

CERN LIBRARIES, GENEVA

SCAN-9411399

SURYENS

TOKUSHIMA 94-03 November 1994

B and D Meson Decays in the Heavy Quark Effective Theory

TOSHIHIKO HATTORI, TSUTOM HASUIKE*, TOSHIO HAYASHI**

ZENRŌ HIOKI AND SEIICHI WAKAIZUMI***

Institute of Theoretical Physics, University of Tokushima, Tokushima 770

*Department of Physics, Anan College of Technology, Anan 774

**Department of Physics, University of Kagawa, Takamatsu 760

*** Department of Physics, School of Medical Sciences,
University of Tokushima, Tokushima 770,
JAPAN

ABSTRACT

We study semileptonic and nonleptonic decays of both B and D mesons in the heavy quark effective theory (HQET) with $O(\bar{\Lambda}/m_Q)$ corrections ($\bar{\Lambda}\simeq O(\Lambda_{QCD})$) in order to investigate whether s quark can be treated as a heavy quark in the HQET or not. The factorization hypothesis is used for the analysis of the nonleptonic decays. B meson decay is again explained well for its overall semileptonic and nonleptonic decays even in this unified analysis. D meson decay is also described well in terms of the HQET with $O(\bar{\Lambda}/m_c)$ and $O(\bar{\Lambda}/m_s)$ corrections for $D^0\to K^-\bar{l}\nu_l$, $D^0\to K^-\pi^+$ and $K^-\rho^+$. By using the maximum likelihood method for the unified analysis of B and D mesons, the Isgur-Wise functions of linear and exponential type reproduce the data, while the pole type one does not work so well. Eventually, we can safely say that the s quark can be accommodated in the heavy quark effective theory.

1. Introduction

The heavy quark effective theory (hereafter HQET)¹⁾ has proved to be a useful strategy for the study of weak decays of heavy flavored hadrons. The theory has the flavor and spin symmetry, which allows only a small number of form factors for transition matrix elements of those hadrons and reduces them to only one function, the so-called Isgur-Wise function in the symmetry limit $m_Q \to \infty$, Q denoting a heavy quark like b and c.

The HQET gives a tremendously simple description of weak decays of heavy quark hadrons $^{2-5}$ especially B mesons, compared to the bound state models 5 The Cabibbo-Kobayashi-Maskawa matrix element V_{cb} for the $b \to c$ weak transition has been successfully extracted from B meson semileptonic decays for varous types of the Isgur-Wise function $^{7.4}$ The nonleptonic decays of neutral B meson (B_d) are also studied at the lowest order in the HQET under the factorization hypothesis by several authors $^{2.9,10}$ and then at the order $\bar{\Lambda}/m_Q$ of corrections by us 11 to show that the hypothesis works well to describe the decays with the HQET $(\bar{\Lambda} \simeq O(\Lambda_{QCD}))$.

Another recent concern about the HQET is whether s quark can be accommodated as a heavy quark to the HQET. Ito, Morii and Tanimoto have studied semileptonic D meson decays to show that $O(\bar{\Lambda}/m_s)$ corrections are significant for $D \to K^{(*)} \bar{l} \nu_l$ and the branching ratios of $D^0 \to K^- \bar{l} \nu_l$ and $D^+ \to K^{*0} \bar{l} \nu_l$ decays are consistent with the experiments .¹²⁾ On the other hand, Neubert and Rickert have obtained the behaviors of Isgur-Wise function as a function of $v \cdot v'$ (four-velocity transfer squared) from the form factors determined phenomenologically in the bound state model by Wirbel, Stech and Bauer⁶⁾ and shown that the universality among the hadronic form factors given by the HQET breaks down for all values of $v \cdot v'$ in the case of $c \to s$ transition, while it holds to an accuracy of 20 % for $b \to c$ transition. ¹³⁾

In this paper, we investigate semileptonic and nonleptonic decays of both B and D decays in a unified way up to the $O(\bar{\Lambda}/m_Q)$ corrections (Q=c,s) to the HQET. Factorization hypothesis is assumed for the nonleptonic decays. We analyze the D decay, using the branching ratio data of semileptonic decay, $D^0 \to K^-\pi^+$,

- 2 -

 $K^{*-}\pi^+$, $K^-\rho^+$ and $K^{*-}\rho^+$ as the nonleptonic decays and the recent beautiful data obtained by CLEO on the differential decay rates of $D^0\to K^-\bar{l}\nu_l^{++}$ to show that s quark can be treated in the heavy quark effective theory, even though the s quark is in the transient region between light and heavy quarks.

In §2, the formalism for our analysis is given in the $O(\bar{\Lambda}/m_c)$ and $O(\bar{\Lambda}/m_s)$ corrections to the HQET. In §3, we use the maximum likelihood method to obtain the parameters in the theory for semileptonic and nonleptonic decays of B and D mesons and discuss the numerical results. Discussions and some comments are given in §4.

2. Formalism

Let us explain the formulas for the analysis. The matrix elements between D^0 (with velocity v_{μ}) and K^- or K^{*-} (with velocity v'_{μ}) are expressed as

$$\langle K^{-}(v')|V^{\mu}|D^{0}(v)\rangle = \sqrt{m_{D}m_{K}}[A(y)(v^{\mu}+v'^{\mu})+B(y)(v^{\mu}-v'^{\mu})].$$

$$\left\langle K^{*-}(v') \middle| V^{\mu} \middle| D^{0}(v) \right\rangle = i \sqrt{m_{D} m_{K^{*}}} C(y) \varepsilon^{\mu\nu\alpha\beta} \varepsilon^{*}_{\nu} v'_{\alpha} v_{\beta},$$

$$\left\langle K^{*-}(v') \middle| A^{\mu} \middle| D^{0}(v) \right\rangle = \sqrt{m_{D} m_{K^{*}}} [D(y) \varepsilon^{*\mu} + E(y) (\varepsilon^{*} \cdot v) v^{\mu} + F(y) (\varepsilon^{*} \cdot v) v'^{\mu}], \tag{1}$$

where $y \equiv v \cdot v'$, ε^* is the polarization vector of K^* , and $A(y) \sim F(y)$ are given in the HQET by

$$A(y) = \xi(y)[1 + (\frac{1}{m_*} + \frac{1}{m_*})\tilde{\Lambda}\rho_1(y)],$$

$$B(y) = -\xi(y)(\frac{1}{m_s} - \frac{1}{m_c})\bar{\Lambda}\rho_2(y),$$

$$C(y) = \xi(y) \left[1 + \frac{1}{m_*} \bar{\Lambda}(\rho_3(y) + \frac{1}{2}) + \frac{1}{m_*} \bar{\Lambda}(\rho_1(y) + \rho_2(y))\right],$$

$$D(y) = \xi(y)(y+1)[1 + \frac{1}{m_*}\bar{\Lambda}(\rho_3(y) + \frac{1}{2}R) + \frac{1}{m_*}\bar{\Lambda}(\rho_1(y) + \rho_2(y))],$$

$$E(y) = -\xi(y) \frac{1}{m_*} \bar{\Lambda}(2\chi_2^0 + \xi_+^0 - \frac{1}{2}),$$

$$F(y) = -\xi(y)\left[1 + \frac{1}{m_s}\tilde{\Lambda}(\rho_3(y) - 2\chi_2^0 + \xi_+^0) + \frac{1}{m_c}\bar{\Lambda}(\rho_1(y) + \rho_2(y))\right], \tag{2}$$

up to $O(\bar{\Lambda}/m_s)$ and $O(\bar{\Lambda}/m_c)$ corrections, where the definition of $\bar{\Lambda}$ is given later and $R \equiv (y-1)/(y+1)$. Here $\rho_1(y)$, $\rho_2(y)$ and $\rho_3(y)$ are made up from the form factors $\chi_{1,2,3}(y)$ and $\xi_+(y)$ as follows,

$$\rho_1(y) = \chi_1(y) - 2(y-1)\chi_2(y) + 6\chi_3(y),$$

$$\rho_2(y) = (y+1)\xi_+(y) - \frac{1}{2}(y-2),$$

$$\rho_3(y) = \chi_1(y) - 2\chi_3(y), \tag{3}$$

where we use the same parametrizations for $\chi_1, \, \chi_2, \, \chi_3$ and ξ_+ as we used in the

analysis of B decay .11)

$$\chi_1(y) = \chi_1^0(y-1), \quad \chi_2(y) = \chi_2^0, \quad \chi_3(y) = \chi_3^0(y-1), \quad \xi_+(y) = \xi_+^0, \quad (4)$$

where χ_1^0 , χ_2^0 , χ_3^0 and ξ_+^0 are the constants to be determined.

For $\xi(y)$, we try the same forms often used as in refs. [2-5,7,10-12] as follows.

$$\xi(y) = 1 + \rho(1 - y)$$
 (linear type),

$$= 1/[1 - \rho(1 - y)]$$
 (pole type),

$$= \exp[\rho(1 - y)]$$
 (exponential type) (5)

where ρ is also the constant to be determined.

Now we study the nonleptonic decays. The total width of $D^0 \to K^{(*)-}\pi^+(\rho^+)$ are expressed under the hypothesis of factorization in the HQET with $1/m_s$ and $1/m_c$ corrections as

$$\Gamma(D^0 \to K^- \pi^+) = \frac{1}{16\pi} G_F^2 C_{QCD}^2(\mu) |V_{cs}|^2 |V_{ud}|^2 f_\pi^2 m_D m_K |P_K|$$

$$\times [(1-r)(y+1)A(y)+(1+r)(1-y)B(y)]^{2},$$

- 5 -

$$\Gamma(D^0 \to K^{*-}\pi^+) = \frac{1}{16\pi} G_F^2 C_{QCD}^2(\mu) |V_{cs}|^2 |V_{ud}|^2 f_\pi^2 m_D m_{K^*} |P_{K^*}|$$

$$\times (y^2 - 1)[D(y) + (y - r^*)F(y) + (1 - yr^*)E(y)]^2$$

$$\Gamma(D^0 \to K^- \rho^+) = \frac{1}{16\pi} G_F^2 C_{QCD}^2(\mu) |V_{cs}|^2 |V_{ud}|^2 f_\rho^2 m_D m_K |P_K|$$

$$\times (y^2 - 1)[(1+r)A(y) - (1-r)B(y)]^2$$

$$\Gamma(D^0 \to K^{*-}\rho^+) = \frac{1}{16\pi} G_F^2 C_{QCD}^2(\mu) |V_{cs}|^2 |V_{ud}|^2 f_\rho^2 m_D m_{K^*} |P_{K^*}|$$

$$\times \left[2r_{\rho}^{2}(D^{2}(y)+(y^{2}-1)C^{2}(y))+\{(y-r^{*})D(y)+(y^{2}-1)F(y)+r^{*}(y^{2}-1)E(y)\}^{2}\right], (6)$$

where the functions $A(y) \sim F(y)$ are the ones in eq.(2), $r \equiv m_K/m_D, \ r^* \equiv m_{K^*}/m_D, \ r_\rho \equiv m_\rho/m_D, \ y = (m_D^2 + m_{K^{(*)}}^2 - m_{\pi(\rho)}^2)/2m_D m_{K^{(*)}}$ and $|P_{K^{(*)}}|$ is the size of momentum of K or K^* in the D rest frame in the respective decay;

$$|P_{K^{(*)}}| = \frac{1}{2m_D} \sqrt{[(m_D + m_{K^{(*)}})^2 - m_{\pi(\rho)}^2][(m_D - m_{K^{(*)}})^2 - m_{\pi(\rho)}^2]}.$$
 (7)

The QCD leading-log correction factor for $\mu = m_s$ is 16

$$C_{QCD}(\mu = m_s) = \left[\frac{1}{3} \left(\frac{\alpha_{QCD}(M_W)}{\alpha_{QCD}(m_b)}\right)^{-12/23} \left(\frac{\alpha_{QCD}(m_b)}{\alpha_{QCD}(m_c)}\right)^{-12/25}\right]$$

$$+\frac{2}{3}\left(\frac{\alpha_{QCD}(M_W)}{\alpha_{QCD}(m_b)}\right)^{6/23}\left(\frac{\alpha_{QCD}(m_b)}{\alpha_{QCD}(m_c)}\right)^{-3/25}\left[\left(\frac{\alpha_{QCD}(m_c)}{\alpha_{QCD}(m_s)}\right)^{a_L},\tag{8}$$

where $a_L \equiv \frac{8}{27}(yr(y)-1)$, $r(y) = \frac{1}{\sqrt{y^2-1}} \ln(y + \sqrt{y^2-1})$. $\alpha_{QCD}(m_{b,c,s})$ are calculated from $\alpha_{QCD}(M_Z) = 0.12$.¹⁷⁾

Then we examine the semileptonic D decays, $D^0 \to K^- \bar{l} \nu_l$ and $K^{*-} \bar{l} \nu_l$. The corresponding differential widths are given in terms of the same functions for the nonleptonic decays, $A(y) \sim F(y)$ as follows,

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}y}(D^0 \to K^- \bar{l}\nu_l) = \frac{G_F^2}{48\pi^3} C_{QCD}^2(\mu) |V_{cs}|^2 m_D^2 m_K^3 \sqrt{y^2 - 1} (y^2 - 1)$$

$$\times [(1+r)A(y) - (1-r)B(y)]^2$$

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}y}(D^0 \to K_T^{*-} \bar{l}\nu_l) = \frac{G_F^2}{48\pi^3} C_{QCD}^2(\mu) |V_{cs}|^2 m_D^2 m_K^3 \sqrt{y^2 - 1}$$

$$\times 2(1-2yr^*+r^{*2})[D^2(y)+(y^2-1)C^2(y)],$$

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}y}(D^0 \to K_L^{*-} \bar{l}\nu_l) = \frac{G_F^2}{48\pi^3} C_{QCD}^2(\mu) |V_{cs}|^2 m_D^2 m_K^3 \sqrt{y^2 - 1}$$

$$\times [(y - r^*)D(y) + (y^2 - 1)\{F(y) + r^*E(y)\}]^2, \tag{9}$$

where

- 7 -

$$C_{QCD}(\mu = m_s) = (\alpha_{QCD}(m_c)/\alpha_{QCD}(m_s))^{-6/27}$$
 (10)

for $\Lambda_{QCD}=0.1~{\rm GeV}^{\,14)}$ We calculate the branching ratios, Γ_L/Γ_T and ${\rm d}\Gamma/(\Gamma{\rm d}{\rm q}^2)$ ($D^0\to K^-\bar{l}\nu_l$), where

$$\Gamma = \int_{1}^{(m_D^2 + m_K^2)/2m_D m_K} \frac{\mathrm{d}\Gamma}{\mathrm{d}y} (D^0 \to K^- \bar{l}\nu_l) \mathrm{d}y,$$

$$\Gamma_{L,T} = \int_{1}^{(m_D^2 + m_{K^*}^2)/2m_D m_{K^*}} \frac{\mathrm{d}\Gamma}{\mathrm{d}y} (D^0 \to K_{L,T}^{*-} \bar{l}\nu_l) \mathrm{d}y. \tag{11}$$

Next, we explain the formulas of the semileptonic and nonleptonic decays of B^0 meson. We get the formulas for \bar{B}^0 decays by replacing

- 1) D^0 , K^- and K^{*-} with \tilde{B}^0 , D^+ and D^{*+} in eqs.(1), (6), (7) and eq.(9), respectively,
- 2) V_{cs} by V_{cb} in eqs.(6) and (9),
- 3) m_s by m_c and m_c by m_b in eq.(2).

Concerning the QCD correction factors $C_{QCD}(\mu)$ in eq.(8), we set the energy scale parameter μ as m_c with replacing m_c by E and m_s by m_c as follows,

$$C_{QCD}(\mu = m_c) = \left[\frac{1}{3} \left(\frac{\alpha_{QCD}(M_W)}{\alpha_{QCD}(m_b)}\right)^{-12/23} \left(\frac{\alpha_{QCD}(m_b)}{\alpha_{QCD}(E)}\right)^{-12/25}\right]$$

$$+\frac{2}{3} \left(\frac{\alpha_{QCD}(M_W)}{\alpha_{QCD}(m_b)}\right)^{6/23} \left(\frac{\alpha_{QCD}(m_b)}{\alpha_{QCD}(E)}\right)^{-3/25} \left[\left(\frac{\alpha_{QCD}(E)}{\alpha_{QCD}(m_c)}\right)^{-6/25}\right]$$
(12)

in eq.(8) where E is the total energy of the light quarks becoming together to form π or ρ . As to the B^0 semileptonic decay we set μ equal m_c with replacing m_c by m_b and m_b by m_c as follows,

$$C_{QCD}(\mu = m_c) = (\alpha_{QCD}(m_b)/\alpha_{QCD}(m_c))^{-6/25}$$
 (13)

in eq.(10).

3. Numerical analysis

In this section we investigate how far the HQET is able to reproduce the experimental results on the semileptonic and nonleptonic decays of B^0 and D^0 mesons, simultaneously.

In our analysis, we have six independent parameters. The first four parameters $\chi_1^0,~\chi_2^0,~\chi_3^0$ and ξ_+^0 are the numerical coefficients in the form factors of $\bar{\Lambda}/m_Q$ corrections as shown in the previous section. The fifth one ρ is the constant factor contained in the Isgur-Wise function. Besides these parameters, we treat $|V_{cb}|$ as a free parameter in the B^0 decay. The value of $|V_{cb}|$ has been estimated through the Isgur-Wise function which could reprodece only the data of the q^2 dependence of the decay rate of $\bar{B}^0 \to D^{*+}l\bar{\nu}_l$: $\mathrm{dBr}/\mathrm{d}q^2(\bar{B}^0 \to D^{*+}l\bar{\nu}_l)$. But it is thought that this procedure is not appropriate to estimate the correct value of $|V_{cb}|$ on account of the existence of large errors of experimental values near $y \sim 1$ region and the disregard of $1/m_Q$ corrections to the simmetry limit. We have many experimental data on B^0 and D^0 decays today beyond the q^2 distribution of $\bar{B}^0 \to D^{*+}l\bar{\nu}_l$ process. All of these six parameters are determined through a χ^2 minimum fit to the data of B^0 and D^0 decays.

In this analysis, we take into consideration the $O(\bar{\Lambda}/m_s)$ and $O(\bar{\Lambda}/m_c)$ corrections and drop the $O(\bar{\Lambda}/m_b)$. We neglect $O(\bar{\Lambda}^2/m_s^2)$ and $O(\bar{\Lambda}^2/m_c^2)$ contributions which appear in the squared terms of the eqs.(6) and (9). The value $\bar{\Lambda}$ is defined as $\bar{\Lambda} \equiv m_{B^{(*)}} - m_b \simeq m_{D^{(*)}} - m_c \simeq m_{K(*)} - m_s$, and we can approximately take as $\bar{\Lambda} \simeq O(\Lambda_{QCD})$. Here for the size of $\bar{\Lambda}$, we take three different values $\bar{\Lambda} = 0.3$ GeV, 0.4 GeV and 0.5 GeV. The three different quark masses m_b , m_c and m_s are set to $m_b = 4.7$ GeV, $m_c = 1.5$ GeV and $m_s = 0.5$ GeV, respectively and $M_W = 80.22$ GeV in our calculation. The lifetimes of B^0 and D^0 mesons are given by $\tau_{B^0} = 1.50$

ps and $\tau_{D^0}=0.415$ ps, respectively $^{20)}$ Concerning the absolute values of the KM matrix element, we take $|V_{ud}|=0.975$, and $|V_{cs}|=0.974$. As to the π and ρ decay constants f_{π} and f_{ρ} , we use the values $f_{\pi}=132$ MeV and $f_{\rho}=208$ MeV.

We use the following data in the y^2 fit.

For the B^0 semileptonic decays,

$$Br(\bar{B}^0 \to D^+ l \bar{\nu}_l) = 1.9 \pm 0.5 \, (\%)$$
, which is given in ref.[20].

$$Br(\bar{B}^0 \to D^{*+}l\bar{\nu}_l)=4.5 \pm 0.5 \,(\%)$$
 from ref. [21] and

$$\Gamma(\bar{B}^0 \to D_L^{*+} l \bar{\nu}_l) / \Gamma(\bar{B}^0 \to D_T^{*+} l \bar{\nu}_l) = 1.105 \pm 0.26$$
 from ref. [22].

For the B^0 nonleptonic decays,

$$Br(\bar{B}^0 \to D^+\pi^-) = 0.30 \pm 0.04 \,(\%), Br(\bar{B}^0 \to D^{*+}\pi^-) = 0.26 \pm 0.04 \,(\%).$$

$${\rm Br}(\bar{B}^0 \to D^+ \rho^-) = 0.78 \pm 0.14 \, (\%)$$
 and ${\rm Br}(\bar{B}^0 \to D^{*+} \rho^-) = 0.73 \pm 0.15 \, (\%)$, which are given in ref. [20].

As to $dBr(B^0 \to D^{*+}l\bar{\nu}_l)/dg^2$, we use the data from refs. [9], [14].

For the D^0 semileptonic decays the following data is used:

$$Br(D^0 \to K^- \bar{l} \nu_l) = 4.4 \pm 0.7 \, (\%)$$
 and $Br(D^0 \to K^{*-} \bar{l} \nu_l) = 2.6 \pm 0.6 \, (\%)$,

which are obtained from the data of $\Gamma(D^0 \to K^-\pi)$ given by ref. [21] through the ratios: $\Gamma(D^0 \to K^-\bar{l}\nu_l)/\Gamma(D^0 \to K^-\pi^+) = 0.978 \pm 0.027 \pm 0.044$ and

ratios:
$$I(D^0 \to K^- \nu_l)/I(D^0 \to K^- \pi^+) = 0.978 \pm 0.027 \pm 0.044$$
 and

$$\Gamma(D^0 \to K^{*-}e^+\nu_l)/\ \Gamma(D^0 \to K^-e^+\nu_l) = 0.60 \pm 0.099 \pm 0.07$$

given in ref. [14].

$$\Gamma(D^0 \to K_L^{*-} \bar{l} \nu_l) / \Gamma(D^0 \to K_L^{*-} \bar{l} \nu_l) = 1.8 \pm 0.6$$
, which is given by ref. [23].

For the D^0 nonleptonic decays.

$$Br(D^0 \to K^-\pi^+) = 4.5 \pm 0.7$$
 (%), which is given by ref. [21].

$$Br(D^0 \to K^{*-}\pi^+) = 4.5 \pm 0.6 \, (\%), Br(D^0 \to K^-\rho^+) = 7.3 \pm 1.1 \, (\%).$$

$$Br(D^0 \to K^{*-}\rho^+) = 6.2 \pm 2.5 \, (\%), \, \Gamma(D^0 \to K_L^{*-}\rho^+) / \, \Gamma(D^0 \to K_L^{*-}\rho^+)$$

= 0.9 ± 0.7 which are given in ref. [24].

As to
$$dBr(D^0 \to K^- \bar{l} \nu_l)/dq^2$$
, the data are given by ref.[14].

In our χ^2 minimum search we input the value zero for the parameters χ_1^0 , χ_2^0 , χ_3^0 and ξ_+^0 , the value 0.5 for ρ and the value 0.045 for $|V_{cb}|$ as their starting points.

We show the numerical results of the χ^2 fit on B^0 and D^0 decays in Table 1, 2 and Fig. 1, 2. In Table 1, the values of first five parameters, $|V_{cb}|$ and the χ^2

minimum are shown for two types of the Isgur-Wise function, that is, the linear type and the exponential type. The linear type function gives us the smallest value of χ^2 minimum and the value devided by the number of data minus the number of parameters (χ^2/ndf) is equal to 32.6/(40-6)=0.96 for $\bar{\Lambda}=0.4$ GeV, and the exponential type also gives us almost the same values of the χ^2 minimum. On the other hand, in the case of the pole type function the value of χ^2 minimum is larger than in the case of the linear one and it gives about twice of the linear one. Among the six parameters, the first four ones χ^0_1 , χ^0_2 , χ^0_3 and ξ^0_+ vary a certain extent according to the change of the value of $\bar{\Lambda}$. On the other hand, the fifth one ρ and $|V_{cb}|$ remain almost unchanged.

In Table 2, we show the numerical predictions together with their corresponding data on B^0 and D^0 decays. Among the data only the data of Γ_L/Γ_T on $D \to K^* \bar{l} \nu_L$ is for the D^+ decay. We restrict the data only to the B^0 and D^0 decays and do not use the data of the B^{\pm} and D^{\pm} decays except the above one on account that we cannot share the same formula between them without any further assumption on their decay rates of $b\bar{b} \to B^0\bar{B}^0$ and $b\bar{b} \to B^+B^-$. The comparison of our result with the data of dBr/d $q^2(\bar{B}^0 \to D^{*+}l\bar{\nu}_l)$ and d $\Gamma/(\Gamma dq^2)(D^0 \to K^-\bar{l}\nu_l)$ are shown in Fig. 1 and Fig. 2, respectively. The q^2 -dependence of the $\bar{B}^0 \to D^{*+} l \bar{\nu}_l$ process is predicted by the exponential type of the Isgur-Wise function better than by the linear type one. In the case of $D^0 \to K^- \bar{l} \nu_l$ process our predictions are good for the q^2 -dependence in both types of the Isgur-Wise function. In this process we do not take into consideration the data in the small region of a^2 below 0.40 (GeV²) on account that we need to avoid the complicated structure in this region and do not give the undesirable effect to the χ^2 search in the small region of y. We also do not use the data at $q^2 = 1.15$ (GeV²) on account of the large deviation as compared with the other data. We can conclude that the agreement between our predictions and data is good and our χ^2 fits are within the experimental errors for the \bar{B}^0 decays and $D^0 \to K^-$ decays. And we also obtain the fairly good results for the $D^0 \to K^{*-}$ decays.

Various parametrizations on the Isgur-Wise function have been performed in order to obtain the reasonable result on the value of $|V_{cb}|$. 19,25-27) We search for the

suitable Isgur-Wise functions which give us as small the χ^2 minimum (or χ^2/ndf) as possible and lead to the most probable value of $|V_{cb}|$. The results are shown in Table 3. In place of these parametrizations of the Isgur-Wise function we are able to obtain the small χ^2 minimum by multiplying the factor $\exp(-k(y-1)^2)$ to the form factors in the $\bar{\Lambda}/m_Q$ correction terms, where k is a constant. This method means that we can control the large contributions from the mass correction terms in the large y region beyond y=1. The effects of this factor is also shown in Table 3. In this table, we show several types of the Isgur-Wise function including the ones already analyzed in the past together with their χ^2 minimum values and $|V_{cb}|$ and show the value of the parameter k when this factor is used together with the Isgur-Wise function. As seen in Table 3, we can obtain the reasonable results of the χ^2 fit and the value of $|V_{cb}|$ for the sintable parametrizations of the Isgur-Wise function or the appropriate multiplication factors.

4. Discussions

In the previous analysis we have clarified that the $\bar{\Lambda}/m_Q$ correction by the c quark is necessary and plays an important role to reproduce the experiments of the B^0 semileptonic and nonleptonic decays and to predict the value of $|V_{cb}|$. From our analysis of this time, we evaluate that the $\bar{\Lambda}/m_Q$ corrections by s and c quarks make the large contribution and play the important role for the D^0 semileptonic and nonleptonic decays as well as for the B^0 decays. Especially the contribution from the s quark is indispensable as seen in the fact that $\bar{\Lambda}/m_s$ is O(1) and $\bar{\Lambda}/m_c$ is O(1/3) for $\bar{\Lambda}=0.5$ GeV compared with $\bar{\Lambda}/m_b\sim O(1/10)$.

From our analysis we can estimate the range of $|V_{cb}|$ about 0.0336 $< |V_{cb}| < 0.0391$ for both the linear type and the exponential type Isgur-Wise functions and for $\bar{\Lambda}=0.3\sim0.5$ GeV by using the lifetimes of B^0 and D^0 given in the previous section. The value of $|V_{cb}|$ follows not only from the data of the q^2 -dependence of the branching ratio of $\bar{B}^0\to D^{*+}l\bar{\nu}_l$ process, but also all the data of the B^0 semileptonic and nonleptonic decays together with the same parametrization on the D^0 decays. Therefore it will be considered that our predictions of the value

of $|V_{cb}|$ are more reliable than in the case of using the q^2 -dependence of B^0 decay alone. But the value of $|V_{cb}|$ is changeable according to the parametrization of the Isgur-Wise function or the introduction of the multiplication factor in the $\bar{\Lambda}/m_Q$ correction terms. In order to restrict the range of variation of $|V_{cb}|$ more stringent, it will be necessary to obtain more reliable data especially on $D^0 \to K^*$ decays.

Incidentally, we show the comparison of the calculated branching ratio $\mathrm{dBr}(\bar{B}^0\to D^{*+}l\bar{\nu}_l)/\mathrm{d}q^2$ with the corresponding data given recently in Fig. 3. The parameters are determined from the χ^2 minimum search for the combination of this data and the data for \bar{B}^0 decays in Table 2(a). Though our prediction is in good agreement as seen in Fig. 3, the predicted value $|V_{cb}|$ is fairly small, $|V_{cb}|\simeq 0.0314$ for the linear type Isgur-Wise function. This value of $|V_{cb}|$ is almost unchanged for the variation of $\bar{\Lambda}$.

~ 13 -

REFERENCES

- 1. N. Isgur and M. B. Wise, Phys. Lett. B232 (1989), 113; B237 (1990), 527.
 - E. Eichten and B. Hill, Phys. Lett. B234 (1990), 511.
 - B. Grinstein, Nucl. Phys. B339 (1990), 253.
 - H. Georgi, Phys. Lett. B240 (1990), 447.
 - A. Falk, H. Georgi, B. Grinstein and M. B. Wise, Nucl. Phys. B343 (1990), 1.
- 2. J. L. Rosner, Phys. Rev. D42 (1990), 3732.
- 3. T. Mannel, W. Roberts and Z. Ryzak, Phys. Lett. B254 (1991), 274.
- 4. M. Tanomoto, Phys. Rev. D44 (1991), 1449.
- 5. A. Ali and T. Mannel, Phys. Lett. B264 (1991), 447.
- 6. W. Wirbel, B. Stech and M. Bauer, Zeit. für Phys. C29 (1985), 637.
 - M. Bauer, B. Stech and W. Wirbel, Zeit. für Phys. C34 (1987), 103.
 - N. Isgur, D. Stora, B. Wirbel and M. B. Wise, Phys. Rev. D39 (1989), 799.
- J. G. Körner and G. A. Schuler, Zeit. für Phys. C38 (1988), 511; C46 (1990), 93.
- F. J. Gilman and R. L. Singleton Jr., Phys. Rev. D41 (1990), 142.
- 7. M. Neubert, Phys. Lett. 264 (1991), 455.
- 8. P. Ball, Phys. Lett. B281 (1992), 133.
- 9. D. Bortoletto and S. Stone, Phys. Rev. Lett. 65 (1990), 2951.
- 10. T. Mannel, W. Roberts and Z. Ryzak, Phys. Lett. B259 (1991), 359.
- 11. Z. Hioki, T. Hasuike, T. Hattori, T. Hayashi and S. Wakaizumi, Phys. Lett. B299 (1993), 115.
- T. Ito, T. Morii and M. Tanimoto, Phys. Lett. B274 (1992), 449; Prog. Theor. Phys. 88 (1992), 561.
- 13. M. Neubert and V. Rieckert, Nucl. Phys. B382 (1992), 97.
- 14. A. Bean et al., CLEO Collaboration, Phys. Lett. B317 (1993), 647.

- 15. A. N. Kamal, Q. P. Xu and A. Czarnecki, Phys. Rev. D49 (1994), 1330.
- 16. M. J. Dugan and B. Grinstein, Phys. Lett. B255 (1991), 583.
- 17. The LEP Collaborations: ALEPH, DELPHI, L3 and OPAL, Phys. Lett. **B276** (1992), 247.
- 18. H. D. Politzer and M. B. Wise, *Phys. Lett.* **B206** (1988), 681, **B208** (1988), 504.
- 19. H. Albrecht et al., ARGUS Collaboration, Zeit. für Phys. C57 (1993), 532.
- 20. L. Montanet et al., Phys. Rev. D50 (1994), 1.
- 21. H. Albrecht et al., ARGUS Collaboration, Phys. Lett. B323 (1994), 249.
- 22. D. Bortoletto, Ph. D. thesis, Syracuse University (1989).
- 23. J. C. Anjos et al., E691 Collaboration, Phys. Rev. Lett. 65 (1990), 2630.
- 24. K. Hikasa et al., Phys. Rev. D45 (1992), 1.
- 25. M. Neubert, V. Rieckert, B. Stech and Q. P. Xu, in *HeavyFlavours* edited by A. J. Buras and M. Lindner (World Scientific, Singapore, 1992)
- 26. J. F. Amundson and L. L. Rosner, Phys. Rev. D47 (1993), 1951.
- 27. S. P. Booth et al., Phys. Rev. Lett. 72 (1994), 462.
- 28. The CLEO collaboration, International Conf. at Glasgow (1994).

- 15 -

Table 1. The parameters and χ^2 minimum values for the linear (lin.) type and the exponential (exp.) type Isgur-Wise functions determined through the χ^2 -minimum search for 40 data of the \bar{B}^0 and D^0 semileptonic and nonleptonic decays for $\bar{\Lambda}=0.3, 0.4$ and 0.5 GeV, respectively.

Type of I-W	$ar{\Lambda}$	χ_1^0	χ_2^0	χ^0_3	ξ°+	ρ	$ V_{cb} $	χ^2
lin.	0.3	-2.318	-0.321	0.592	-0.984	0.650	0.0336	32.91
	0.4	-1.959	-0.298	0.472	-0.799	0.648	0.0341	32.61
	0.5	-1.727	-0.284	0.388	-0.675	0.639	0.0342	32.86
	0.3	-1.796	-0.135	0.749	-1.127	1.318	0.0387	34.98
exp.	0.4	-1.506	-0.176	0.573	-0.902	1.321	0.0389	34.29
	0.5	-1.319	-0.207	0.469	-0.771	1.329	0.0391	33.95

Table 2(a). Predicted branching ratios (in %) of $\bar{B}^0 \to D^{(*)+}$ decays and Γ_L/Γ_T ($\bar{B}^0 \to D^{*+}l\bar{\nu}_l$) together with their respective data. The results are for the linear (lin.) type and the exponential (exp.) type Isgur-Wise functions and for $\bar{\Lambda}=0.3$, 0.4 and 0.5 GeV, respectively.

Process	Λ	Туре		Data	
		lin.	exp.		
$\bar{B}^0 \to D^+ l \bar{\nu}$	0.3	1.777	1.683	1.9 ± 0.5	
	0.4	1.820	1.697		
	0.5	1.833	1.706		
$\bar{B}^0 \to D^{*+} l \bar{\nu}$	0.3	4.451	4.787	4.5 ± 0.5	
	0.4	4.475	4.795		
	0.5	4.451	4.787		
$\Gamma_L/\Gamma_T(D^*l\bar{\nu})$	0.3	1.262	1.252	1.105 ± 0.26	
	0.4	1.275	1.256		
	0.5	1.285	1.258		
$\bar{B}^0 \rightarrow D^+\pi^-$	0.3	0.350	0.306	0.30 ± 0.04	
	0.4	0.359	0.307		
	0.5	0.361	0.308		
$\bar{B}^0 \rightarrow D^{*+}\pi^-$	0.3	0.280	0.270	0.26 ± 0.04	
	0.4	0.280	0.278		
	0.5	0.278	0.268		
$\bar{B}^0 \to D^+ \rho^-$	0.3	0.829	0.730	0.78 ± 0.14	
	0.4	0.848	0.734		
	0.5	0.853	0.736		
$\bar{B}^0 \to D^{*+} \rho^-$	0.3	0.755	0.727	0.73 ± 0.15	
	0.4	0.750	0.725		
	0.5	0.742	0.718		

Table 2(b). Predicted branching ratios of $D^0 \to K^{(*)-}$ decays, $\Gamma_L/\Gamma_T(D^+ \to K^{*0}\bar{l}\nu_l)$ and $\Gamma_L/\Gamma_T(D^0 \to K^{*-}\rho^+)$ together with their respective data. The results are for the linear (lin.) type and the exponential (exp.) type Isgur-Wise functions and for $\bar{\Lambda}=0.3,\,0.4$ and 0.5 GeV, respectively.

Process	Λ	Туре		Data	
		lin.	exp.		
$D^0 \to K^- \bar{l} \nu$	0.3	4.162	4.200	4.4 ± 0.7	
	0.4	4.413	4.192		
	0.5	4.005	4.232		
$D^0 o K^{*-} \bar{l} \nu$	0.3	3.850	3.931	2.6 ± 0.6	
	0.4	3.727	3.881		
	0.5	3.627	3.861		
$\Gamma_L/\Gamma_T(K^*\tilde{l}\nu)$	0.3	2.156	2.297	1.8 ± 0.6	
	0.4	2.255	2.337		
	0.5	2.326	2.384		
$D^0 \to K^-\pi^+$	0.3	3.761	4.299	4.5 ± 0.7	
	0.4	3.774	4.290		
	0.5	3.695	4.328		
$D^0 \to K^{*-}\pi^+$	0.3	3.691	3.416	4.5 ± 0.6	
	0.4	3.749	3.550		
	0.5	3.810	3.654		
$D^0 \to K^- \rho^+$	0.3	7.777	7.496	7.3 ± 1.1	
	0.4	7.730	7.477		
	0.5	7.424	7.551		
$D^0 \to K^{*-} \rho^+$	0.3	10.90	10.38	6.2 ± 2.5	
	0.4	10.65	10.32		
	0.5	10.49	10.28		
$\Gamma_L/\Gamma_T(K^*\rho)$	0.3	1.361	1.500	0.9 ± 0.7	
	0.4	1.427	1.537		
	0.5	1.472	1.574		

Table 3. Results for the various parametrizations of the Isgur-Wise function and the multiplication factor which gives the χ^2 minimum value.

Isgur-Wise function	ρ	$ V_{cb} $	χ^2
$\frac{2}{1+\rho(y-1)}-1$	0.555	0.0372	32.15
$\frac{4\exp(-\rho(y-1))-1}{3}$	0.743	0.0364	32.02
$\left(\frac{2}{y+1}\right)^{\rho}$ (ref. [19])	3.526	0.0412	40.03
$\frac{1}{(1+\rho(y-1))^2}$ (ref. [25])	0.970	0.0413	46.53
$\frac{2}{y+1} \exp(-\rho \frac{y+1}{y-1})$ (ref. [26])	3.184	0.0425	46.71
pole type with $k = 0.9$	1.502	0.0366	35.06
exponential type with $k = 0.3$	1.109	0.0363	33.24

Figure 1. Comparison of the calculated $dBr(\bar{B}^0 \to D^{*+}l\bar{\nu}_l)/dq^2$ with the corresponding data. The solid curve is for the linear type Isgur-Wise function and the dashed curve is for the exponential type function. The curves are drawn for $\bar{\Lambda}=0.4$ GeV as an example, but similar curves are obtained for the other cases as well. The data of circle are given by ref. [9] and the data of triangle given by ref.[19].

Figure 2. Comparison of the calculated $d\Gamma(D^0 \to K^- \bar{l}\nu_l)/\Gamma dq^2$ with the corresponding data. The curve is obtained for the linear type Isgur-Wise function and $\bar{\Lambda}=0.4$ GeV as an example. The curve for the exponential type is almost the same as the case of for the linear type in this q^2 region. The similar curves are obtained for the other cases of $\bar{\Lambda}$ as well as in Fig. 1. The data are given by ref. [14].

Figure 3. Comparison of the calculated $dBr(\bar{B}^0 \to D^{*+}l\bar{\nu}_l)/dq^2$ with the corresponding data. The data is given by ref. [28].

