singular values (per plane). To evaluate a given linear correction
defined by these parameters, the following was performed:

1. Compute the correction strategy based on a weighted pseudoinverse of the corrector
response matrix.

2. Use the correction strategy to compute the RMS residual orbit and corrector strength
usage for the errors considered (BPMs assumed to have no misalignment errors).

3. Analyze the L2-norm of the residual orbit in the triplet, arc and the L2-norm of the
corrector strength usage.

Using this approach, it is possible to plot the performance of a given correction strategy,
for a given number of singular values, as a function of the triplet BPM weights.

As a second heuristic, we want as few singular values as possible in the correction
strategy. The idea behind such a rule is that if n singular values are sufficient to ade-
quately correct for errors, then the n+ 1 singular value might improve the orbit slightly,
but will typically do so at an additional expense of corrector strength. Moreover, too
many singular values allow for the correction to reconstruct nonphysical orbits, e.g. noise
returned by BPMs. For these reasons, the minimal number of singular values possible
will be used.

As mentioned, for the correction strategy the number of singular values was to be kept
as few as possible and the only other parameter entering into consideration was that of
the weight on triplet BPMs. Scanning these two parameters, the final correction strategy
came out as using 47 out of 57 singular values and a weight on the triplet BPMs equal
to 1.25× 10−6. A plot demonstrating the aptitude of these values is shown in Fig. 24
What the plot shows is that both 46 and 47 singular values are sufficient for adequately
correcting the triplet, but 46 singular values are insufficient for adequately correcting the
arc. For 47 singular values and a triplet weight of 1.25×10−6, the arc together with the
triplet are both adequately corrected, and so 47 singular values are the minimum number
of singular values necessary, and for the given choice of triplet weight it provides a valid
correction strategy as per our qualifications.

As a last comment, note that these parameter values are expected to change if alter-
ations of (or imperfections in) the current optics take place. Small changes in the optics
may significantly perturb the singular-value decomposition of the response matrices, and

37



10−7 10−6 10−5 10−4

Triplet BPM weight [1]

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
ax

im
um

R
M

S
or

bi
t[

m
m

]

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

L
2

no
rm

of
R

M
S

co
rr

ec
to

rs
tr

en
gt

h
[T

m
]

Arc, n = 46
Arc, n = 47

Triplet, n = 46
Triplet, n = 47

||cRMS||2, n = 46
||cRMS||2, n = 47

Figure 24: Triplet weight scan for 46 and 47 singular values plotting the maximum RMS
residual orbit, across each beam and dimension, and the L2-norm of the RMS corrector
strength usage for a linear correction.

so these values should not be considered immutable but rather approximately optimal for
the given model of HL–LHC.
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B Numerical Results from Error Correction and Knob Implementa-
tion

The corrector budget is summarized in Table 5 and the orbit knobs, together with the
error correction, are summarized in Table 6. From the perspective of critical apertures
and margins of corrector strength, numerical values of the RMS residual orbit have been
requested. These are provided in Table 7 and 8.

Table 5: Table of the corrector strength budget, shown for all correctors up to Q15. The
values shown are taken as the maximum of the absolute corrector strength used across
all matched correctors and are given in units of Tm. The ’SUM’ column refers to the
maximum over all absolute-value sums for the given pattern.

LUMI_B1
[±0.1mm]

LUMI_B2
[±0.1mm]

IP_CROSS
[±295 µrad]

IP_SEP
[±0.75mm]

OFF_REMOTE
[±2mm]

OFF_CORR
[±0.5mm]

CC_B1
[±0.5mm]

CC_B2
[±0.5mm]

ORBIT
[2σ ]

SUM LIMIT

CORRECTORS

^MCBXFB[HV].A2 0.00 0.00 0.16 0.00 0.00 0.67 0.25 0.11 1.20 2.07 2.50
^MCBXFB[HV].B2 0.00 0.00 0.16 0.16 0.00 0.00 0.35 0.45 1.55 2.50 2.50
^MCBXFA[HV].3 0.00 0.00 2.42 0.19 0.00 0.50 0.41 0.21 1.04 4.50 4.50
^MCBRD[HV].4 0.25 0.00 3.99 0.14 0.00 0.00 0.10 0.47 0.94 4.85 5.00
^MCBY[HV].[AB]?4 0.04 0.18 0.43 0.00 0.00 0.00 0.00 0.53 0.65 1.10 2.25
^MCBC[HV].5 0.00 0.07 0.00 0.00 0.88 0.00 0.44 0.00 0.43 1.14 2.10
^MCBC[HV].6 0.00 0.00 0.00 0.00 0.85 0.14 0.18 0.00 0.52 1.20 2.10
^MCBC[HV].7 0.00 0.00 0.00 0.00 0.91 0.14 0.00 0.00 0.67 1.45 2.80
^MCBC[HV].8 0.00 0.00 0.00 0.00 0.33 0.05 0.00 0.00 0.71 1.06 2.80
^MCBC[HV].9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.61 0.61 1.90
^MCB[HV].10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.66 0.66 1.90
^MCB[HV].11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.61 0.61 1.90
^MCB[HV].12 0.00 0.00 0.48 0.00 0.00 0.00 0.00 0.00 0.64 0.91 1.90
^MCB[HV].13 0.00 0.00 0.41 0.00 0.00 0.00 0.00 0.00 0.64 0.84 1.90
^MCB[HV].14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.64 0.64 1.90
^MCB[HV].15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.64 0.64 1.90
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Table 6: Table of the absolute orbit, with respect to the ideal orbit, shown for a subset of
elements. The values shown correspond to the maximum value taken over all the selected
elements, both beams and planes and sides of the IP, and are given in units of mm. The
’SUM’ column refers to the maximum over all absolute-value sums for the given pattern.

LUMI_B1
[±0.1mm]

LUMI_B2
[±0.1mm]

IP_CROSS
[±295 µrad]

IP_SEP
[±0.75mm]

OFF_REMOTE
[±2mm]

OFF_CORR
[±0.5mm]

CC_B1
[±0.5mm]

CC_B2
[±0.5mm]

ORBIT
[2σ ]

SUM

ELEMENTS

^TAXS 0.10 0.10 5.89 0.75 2.00 0.50 0.00 0.00 0.00 8.49
^MQXFA.[AB]1 0.12 0.12 11.06 0.91 2.00 0.61 0.00 0.00 0.13 13.92
^MQXFB.[AB]2 0.16 0.16 16.88 1.17 2.00 1.07 0.23 0.22 0.32 20.36
^MQXFA.[AB]3 0.10 0.10 17.12 0.78 2.00 1.08 0.34 0.32 0.31 20.56
^MBXF 0.02 0.02 14.87 0.42 2.00 1.08 0.31 0.29 0.35 18.32
^TAXN 0.14 0.14 4.46 0.12 2.00 0.76 0.48 0.46 0.52 8.17
^MBRD 0.18 0.18 1.91 0.04 2.00 0.72 0.58 0.55 0.64 5.74
^MCBRD 0.20 0.20 0.86 0.01 2.00 0.70 0.63 0.59 0.69 4.74
^ACFGA 0.13 0.15 0.60 0.00 2.00 0.66 0.50 0.50 0.50 4.28
^MCBY[HV].[AB]?4 0.09 0.11 0.04 0.00 2.00 0.60 0.56 0.58 0.58 3.71
^MQY.4 0.08 0.09 0.00 0.00 2.00 0.59 0.48 0.51 0.58 3.60
^TCLMB.4 0.10 0.11 0.14 0.00 2.00 0.61 0.54 0.56 0.49 3.76
^TCLMC.5 0.02 0.03 0.00 0.00 2.00 0.45 0.21 0.20 0.66 3.29
^MCBC[HV].5 0.00 0.00 0.00 0.00 2.02 0.43 0.17 0.16 0.68 3.27
^MQML.5 0.01 0.02 0.00 0.00 2.01 0.43 0.19 0.18 0.71 3.26
^TCLMC.6 0.00 0.00 0.00 0.00 2.09 0.34 0.06 0.06 0.83 3.23
^MCBC[HV].6 0.00 0.00 0.00 0.00 2.08 0.33 0.00 0.00 0.86 3.23
^MQML.6 0.00 0.00 0.00 0.00 2.10 0.33 0.04 0.04 0.85 3.24
^MCBC[HV].7 0.00 0.00 0.00 0.00 0.66 0.11 0.00 0.00 0.59 1.19
^MQM.[AB]7 0.00 0.00 0.00 0.00 0.72 0.10 0.00 0.00 0.58 1.25
^MCBC[HV].8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.59 0.59
^MQML.8 0.00 0.00 0.00 0.00 0.07 0.01 0.00 0.00 0.58 0.61
^MCBC[HV].9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.55 0.55
^MQMC.9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.52 0.52
^MQM.9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.55 0.55
^MCB[HV].10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.59 0.59
^MQML.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.57 0.57
^MCB[HV].11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.58 0.58
^MQ.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.56 0.56
^MQTLI.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.57 0.57
^MCB[HV].12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.56 0.56
^MQT.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.52 0.52
^MQ.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.55 0.55
^MCB[HV].13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.56 0.56
^MQT.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.52 0.52
^MQ.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.55 0.55
^MCB[HV].14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.56 0.56
^MQ.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.55 0.55
^MCB[HV].15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.56 0.56
^MQ.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.55 0.55
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Table 7: Maximum RMS orbit (taken with respect to the center of elements) in mm per
applicable element granted the IP BPMs are treated as static, and the CC BPMs assumed
to be moving. Each value tabulated is taken as the maximum across both beams, dimen-
sions and all matched elements.

BPMs only Quads+Bends only Quads+Bends+BPMs
ELEMENTS

^MQXFA.[AB]1 0.00 0.35 0.35
^MQXFB.[AB]2 0.14 0.35 0.36
^MQXFA.[AB]3 0.16 0.35 0.34
^MBXF 0.14 0.30 0.35
^MBRD 0.32 0.29 0.06
^MQY.4 0.29 0.29 0.02
^MQML.5 0.34 0.31 0.45
^MQML.6 0.40 0.34 0.53
^MQM.[AB]7 0.29 0.31 0.19
^MQML.8 0.29 0.31 0.20
^MQMC.9 0.27 0.30 0.24
^MQM.9 0.27 0.30 0.40
^MQML.10 0.28 0.30 0.20
^MQ.11 0.28 0.30 0.20
^MQT.12 0.27 0.32 0.39
^MQ.12 0.27 0.30 0.21
^MQ.13 0.27 0.30 0.21
^MQ.14 0.27 0.30 0.21
^MQ.15 0.27 0.30 0.21
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Table 8: Maximum RMS orbit (taken with respect to the ideal orbit) in mm per element
granted the IP BPMs are treated as static, and the CC BPMs assumed to be moving. Each
value tabulated is taken as the maximum across both beams, dimensions and all matched
elements.

BPMs only Quads+Bends only Quads+Bends+BPMs
ELEMENTS

^TAXS 0.00 0.00 0.00
^MQXFA.[AB]1 0.00 0.06 0.06
^MQXFB.[AB]2 0.14 0.12 0.16
^MQXFA.[AB]3 0.16 0.12 0.16
^MBXF 0.14 0.10 0.17
^TAXN 0.26 0.03 0.26
^MBRD 0.32 0.02 0.32
^MCBRD 0.34 0.00 0.34
^ACFGA 0.25 0.00 0.25
^MCBY[HV].[AB]?4 0.29 0.01 0.29
^MQY.4 0.29 0.01 0.29
^TCLMB.4 0.25 0.01 0.25
^TCLMC.5 0.32 0.04 0.33
^MCBC[HV].5 0.33 0.05 0.34
^MQML.5 0.34 0.05 0.36
^TCLMC.6 0.39 0.08 0.42
^MCBC[HV].6 0.41 0.09 0.43
^MQML.6 0.40 0.09 0.42
^MCBC[HV].7 0.27 0.14 0.29
^MQM.[AB]7 0.29 0.15 0.29
^MCBC[HV].8 0.29 0.11 0.29
^MQML.8 0.29 0.12 0.29
^MCBC[HV].9 0.26 0.09 0.27
^MQMC.9 0.27 0.09 0.26
^MQM.9 0.27 0.10 0.27
^MCB[HV].10 0.27 0.13 0.29
^MQML.10 0.28 0.13 0.29
^MCB[HV].11 0.27 0.13 0.29
^MQ.11 0.28 0.13 0.28
^MQTLI.11 0.28 0.13 0.28
^MCB[HV].12 0.27 0.14 0.28
^MQT.12 0.27 0.14 0.26
^MQ.12 0.27 0.14 0.27
^MCB[HV].13/14/15 0.27 0.14 0.28
^MQT.13 0.27 0.14 0.26
^MQ.13/14/15 0.27 0.15 0.28
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C Knob Orbits

In this section, all the knob orbits implemented in the orbit corrector budget study are
showcased.
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Figure 25: Plot of the LUMISCAN_B1 knob, shown around IP5.
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Figure 26: Plots of the LUMISCAN_B2 knob, shown around IP5.
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Figure 27: Plots of the IP_CROSSING knob, shown around IP5.
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Figure 28: Plots of the IP_SEPARATION knob, shown around IP5.
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Figure 29: Plots of the IP_OFFSET_REMOTE knob, shown around IP5.
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Figure 30: Plots of the IP_OFFSET_CORR knob, shown around IP5.
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Figure 31: Plots of the CC_MOVE_B1 knob, shown around IP5. Gray dashed vertical
lines correspond to the location of the CCs.
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Figure 32: Plots of the CC_MOVE_B2 knob, shown around IP5. Gray dashed vertical
lines correspond to the location of the CCs.
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D OFB Beam Separation Formulas

All the results on beam separation in the OFB study were based on Eqs. (5) and (6),
repeated below:

σd,corrected =
√
(a×σquad)2 +(b×σBPM)2 ,

σd,raw = c×σquad .

where a and b determine the scaling from RMS quadrupole movement and RMS BPM
error to orbit with the OFB active, and c the scaling from RMS quadrupole movement to
orbit with the OFB inactive. The values of a, b and c utilized in the study are tabulated in
Table 9.

Table 9: Table of the a, b and c values in (5) and (6) to reproduce the radial beam separa-
tion in IP1 and IP5, and the horizontal/vertical separation in IP2/IP8. All values assume
the global correction strategy with 40 singular values, barring the use of shared correctors
in LHC and allowing them in HL–LHC.

Scaling factors a b c
Machine IP

LHC IP1 6.85e+05 2.60e+03 9.07e+05
IP2 9.14e+04 1.43e+03 2.68e+05
IP5 6.84e+05 2.74e+03 9.01e+05
IP8 1.61e+05 1.49e+03 4.43e+05

HL–LHC IP1 8.62e+05 3.92e+03 1.41e+06
IP2 9.57e+04 1.16e+03 4.21e+05
IP5 9.97e+05 3.90e+03 1.40e+06
IP8 2.31e+05 1.81e+03 9.22e+05

By plugging in the values from the table into Eqs. (5) and (6), it is possible to extend
the results presented for the performance of the OFB to different assumptions in the RMS
quadrupole and BPM errors. This could prove useful if rough estimates of the beam
separation during Stable Beams are required.
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E Element Naming Conventions

As element names occur in the final results, it is worth to spend a little time on the element
naming convention used in LHC and HL-LHC. Figure 33 shows a section of LHC. The

Figure 33: In-depth view of a segment in LHC [27].

key take-aways from Figure 33 for the present purpose are:

1. Each octant is divided into two half-arcs surrounding an insertion.

2. Each octant is also divided into a left side and a right side.

3. The center-point of some octants is the interaction point, IP for short, with their
surrounding region referred to as interaction region, abbreviated IR.

From the perspective of lattice definitions, there are eight IPs, but this is only for
notational ease. An interaction point in the strict sense is a point where the two beams
collide, and is only a feature of octant 1, 2, 5 and 8 where experiments are run. When
an IP or IR is referred to in this document, it is taken for granted that it applies to one
of these octants. What all octants nevertheless have in common is that they all have a
long straight section in the middle as part of the insertion. The arc can be perceived to be
roughly uniform across LHC whereas the long sections differ from octant to octant.

As the base pattern is a FODO lattice (alternatingly focusing and defocusing quadrupoles),
the machine can be broken up into half-cells containing one quadrupole each. In doing so,
each half-cell is given a number, where the ith quadrupole away from the center of its oc-
tant is associated with the ith half-cell. With this in mind, the general naming convention
can be summarized as follows:

<TYPE><SPECIAL>.<EXTRA><HALF_CELL><LR><OCTANT>.B<12>

48



• TYPE: Entry specifying the type of element. See Table 10 for example entries.

• SPECIAL: Optional entry which can be used to specify sub-type of element, e.g. H
or V to signify if a corrector is acting on the horizontal or vertical plane.

• EXTRA: Optional entry used to separate between otherwise identically named ele-
ments. E.g. A, B, C to separate between three bending magnets in the same half-cell.

• LR: Entry specifying which side of the closest IP the element is on. Assumes either
L or R.

• OCTANT: Entry specifying the octant the element is a part of. Valid entries are 1 to
8.

• 12: Entry specifying which beam the element is part of. Either 1 or 2, unless the
element is shared between the two beams in which case the element name ends with
the OCTANT entry.

Table 10: Table over prefixes for different element types.

Element type Prefix
Bending magnet MB
Quadrupole MQ
Orbit corrector MCB
BPM BPM
Crab cavity ACFCA
Drift DRIFT

For example, the element MQ.25L5.B1 is a quadrupole on the left side of IP5, in
the 25th half-cell and for Beam 1. The special identifier can be used in multiple ways, for
example MQML.10R1.B1 is a different type of quadrupole in half-cell 10, on the right
side of IP1 for beam 1. Here the special identifier describes the type of quadrupole. For
MCBH.21R5.B1, the special identifier H signifies that it is a horizontal orbit corrector.
Two other horizontal orbit correctors are MCBYH.A4R5.B1 and MCBYH.B4R5.B1. In
this case the two horizontal orbit correctors share type MCBY, octant, side of IP, half-cell
and beam, which is why they make use of the extra specifiers A and B to tell them apart.

Note that there are elements which skip the appendage of .B<12>. These correspond
to elements which are common to both beams, which can only happen in the IR. This is
due to the fact that when two beams are brought to collision they pass through the same
equipment close to the point of collision. Examples of this are MCBXFAV.3L5, a shared
vertical corrector, and MBXF.4L5, a shared bending magnet. This has an important im-
pact on the analysis, since powering a shared corrector impacts both beams, same thing
goes for imperfections in shared bending magnet.
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