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1 Introduction

In recent years one can observe the keen interest to computer algebraic aspects of com-
binatorial algebra [1]. Under the latter one usually understands analysis of algebraic
objects given by generators and defining relations of the polynomial form. In the com-
mutative case quite a number of universal computer aigebra methods and tools have
been designed to deal with multivariate polynomial systems, first of all, those based
on Grobner bases techniques [2].

Though the concept of a Grébner basis has been generalized in different extent to non-
commutative algebras [3] (see also review paper [1] and references therein) the area of
its practical use is still quite restrictive. As it shown in {4], the use of non-commutative
Grobner bases method proves out in a class of algebras, called in [4] algebras of solvable
type, which can be considered as intermediate between commutative algebras and
general non-commutative ones {5].

Unfortunately, analysis of Lie algebras cannot generally be reduced to algebras of the
solvable type, except finitely dimensional Lie algebras whose enveloping algebras are
just of that tvpe. On the other side, the problem of construction of finitely presented
Lie algebras, which given by a finite set of generators and defining relations, is of great
practical importance in the context of investigating the algebraic structure of non-linear
partial differential equations in the framework of Wahlquist-Estabrook prolongation
method [6]. Different computational aspects of this particular problem and a number of
effective algorithmic procedures have been implemented in Reduce considered in {7],[8].

In present paper we describe an iterative algorithm for construction of basis elements
of a finitely presented Lie algebra and computation of its commutator table. This al-
gorithm can be considered as the further development of algorithmic ideas of paper [9].
In addition to the given set of generators and relators we introduce a grading of {(non-
associative) words by their weights. As a first step of the algorithm the initial data are
transformed to the special form called genetic code of a Lie algebra to be computed.
Then the algorithm provides an iterative procedure for computation of all the basis
elements of a given weight in terms of those of less weights modulo the Jacobi identities
and relators. As an illustration, the defining relations are produced and the prolonga-
tion algebras are constructed for the Korteveg-de Vries equation and for the system of
equations describing one-dimensional Langmuir turbulence. The proposed algorithm
has been implemented in the Rlisp language of computer algebra system Reduce [10].



2 Bases of Free Lie Algebras
2.1 Definition of a Free Lie Algebra

Let K be a field, X = {z1,22,...,2Zs} be a finite alphabet and e be an empty word.
The elements of X are called free generators).

Following to [11] put Tg = €, I''(X) = X and define I',(X) (n > 1) inductively as the
set of all words (monomials) of the form

(W), uvel,, vel, s+r=n.

If, say, s = 1, we write simply u(»), or even uv if also r = 1.
Put
[(X) = UL, En(X)

and turn I'(z) into a (non-associative) groupoid subject to the operation
w-v = (u)(v) .

Definition. An clement v € I',(X) is said to have degree s, i.e. deg(v) = s.
Definition. F(X) is said to be a free algebra on X if it is a K-algebra of I'(X).
It means that p € F(z) is a finite sum

p:Zauua oy € K,

uel’

and the multiplication in F(X) extends the multiplication in I'(X) as follows

(Z auu> (Z ﬁw) =Y obu-v.

u€el vel uwel

Remark. F(X) is a graded algebra with the homogeneous elements of degree n being
those which are linear combinations of words of length n.

This grading can be sharpened by introducing a monoid homomorphism
W : (T(X)7 .’e) — (N7+70) b

where T'(X) being the semigroup of words in the alphabet X with unity e, induced by
the groupoid homomorphism ¢ : ['(X) — T(X) with the identity map ¢ : X — X.
Definition. If W is a grading on ['(X), we refer to the value w; = W(z;) as a weight
of z;.

We assume that a polynomial is graded by its monomial of the maximal weight.

Let I be the two-sided ideal of F(X) generated by the elements of the form (with u-v
denoted as [u,v])



b U, v, W
{ J(u, v, w) = {[u,v],w] + {{v, w],u] + {{w, u], ] »v,w € D(X) .

Definition. The quotient algebra

is called the free Lie algebra on X*.

2.2 Basis Family and Hall Basis
Definition [11] A linearly ordered (w.r.t. some order <)) set R = R(X) C TI'(X) C
L(X) is called a basis family of L(X) if
1. XCR
2. w=[u,v] € Riff
(a) w,vE€R
(b) u<v % skew-symmetry
(c) if v =[vy,v0] then u > v; % Jacobi identity
3w=uv>u
The further specification of the above basis family is based on the choice of the mono-
mial order providing the condition 3.

In this paper we consider one of possible orders, and the corresponding basis called a
Hall basis [13]. For the compactness of writing we shall often omit the Lie brackets
assuming their right-normed arrangement, for instance

2lyz = [z, [, [y, 2]]]
(zy)a®y = ([z,), [z, [z, 4]]]
Let z; > 22 > ...3, > e and u;,v; € ['(X)
Definition (Lexicographical order).
Uy ... Ug Spez V2 .- Y Aff Fi: (u; =0y, 7 <1 Atgyr > viga)
Definition (Graded Lexicographical Order).
U= UUp ... Us Dglez U=V102... 0 4ff
deg(u) > deg(v) V (deg(u) = deg(v) A u >z v)

Remark. This order provides, obviously, the condition 3 (w = uv > u) in the basis
family definition. The corresponding specification of the basis family called a Hall
basis [13]. Below we use a slightly more general concept of a Hall basis? when the
words are graded rather by weight than by length.

IFor more details on free Lie algebras see the recent monograph [12].
2We call it Hall basis as well.



2.3 Example

Let L{z,y, z) be a free Lie algebra with three free generators

r<y<z
Then the Hall basis of L{z,y,2) is
rDegree Basis Elements
1 r<y<z<
2 L <zry<rz<yz<
3 <%y < 2%z < yry < yxz < y'z < 2wy < 27z < 2Yz <

<y < 19z < yry < Y’z < y'zy < 1z < y°z < 250y <
4 < 22z < ayTy < 2Tz < 2Pz < ZPwy < 2wz < 2%z <

< (zy)rz < (zy)yz < (T2)y2z <

The number of elements of a Hall basis of degree m for n free generators (n = card(X))

is given by the following expression (Witt’s formula) [13]

1
Np=—3, p(d)n™?
™ Gim

where d runs through all divisors of n and p(d) is the Moebius function, defined for
deNby p(l)=1,and ford = pi'p® .. .p with the primes p; as

0, ifFefl,...,i}:s>1,
u(d) = ks . _
(-1)* vie{l,...,l}: si=1

The below table contains the numbers N,, for different n (n,m=1,...,7)

[ m[1[2][3]4] 5 | 6 | 7
n

0, 0 0 0 0 0

1 3 6 9 18

3| 8 18| 48 116 312

6 | 20| 60 | 204 | 670 2340
10] 40 | 125 624 | 2580 | 11160
15| 70 [315] 1554 | 7735 | 19544
21 | 112 ] 588 | 3360 | 39990 | 117648

~3 S Gy ] W N
3| o) o x| W N -




The asymptotic behavior

m"

N,y ~

(m — 00, n— fized)
n

reveals a very fast increase of Ny, with m. Though the presence of non-trivial defining
relations (Section 2) dumps the growth of basis elements, their computation even for
relatively small m, n can not be usually done in practice without the use of a computer
for algebraic manipulation.

2.4 Commutators of Basis Elements and Jacobi Identities

Let R(X) be a basis of a free Lie algebra L(X) and w,v € R(z),u < v, w= [u,v].

Definition. w is said to be a proper pair if w € R(X). Otherwise, if v = {v1,v9] and
u < vy, then w is said to be an improper pair.

To express an improper pair in terms of the basis elements, i.e. to determine the
structure constants of L{X), one needs to use the Jacobi identities.

1t turns out that it is sufficient to consider only those identities which include at least
one of free generators.

Theorem 1. Let L be a free K -algebra with the condition
YueL: [uu=0,
and let 3a,b € L such that
Vuve L: J(a,u,v) = J(b,u,v) = 0. (1)
Then J(p(a,b),u,v) = 0 where p(a, b) is the arbitrary {non-associative) polynomial in
a,b.
Proof. Because b, [u,v] € L, from (1) it follows J(a, b, [u,v]) = 0. Hence, the straight-
forward computation with use of bilinearity and skew-symmetry gives
[[a7 b]’ [u7 U]] = [a'v [b= [U»Um - [b7 [U,, [u> UH]
= o, ([by o, 0] + [, [b,0]])) = b, ([[a, u),v] + [, [a, o]])]
= o, byl o]+ (b ul, o, 0] + [[a,u], [b,0]) + [u, [a, [b, o]
‘_[[br [a,uﬂ, U] - [[av u}’ [b’ 7}” - “b7 “]7 [av U]] - {“, [ba [av 7‘”]
= [(la, [b,d]) = [b, [a, ul]), v) + [w, ([a, [b,v]} — [b, [a, ]))]
= [lla,8],u],] + [u, [[a, 8], v]}
It means than J([a,b],u,v) = 0 and, by induction, the statement of the theorem is
valid for any polynomial p(a, b) O.
Corollary. If in a free algebra L(X)
Vo, € X A Vu,ve L : J(zi,u,v) =0,

then Vu,v,w € L : J(u,v,w) = 0, i.e. L is a free Lie algebra.



3 Defining Relations

3.1 Formulation of the Problem

Let L(X) be a free Lie algebra over K, X = {z1,...,Tn}, and let P = {p1,-..,Pm} be

a finite set of (Lie) polynomials in X, i.e. pi = pi(X) e L(X), i={1,.. .,m}
Definition. If L is a Lie algebra generated by set X which obey the polynomial
cquations (defining relations)

p{X)=0 (i= {1,...m}),

then L is called a finitely generated and finitely defined or finitely presented.
Below we study the following fundamental problem:

Problem. Given finite sets generators X and relators P find a Lie algebra L such that
X C L under the conditions pX)=0, p; €P. :

In other words, we search for solutions of polynomizal equations in the class of Lie
algebras.

Such a problem arises, for example, as the most principal part of the integrability anal-
ysis of nonlinear partial differential equations by the Wahlquist-Estabrook method [6].

Different computer algebra aspects of the problem w.r.t. this concrete application have
been intensively studied in [7, 8, 9). We consider the problem in its general form, though
illustrate the approach to its solution at the examples from that particular application
field.

3.2 Example 1. Defining relations for the Korteveg-de Vries
prolongation algebra

In the framework of the Wahlquist-Estabrook method a given nonlinear partial differ-
ential equation, for instance, the evolution one of the form

Uy = Uy g, Ugsy oo o)y U= u(t, z)

is considered as the compatibility condition
oF  9G
ot Ox

for a system of linear differential equalions of the form

{ P = F(Uy Uz, Ugss - -

7 = G, Ug, Uz, - -

16, B =0, | @)

s
3]
where 7 are called by pseudo-potentials.

The explicit representation for F', G is sought in the form which leads to the defining
relations in X;, Y.



As the first example let us consider the Korteweg-de Vries (KdV) equation

Up = Uppy — Ul
and assume R
= F{u),
=G

(4, Ugy Upz)-

Q, @

L&

Substitution of (3) into (2) gives

0F oG oG G 4 .
(uzzz - Suux\% - uz’é"l: - Ulzgl:; uzrz‘éﬂ; e [G7 P] =0

Setting the coeflicient at u.,, in (4) equal to zero, we obtain

oF _ 9G _
Ou  Ou,,
and, therefore, ﬁ
G UME)F

— + Gi(u,uy).
Ou i )
Then (4) is rewritten in the form

OF O oG, G, oF
— uu— —u ——

260G OF e e,
Bu U gE Y gy ey, ey PG F =0

Selection of the coeflicient at ., in (5) yields

d?F 8G,  OF

3u2 Sug * [52 F} =0

Hence,
oG,
T it SN T B
KT B Uy EM + [( L FI=0,
and . N
- O*F oF . 5
= 27 7 T+ Gy
Gy 5 Uz g3 + ug| u,FJ+GZ(u)

Substitution of this expression into (6) gives

3 1 2F
3uuz?£+~1- 3OPF 3 2.0 oG,

(

a 2 = 3 g F = Y,
du 2283 2 [agaF] uza %uz[[a, ] ]+[G2, } 0 (7)
Collecting the coefficients at u2, we come to the equality
PE
=

[}

3)



and, hence, . X A R
F =X +uXy +v*Xs. - (8)

After that, equating in (7) the coefficient, at u2 to zero, we obtain

or [Xs, X1] + u[Xs, X3] = 0. The latter equality is equivalent to
(X1, X3] = [X2, X3] = 0. (9)

Then, the next coefficient, i.e. one at ug, in (7) leads to the equation
suy + 2uk) — 28 4[5, X, K] 4wl Ko Kol =0,
which yields the following expression for G
Gr = — 0% — 200K 1 all K, Tl K]+ 28 K, i)+ Kee (10)

‘Further, setting u, = 0 in (7), we find

‘ (G, B = 0.
Taking (8-9) into account, we find

%UZ[X%Xl] — ulf[ X, X, Xa), K] — ([ Xe, X, X, Ko) =

LA, ), ], K] — 5[, Ko, K, o) = K K

u[ Xy, Xa) — u?(X4, Xs) = 0.

Collecting the coefficients at v*,0 < k < 4 and using the Jacobi identities and skew-
symmetry, we obtain the defining relations

X1, Xa], Xa], Xa) = 0,

—%[Xl,f(:z] + g[[[xlyXQ],Xﬂ, X, + [ X3, X4 =0,
(R, Xa), X, X1 + (X2, Xa] = 0, (11)

(X1, Xa) = (X1, X5) = (X3, Xa] =0
with £ and & represented as '
F"—“ X1+UX2+UZX3
. . NP 1 oA 3 ..
G = Xyq+ul[[Xe,Xa], Xi] + §U2HX2,X1]7X2] - §U2X2

23X,y — uixg + g [Xg, Xl] + uu(Xg + 2uX3).



Before constructing the Lie algebra solutions, it makes sense to simplify the defining
relations (11) as follows.

Theorem 2. Let [ be a Lic algebra. If z,u,v € L and [z.u! = [z,v] = 0, then
[z, P(u,v)] = 0 where P is any Lie polynomial in u, 1.

Proof. Under the conditions of the theorem J(z,u,v) = 0 implies, obviously, Iz, {u, vj] =
0. Hence, by induction [2, P(u.v)] =0 O

Corollary. If an eleinent z € 1, of a Lic algebra L commutes with all the generators,
then z belongs to the center of £ (z € Z(L)).

Using an computer, one can show that the polynomial
X, ,X’QLle,f(g]’ + X Xy
comrnutes with {X’, Xy X, X1} By this reason we can put
XX XL K]+ (R, Xy) = 0,

Then o L L
[X's, ~\’1: = {<X3=X2} = [X:st-ﬂ =

1t justifies the setting X3 — 0 as generally acceptod in the KdV analysis. Therefore,
we come to defining relations of the form

[[{X’l - ‘{(2]-, /\A,gj, _X’ﬂ =0,

iH)&l:)’\(?JaXIJ:X‘Z] —[X1. K] =0
“{f(],f(g}. lej, “;’lj + [XQ ;4} =0, (12)

{Xl,/\}éj} = 0 (13)
3.3 Genetic Code

To use an algorithm of the next subsection, the initial data, i.e. the sct of generators
and relators, must be

e graded by the weight has been chosen in advance, as described in Sect.2.1-2.2.
that induces the corresponding graded lexicographical ordering;

* supplied with all the basis elements and the commutator relations as they are
resulted by verification of the Jacobi identities for all the triples of sumnmary
weight not exceeding the maximal one among the generators and relators.

Definition. In such a way the graded, arranged and extended sct of gencrators and
relators is said to be a genetic code (GC) of a Lie algebra to be constructed.

Example 1. The genetic code for the prolongation algebra of KAV defined by the
relations (12) can be represented in the table formn



TWeight No.of basis | Genetic Code

element
1 1 X
2 Xa
2 3 (X1, Xa)
4 X, X1, X2))
3 5 (X2, [ X1, X2)]
6 X4
B 7 [Xl»[Xl’ [X17X2m
[Xy, [ X1, [ X1, Xal]] = (X1, Xa)
(X1, [ X2, [ X1, Xo]l] = (X1, X
4 [Xa, [Xo, [X1, Xa)]] = 0
(X1, Xs] =0
(X2, X4l = —[X1, X1, [Xl,ij]]

In the last column, in addition to the initial set of the graded generators and relators
there are also their algebraic consequences modulo Jacobi identities of weight 4.

Given GG, it is possible to proceed the further supplement with the algebraic conse-
quences of higher weights. Below an algorithmic prescription for doing that is given.

4 Algorithm Description
4.1 Basic Structures

Let R be a basis set of monomials for a Lie algebra L under construction. The grading
gives

R=UR =U(X'usH,

where X and § are sets of generators and the basis elements being the proper pairs,
respectively.

Using the order has been chosen we introduce an auxiliary linearly ordered set R, such
that

f: R—R

is a bijective map. Hence,
R=UR =u(Xtush,
and X o 5
0= { Gees i res,

Set R can be considered as a numbering of R.

10



Definition. A proper pair is said to be g bound one if it is expressed as a linear com-
bination of basis elements by virtue of the Jacobi identities and the defining relations
and a free one, otherwise.

One should note that a Jacobi identity verification for a higher weight triple may
produce an extra relation for the lower weight Lie monomials which have been earlier
considered as the basis elements. We call such a relation a reciprocal phrase, because
it must be taken into account in the further computational steps which are forced by
that phrase to start again with lower weight level to reconstruct all the next levels. In
the below algorithm such reciprocal phrases are accumulated in the special set P,

Let B = U; B is a set of the bound pairs. It means that

beB iff b= ain, aueK, r,eR

Denote by A the map h : B ——» Span(R, K) and introduce an auxiliary set H
accumulating all the intermediate proper Lie pairs. In the further analysis those ones
which are bound are moved from H to B. Then an algorithm for computation B" in
terms of R* (k < n) can be written as follows,

4.2 Main Algorithm

Input: Ui, BF, Upen %, Ukan B¥, Urenh(B*);
Output: R" S" B~ MB™), P
H"=9, S*=0, B"=0, wB)=0 pn =0
for each z; € X such that w(z;) < n do
L= n— w(z;);
for each r, € X! do % words of length two
if ¥, <z, then H"™:= {(zi,z,)} U H™
else if #: >%, then H":= {{zq,2:)} U H™;

end;
for each 7, = (r;,,m,) e S do % triples with two the same generators
if # = Ty Or I; = Ty, then
if #; <7, then H":= {(zi,ry)} UHT
else H" .= {(r,,z)}UH"
else
if I; < flq or (flq < I < fzq and Tiq € S)
' or (I; > 7y, and Tig: T2 € S)
then Jacobi(zy, i, ra,); % J computes JH, JB, JhB, JP
H":=H"UJH; B":=B"UJB; h(B™) := h(B™) U JhB;
replace JB in h(B") by JhB;
P = P"U JP);
end;

for each r, € B' do

11



if z; < qu or (’qu < I, < 7""‘)‘1 and "ig S S)

or (i; > fop and 7,724 € S)

then Jacobi{zy,riy,rag);

H" := H*UJH: B":=B"UJB; h(B"):=hB")UJhB;

replace JB in A(B"™) by JhB;

P" = PrUJP),

end;

end;
S = H™\ B%; S§" = f(S™);
for each r,€ S" replace r, in h(B") by 7.
On should note that Theorem 1 is essentially used in the body of the algorithm. Indeed,
in the main loop only gencrators are selected together with the Lie pairs have been
obtained in order to construct new triples for the Jacobi identity verification. Three
internal loops of the main one create the pairs of generators, the triples with two
coinciding generators, the triples of the generator and free proper pairs, and the triples
of the generator and bound proper pair, respectively. Unlike the two first internal loops
where no necessity to verify the Jacobi identities, the last two ones contain subalgorithm
Jacobi, presented below, which does such a verification. In so doing, generally, new
elements for the sets H, B, i(B) and P are produced by subalgorithm Jacobi and
collected in sets JH. JB, Jhi3 and JP.

4.3 Subalgorithm Jacobi

Input : v,v,w € R,
Output: JH, JB, Jhi3, JP
9% These are sets of all the proper pairs, the bound pairs

% and the reciprocal phrases, respectively, arising at
% the Jacobi identity verification for u,», w

JH =0

Arrange(u, v, w); % the order is to be 4 < ¥ < W

o= Simplify((u. v), w);

po := Simplify{{v, w), u);

ps := Simplify((u, w),v);

p:=p1+p2—Ps

JH := JHUProperPairs(p,\UProperPairs(p;)U ProperPairs(ps);
% collection of the proper pairs

lip .= LeadinglmproperPair(p);
% selection of the leading improper pair of p

if lip # 0 then JB := {lip}; JhB := Solve(p, lip);

12



% solving equation p = 0 w.r.t. lip
else (ipp :=LeadingProperPair(p);
% selection of the leading proper pair of p
if Ipp #0 then JB := {lpp}; JhB := Solve(p,ipp);
% solving equation p = 0 w.r.t. Ipp
else JP := {p}.

"This subalgorithin includes the following modules

Arrange (u,v,w) does arrangement of the triple (u,v,w) in ascending order of their
numbers 4 < 7 < w.

Simplify ((u,v),w) is a recursive procedure which
e Applies the bijective map f to the internal pair (u,v) if (u,v) € S and the
map h otherwise, i.e. when {(u,v) € B.

e In the latter case one obtains a linear combination of the pairs which are
transformed, if necessary, to those with the less first element than the second
one.

e The first step being applied to each pair has obtained at the second step,
and the process continues recursively until the complete simplification is
achieved.

ProperPairs (p) collects all the proper pairs of Lie polynomial p.
LeadingImproperPair (p) sclects the leading improper pair of (p).
LeadingProperPair (p) selects the leading proper pair of (p):

Solve (p, k) resolves the equation p = 0 to express term k of polynomial p through
other its terms.

The described algorithm is an improved version of that of paper [9]. The main im-
provement is based on the use of Theorem 1. 1t allows to decrease sharply the number

of evaluated Jacobi identities at large number N of basis elements. When (N — o00)
at fixed number of generators n it means the following reduction of the number of

identities under verification
N —_—. N
3 2 )

If one applies the above algorithm to compute the structure of next weight level for
the KdV prolongation algebra then one obtains as follows.

13



4.4 Example 1 (continuation)

Basis elements and their commutators of weight 5

No. | Basis Elements and Algebraic Consequences .
8 [Xll[‘Yl’[Xlt[XlaXQHH
9 | [Xz, [Xu, 1K, [ X1 Xajll]
(X1, Xa), [X1, (X0 Xal]] = — (X2, (X, [Xu, (X0 Xol]]] + 1X0, [X0, X
X1, Xa], [Xa, [X1, Xo)] = X, (X0, Xo]!
X1 Xa), Xa] = — X3, [ X1, [X0, [ X0, Xol]

The further computations up to the elements of weight 20 allow one to guess the
following recurrence formulae determining an infinitely dimensional Lie algebra [14]
and then to verify that it is indeed a solution of the problem (12) checking up a finite
number of the Jacobi identities.

Basis of Lie algebra: X, ad *X1(X2) = Y&, [Yo,Yori1) = 2k, X3, {k} .

Lie algebra:

(X1, Y = Y1 o (X0 Xal =0, [X1. 2] = Yo, Y0, 2] =0,

[Y03Y2k+1] =2y, D/()»}/?n} = Yon-1 , [mep] =0 (n+p= 2m) ,

Yo, Yy = (—1)"Zm + (1Yo, (n+p=2m+ 1), [Yona1: Zgl = —Zgan
(Y, Xa] = —Yiss . Yo, Zg) = —Yoqizp1 » (22l =0, (X4, Z) = Yorss -
ke, {miy . (), {pi, {4} -

There are 6 different types of basis elements

>4

le ‘X47 }/03 )/2117 }/2k+17 Zq'

By this reason, it is sufficient to verify 38 Jacobi identities for all these types of (indexed)
basis elements.
Note, that here we obtain a number of the reciprocal phrases, which arise in each row
of even weight, starting with the 10th row. Morcover, each time one must return back
just in 4 rows. For instance, the first reciprocal phrase, arising in the row of weight 10,
has the form

[XZ: [Xh {Xls [‘X'l: ‘thXﬂW = [le [‘Xrlv [XI’XZ]H .

Having the leading word (monomial) of this phrase of weight 6, we are obliged to come
back to the row of weight 6 and start the computations once more, taking the above
expression into account .

If we arc lucky in introducing additional defining relations which cut the further increase
of basis elements, then we can find a finite-dimensional Lic algebra as a solution of our

14



problem. The simplest is to assume that some basis element is a linear combination of
the previous ones. For instance, if to introduce the relation

6
Y7 = Z ai}/i 3
i=0
then the Jacobi identities verification shows that

ap=as=ag=05 =0, o,asa;€ C.

It leads to the following 12-dimensional Lie algebra:
[XlaY()] = }/17 [Xlayil = Y’?a [le}/?] = }/37 [XI)Y3] = Y:h [Xl,Y:;] = Y57

[leyé] = }/67 [th'ﬁ] = a)/S +b3/3 +C§/15 [lez(]] = }/h [Xl’Zl] = Y3’
[X15Z2] = )/57 [X11X4] = Oy

Y37}/4] = —G.Z2 + }/6 - bZl - CZO) {Y3=}[5] = 07 [Yziai/ﬁ] = _(GZ + b)Z2 + aY-G
—(ab + C)Z1 —acZy + cYa, [Yg, Z()] = —4, [Yg, Zl] = — 2y,
(Y3, Zo] = ~aZy — bZy ~ cZy, Y3, X4] = ~Ys,
Y3, Ys) = (a% + b)Z; — aYs + (ab+¢)Zy — bYs + acZy — cYa, Yy, Y] =0,
[Y:hZO] - _)/3: [ /:11 Z]} = _)/57 [Y:hZ2] = —0,}/5 - b},3 - CYi,
[}/47X4] = —'a}/f) - bY;ﬂ - C§/17
[V, Ys] = —(a® + 2ab + ¢) 2o + (a® + b)Ys — {a®b + ac + b*) 2y + (ab + €)Yy
—c(a2 + C)Z() + GCYQ, D/,_r,, Z()] = —Zg, [},5, Zl] = ——aZg — bZl - CZ(),
[Vs, Zo) = —(a® + 8)Z2 — (ab + ¢)Z1 — acZy, [Ys, X4 = —a¥s — bYy — cYa,
[Ys, Zo] = =Y, [Ye,Z1] = —aY¥s — bYs — Yy, [Ys, 2] = ~(a* + D)Y3
—(ab + )Yz — acYy, [Ys, X4] = —(a? + b)Ys — (ab + ¢)Ys — acly,
[Z0>Zﬂ - 07 [ZO>ZZ] = 01 [Z()yXAI] = Y?iv
1Z1,22) =0, [Z1, X4 = Y5,
[227X4] = _a}/S - bY3 - Cl/l:

which is a particular solution of (12).
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5 Example 2. Prolongation Algebra for Partial
Differential Equations Describing One-Dimen-
sional Langmuir Turbulence

5.1 Defining Relations

Investigation of Langmuir turbulence in plasma excited by strong electromagnetic fields
is a very difficult physical problem. It is a topical one in many different applications
connected with the necessity of the plasma heating by high energetic radiation and,
first of all, for the laser thermonuclear synthesis.

The process is described by the following system of nonlinear partial differential equa-
tions, being the simplest one for the problem, namely, without the source and dissipa-
tion [15].

BE 10FE #n  On | E?

% trae " e o Tas

Transformation to the polar coordinates E = pe'® leads

1
Pt = -‘Ep‘sz — PzPz,

! 1,
¢t - 2ppzz 2§0;: n,

Ny — Nige = 4PPas + 402

Here functions E = E(z,t) and n(z, t) describe the electric field and the plasma density,
respectively.

We use the Whalquist-Estabrook method under the hypothesis

{ F - -'ilnt'*'j::‘_(nvd)vp))
G = &ing+ G(n7 ¢a P»¢I,Pz)-
Then the compatibility condition (2) yields
F = &n 4 (&asing + £3c080)p + 240 + (21, Z6)m + T5,
A R 1., . R 1, . .
G = Zng+ 5(1:2 cos @ — Z3sin p)pg + 4E1ppz — 5(252 sin @ + %3 cos )PP

. 1. . f A . oA
—&4p0z + 5([127%] cosp — (23,25 sin )p + (Z[Zz,zs] +2[81, 35))p°

+[£1, &5]n + Zo-

It leads to the following defining relations having the form
(81, 25] = (81, 23] = [B1, Ba] = [£2, Ba] = [F3,24) = [£5,84] = [£5,26] = O,

(21, [#1; &6]) = (&1, [1,85]) = (21, (82, E5]] = (&1, [£3, Es]] = O,
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5
(&1, e, [21, £5]] = 0,
([£1, Z6], [Zo. E5]] + 280 = 0,
[[(f?], .’i'(,], [i?3, .’is]] + 21‘3 = 0

for six generators {£;}(1 < i <6).

5.2 Prolongation Algebra

To investigate the above defining relations we applied our implementation of the algo-
rithm of Sect.3.4 in Reduce and discovered that

fo=d3=0
3

and the corresponding prolongation Lie algebra is a finitely dimensional one of dimen-
sion nine, with the following structure of the basis elements

ey =31, e =4a&4, e3==Is eq=1Ig,
es = [#1,%5), eg = (21,%6], €7 = B4, Bg),
eg = [&5, {81, 86/l g = [Zs, [£4, Ze]]
and their table of non-zero commutators
len,es] = es,  ler,cq] = €5, [ea,eq] = e,
les,e5] = —1/2e7, les,eq] = es, [e3,e5) = —1/2ey,

]
[es, €5) = eg, les, e6) = —1/2¢€7, les, 7] = eq.

The computation with our implementation in Reduce took about two hours ou an 25
Mhz MS-DOS based AT/386 computer.

6 Conclusion

One should note that another method of algebraic manipulation over the finitely pre-
sented Lie algebras, described in [8] and also implemented in Reduce, provides much
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better timing for the example of Sect.5. One of the reasons of a relative slowness of the
algorithm described above is, typically, a very rapid growth of a number of the recip-
rocal phrases with increase of the monomial length. By this reason the computational
process is forced to restart repeatedly.

Now a new version of the algorithm is under development [16] which allows to avoid
much of that trouble and to construct the basis elements as well as their commutators
using the Lie differentiations of the defining relations together with their mutual reduc-
tions. It looks like quite similar to an algorithmic scheme of the involutive approach,
proposed in [17] for the commutative algebra. An implementation of the new version
is to be done in C, and the run of a preliminary C code have already shown its much
higher efficiency.
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[puHuMaeTCs MOAMHKCKA HiA NMPENPUHTBHI, coobuenns OO6beanHEHHOTO
HHCTHTYTa SAEPHBIX uccnepoBanuii H «Kpatkue coobienus OUAU».

VCTAaHOB/EHA CAEAYIOMAs CTOMMOCTD NOAMUCKY HA 12 MecsileB Ha W3JaHNS
OU AU, Brmouasi NEPECHUIKY, NO OTAEIbHBIM TEMATMUECKHM KATETOPHSIM!:

Unpexc Temaruka 1leHa noanuCcKH

Ha rofl
1. DxkcnepumenTanbHad (PU3HKa BLICOKHX 3Heprui 915 p.
2. Teopernueckas PU3NKaA BLICOKHX SHepruit 2470 p.
3. DKCnepuMEHTaIbHAS HEATPOHHAS QPH3NKA 365 p.
4. Teopernueckas QH3NKA HU3KHX 3Heprui 735 p.
5. Maremaruka 460 p.
6. SlpepHas CHEKTPOCKOMNHS W PAJHOXUMHUS 275 p.
7. OH3uKA TAKEABIX HOHOB 185 p.
8. Kpuorennka 185 p.
9. Yckopurenu 460 p.
10. ABTOoMaTH3auust 06paboTKH IKCNEPUMEHTIIBHBIX JAHHDIX 560 p.
1 1. BuuvcsinTesibHasi MAaTEMATHKA U TEXHHKA 560 p.
12. Xumust 90 p. )
13. TexuuKa (pU3NIECKOro IKCOEPUMEHTA - 720 p.
14. UccienoBanus TBEPABIX TeJ H KHAKOCTEH SAEPHBIMH METORAMH 460 p.
15. DKcnepuMeHTanbBast GH3HKA SACPHBIX peakuuii
Np¥ HU3KHX SHEPrHAX 460 p.
16. Jo3umeTpus 1 PUIUKA 3NUHTHE . 90 p.
17. Teopust KOHAEHCHPOBAHHOTO COCTOSRHUA T 365 p.

18. Ucnosib30BaHHE PE3YNALTATOB
M METOAOB (DYHAAMEHTAIbHBIX (PH3HUCCKUX MCCREAOBHHMIA

B CMEXHBIX 06/IACTAX HOYKH M TEXHHKH 90 p.
19. Buodwusnka . - 185 p.
«Kparkue coobuetins OUAN» (6 BbINYCKOB) 560 p.

INMoanucka Mmoxer GbiTb 0opMeHa ¢ atoboro Mecsia roja.
Mo BceM BonpocaM OOpPM/IEHUS NMOANUCKH CAEAYET obpaulaTecs B H3ja-
tenbcKTHIE oTaes OUSU no anpecy: 141980, r.JlyGua, MockoBckoit obnactu



F'epar B.I1., Po6yk B.H., CeBepbsinos B.M. ES5-94-302
O mocTpoeHNH KOHEUHOMPEACTABICHHBIX anredp Jln

B Hacroswe# paGore npeanoxen atroputM s nocrpoeHus anredp Jiu,
3aNAHHBIX KOHCUHBLIM HAGOpOM MOPOXAAIOWIMX M ONPEACAAIOUIMX COOTHO-
WICHUIA. AJITOPUTM OCHOBAH HA NOC/IENOBATENbHOM BHIYHCACHUU rpagyupoBaH-
HbiX HA00poB Ga3HCHBIX IIEMEHTOB M MX KomMmyTaTtopoB. OH peanu3oBaH
Ha A3bIKC KOMIBIOTEPHOM a/ireOpnl Reduce. AaropuT™ MoXeT GbiTh NPUMEHEH,
B UYACTHOCTH, I8 KCCIENOBAHMSA anreOpPaMuecKol CTPYKTYPH HEJIMHEHHBIX
YPaBHEHHMI B YAaCTHBIX MPOM3BOAHBIX METOHOM MPONO/IXEHUS Y OJAKBHCTA-
Ocrabpyka. B xauectse mamocTpanuit paccMOTpeHH anrebpbl TPOAOIKEHHS
ypasHrerus Kopresera-ne-Dpu3a n CHCTEMbI yPABHEHHIA, OITHCHBAIOIMX OXHO-
MEPHY0 JIEHTMIOPOBCKY IO Ty pOYJEHTHOCTD.

PaGora sminonnena B J1aGopaTopum BHUHCAHTENbHON TEXHHKH M aBTO-
Matusauuu OUAU,

Hpenpuut O6beaHeHHoro nicTuTyTa SUIEPHBIX MCCRenoBaHuMi. JlvOna, 1994

Gerdt V.P., Robuk V.N., Severyanov V.M. E5-94-302
On Construction of Finitely Presented Lie Algebras

In this paper we present an algorithm for constructing Lie algebras defined
by a finite sct of generators and relators. The algorithm is based on the
sequential computation of graded sets of basis elements and their commutators.
Its implementation has been done in Reduce. The algorithm can be applied,
in particular, to investigation of the Lie algebra structure of nonlinear partial
differential equations in the framework of the Wahlquist-Estabrook
prolongation method. As illustrative examples the prolongation algebras
are considered for Korteveg-de Vries equation and for the system describing
one-dimensional Langmuir turbulence.

The investigation has been performed at the Laboratory of Computing
Techniques and Automation, JINR.
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