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Abstract

The first observation of the decay B0→ D0D0K+π− is reported using proton-proton
collision data corresponding to an integrated luminosity of 4.7 fb−1 collected by the
LHCb experiment in 2011, 2012 and 2016. The measurement is performed in the full
kinematically allowed range of the decay outside of the D∗− region. The ratio of the
branching fraction relative to that of the control channel B0→ D∗−D0K+ is mea-
sured to beR = (14.2± 1.1± 1.0)%, where the first uncertainty is statistical and the
second is systematic. The absolute branching fraction of B0→ D0D0K+π− decays is
thus determined to be B(B0→ D0D0K+π−) = (3.50± 0.27± 0.26± 0.30)× 10−4,
where the third uncertainty is due to the branching fraction of the control channel.
This decay mode is expected to provide insights to spectroscopy and the charm-loop
contributions in rare semileptonic decays.
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The family of B → D(∗)D(∗)K and B → D(∗)D(∗)Kπ decays, each with two charm
hadrons and a kaon in the final state, proceed at quark level through Cabibbo-Kobayashi-
Maskawa favoured b→ ccs transitions. These transitions occur with either an external
or internal W emission process, as shown in Fig. 1, offering the opportunity to search
for new cs or cc states. In addition, measurements of the amplitude structure of the
D(∗)D(∗) system in these processes can provide important information to calculations
of the cc̄ contribution above the open-charm threshold in b→ s`+`− decays [1]. There
is considerable debate whether the theoretical uncertainties associated with these long-
distance contributions [2–5] could alleviate the tensions in a wide range of measurements
involving b → s`+`− transitions [6–16] with Standard Model predictions. Therefore,
measurements that can provide input to these calculations are of the utmost importance.

Although measurements involving B→ D(∗)D(∗)K decays have been performed by
the ALEPH, BaBar, Belle and LHCb collaborations [17–22], no measurements involv-
ing B→ D(∗)D(∗)Kπ transitions have been performed to date. The B0→ D0D0K+π−

branching fraction, based on considerations of similar decay modes, is expected to be
O(10−4), but the product of the branching fractions including the D0 → K−π+ charm
meson decays is much smaller, at the level of O(10−7).

This paper presents the first observation of the B0→ D0D0K+π− decay, excluding
contributions from B0→ D∗−D0K+ transitions, with D∗− → D0π− decays.1 The branch-
ing fraction of this decay is measured in the full kinematically allowed range of the decay
outside of the D∗− region, relative to the control mode B0→ D∗−D0K+. After the decay
of the D∗− meson via the strong interaction, signal and control modes present the same
final-state particles D0D0K+π−. The measurement is performed using data collected with
the LHCb detector in proton-proton collisions at centre-of-mass energies of 7 TeV and 8 TeV
during 2011 and 2012 (Run 1), and 13 TeV during 2016. The corresponding integrated
luminosities for the years 2011, 2012 and 2016 are 1.0, 2.0 and 1.7 fb−1, respectively.

The LHCb detector [23, 24] is a single-arm forward spectrometer covering the pseudo-
rapidity range 2 < η < 5, designed for the study of particles containing b or c quarks. The
detector elements that are particularly relevant to this analysis are: a silicon-strip vertex
detector surrounding the pp interaction region [25] that allows c and b hadrons to be
identified from their characteristically long flight distance; a tracking system that provides
a measurement of the momentum, p, of charged particles [26,27]; and two ring-imaging
Cherenkov detectors that are able to discriminate between different species of charged
hadrons [28]. Photons, electrons and hadrons are identified by a calorimeter system
consisting of scintillating-pad and preshower detectors, an electromagnetic and a hadronic
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Figure 1: Feynman diagrams of the external (left) and internal (right) W emission contributing
to B0→ D0D0K+π− decays.

1The inclusion of charge-conjugate processes is implied throughout this paper unless otherwise noted.
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calorimeter. Muons are identified by a system composed of alternating layers of iron and
multiwire proportional chambers. The online event selection is performed by a trigger,
which consists of a hardware stage, based on information from the calorimeter and muon
systems, followed by a software stage, which applies a full event reconstruction. Events
retained following the hardware trigger decision are split into two independent categories,
those with a positive decision based on activity in the hadronic calorimeter associated
with the signal candidate decay and those based on signatures from other particles in
the event. The data are further split into two data taking categories for Run 1 and 2016
samples. The software trigger stage requires a two-, three- or four-track secondary vertex
with a significant displacement from any primary pp interaction vertex (PV).

Simulation is required to model the effects of the detector acceptance and the imposed
selection requirements. It is also used to train multivariate classifiers for background
suppression, and to obtain the shape of the invariant-mass distribution for candidate B0

hadrons. In the simulation, pp collisions are generated using Pythia [29] with a specific
LHCb configuration [30]. Decays of unstable particles are described by EvtGen [31, 32],
in which final-state radiation is generated using Photos [33]. The interaction of the
generated particles with the detector, and its response, are implemented using the Geant4
toolkit [34] as described in Ref. [35].

The simulated samples of the signal- and control-mode decays are corrected to im-
prove agreement with the data. A fit to the B0 candidate invariant-mass distribution
of the B0→ D∗−D0K+ sample is performed using the sPlot technique [36] to calculate
weights that statistically remove background contributions. Subsequently, a correction
to the simulation is derived as a function of event track multiplicity and impact param-
eter significance of the B0 candidate with respect to the associated PV, by comparing
B0→ D∗−D0K+ candidates in simulation and background-subtracted data. In addition,
the particle identification (PID) variables in the simulation are corrected using control
data samples with the Meerkat software package [37,38].

The D0 (D0) candidates are reconstructed in the K−π+ (K+π−) final state, in a
±30 MeV/c2 window around the known mass [39]. The K+π− candidates originating
directly from the B0 decay are required to have an invariant mass below 1600 MeV/c2 and
are subsequently combined with the charm mesons to form the B0 candidates.

The selection comprises two stages. First, a loose selection is applied that re-
lies on PID criteria to correctly identify charged kaons and pions, and on the
flight distance significance of the D0 candidates to reject charmless backgrounds.
The signal and control mode data samples are then split using the requirement
|m(D0π−)−m(D0)− [m0(D

∗−)−m0(D
0)]| < (4× 0.724) MeV/c2 to select candidates

consistent with the B0→ D∗−D0K+ hypothesis, where m0 is the known mass of the
particle [39] and 0.724 MeV/c2 is the resolution of the D∗− contribution. To improve the
mass resolution a global kinematic fit [40] is performed constraining the mass of the D0

mesons to its known value. In this kinematic fit the B0 candidate is also constrained to
originate from the associated PV.

The second selection stage relies on two neural networks: one to identify good-quality
D0 candidates from B0 meson decays (NND); and another to reduce the combinatorial
background, which consists of candidates constructed from one or two random tracks in
place of the K+ and π− from the B0 meson decay (NNB). A multilayer perceptron model
is used, implemented using the Keras library [41] in the TensorFlow [42] framework.
These classifiers are trained separately for the Run 1 and 2016 data-taking periods and
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for each trigger category. The training and testing is performed using the k-fold cross
validation technique with k = 10 [43]. Simulated samples are used as a signal proxy and
data from the sidebands of the D0 or B0 candidate invariant-mass distributions as the
background proxy. Specifically, these are candidates outside of a ±40 MeV/c2 window
around the known D0-meson mass [39] for the NND classifier and candidates satisfying
m(D0D0K+π−) > m0(B

0) + 100 MeV/c2 for NNB.
The NND classifier is trained using 14 variables including PID information, kinematic

properties and the decay topology of the tracks and D0 candidate. Fourteen variables
are also used to train the NNB classifier, including the output of the two NND classifiers
and other observables describing the topology and kinematics of the B0 meson decay. As
the NND classifier is an input to the NNB classifier, a requirement is only placed on the
output of the NNB classifier. This threshold is optimised by maximising the figure of merit

NS√
NS+NB

separately in each of the two trigger categories and two data taking periods. Here
NS is the expected signal yield calculated using the signal efficiency from the simulation
and the estimated branching fraction based on branching fraction ratios of similar decays
and the known branching fraction B(B+ → D0D0K+) [39]. The background yield NB is
extrapolated from fits to the sidebands of the B0 candidate invariant-mass distribution.
The classifiers are found to be independent of the m(D0D0K+π−) distribution.

The family of decays Hb → D0(∗)D0(∗)H(∗), where Hb is a beauty hadron and H(∗)

any one- or two-body collection of light or strange hadrons, is examined to search for
possible background contributions. These are referred to as peaking backgrounds. Of these,
four decay modes B+ → D0D0K+, B+ → D∗0D0K+ (or equivalently, B+ → D0D∗0K+),
B0
s → D0D0φ and Λ0

b → D0D0p̄K+ are found to have substantial contributions to
the signal channel. The B+ → D0D0K+ decays are removed using requirements on the
three- and four-body invariant masses 5220 < m(D0D0K+) < 5340 MeV/c2 for candidates
with m(D0D0K+π−) > 5380 MeV/c2. The corresponding partially reconstructed decay
B+ → D∗0D0K+ is similarly removed with the requirement 5050 < m(D0D0K+) <
5200 MeV/c2. Contributions from B0

s → D0D0φ decays are suppressed using tighter
PID requirements in the invariant-mass window 5321 < m(D0D0K+K−) < 5411 MeV/c2,
where the π− candidate is reconstructed under the K− mass hypothesis. Similarly,
Λ0
b → D0D0p̄K+ candidates are removed using PID requirements for candidates satisfying

5575 < m(D0D0K+p̄) < 5665 MeV/c2, with the π− candidate reconstructed using the p
mass hypothesis. All of these backgrounds are reduced to negligible levels, and only the
B+ → D∗0D0K+ veto induces a sizeable signal loss with an efficiency of 93%.

A particularly challenging source of background is the modes B0 → D0K+π−K+π−,
B0 → D0K−π+K+π− and B0 → K−π+K+π−K+π−, so called single-charm and charmless
backgrounds, respectively. Contributions from these decays are reduced by the flight
distance criterion for the D0 mesons, but must be estimated carefully because they peak
at the known B0 meson mass. The residual backgrounds are estimated from the sidebands
of the D0 invariant-mass distributions to be 10 ± 7 candidates. These candidates are
subtracted from the yields during the fitting procedure described below.

The efficiency of the selections applied to the signal and control modes is calculated
from simulated samples. The selection efficiencies include the geometrical acceptance of
the LHCb detector, the online trigger and event reconstruction, offline selections and the
neural network classifiers. For the signal mode, a single total efficiency is calculated and
the resulting dependence on this efficiency model is considered as a systematic uncertainty.
For the control mode, efficiency variations are seen over the phase space. Therefore, an
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efficiency is calculated for each candidate that depends on the two-dimensional Dalitz plot
of the control mode decay.

Extended unbinned maximum-likelihood fits are performed to the B0 candi-
date invariant-mass distributions of the signal and control channels in the range
5235 < m(D0D0K+π−) < 5600 MeV/c2. The resolution of the m(D0D0K+π−) distribu-
tion means that the contribution from partially reconstructed B → D∗0D0K+π− and
B → D∗0D∗0K+π− decays is negligible in this fit range [44].

The fit to the control mode is performed separately in the four data samples, cor-
responding to the two trigger categories and two data taking periods. The fit to the
signal channel is performed simultaneously to these four categories. The invariant-mass
distributions for signal and control mode are modelled with a double-sided Crystal Ball
function [45]. The parameters describing the tails of these distributions are fixed from
fits to simulation separately for each of the four data samples. For the control mode, the
mean and width of the mass distribution are determined directly from fits to the data
subsamples. The resulting values are compared to those obtained on a fit to simulation to
derive correction factors, which are subsequently used in the fits to the mass distribution
of the signal channel. For the signal and control mode fits, the combinatorial background
in each data sample is modelled with an exponential function with a slope allowed to vary
in the fit. In the signal mode, the selections against the peaking backgrounds smoothly
modify the shape of the mass distribution of the combinatorial background. This is
accounted for by modulating the exponential function by an empirical correction from
simulation. In the subsequent fits to the mass distribution of the signal candidates the

ratio of branching fractions between the signal and control modes, R = B(B0→D0D0K+π−)
B(B0→D∗−D0K+)

,
is expressed in terms of the signal yield in each of the four data samples as

R = B(D∗− → D0π−)×
(
Nsigεcon
Nconεsig

)
, (1)

where Nsig and Ncon are the yields of the signal and control modes, respectively, and
εsig, εcon are the corresponding efficiencies. The R parameter is determined from the
simultaneous fit to the four data samples. The yieldNcon and its uncertainty are propagated
from the fit to the control mode with a Gaussian constraint.

Invariant-mass distributions and fit projections of the B0 candidates, summed over
the trigger and data taking period subsamples, are shown in Fig. 2. In total 297 ± 14
signal and 1697± 42 control mode decays are found with a ratio of branching fractions
R = (14.2± 1.1)%, where the uncertainties are statistical only.

Figure 3 shows the background-subtracted [36] invariant-mass distributions of
m(D0D0), m(D0K+) and m(K+π−) overlaid with a simple phase-space distribution,
including efficiency effects derived from simulation. There are hints of structures visible
at the masses of the ψ(3770), D∗s2(2573)+ and D∗s(1,3)(2860)+, and K∗(892)0 states in the

m(D0D0), m(D0K+) and m(K+π−) distributions, respectively. Care should be taken with
any interpretation of these projections because structures may be caused by reflections.
Further analysis of these structures is left for future studies.

Several sources of systematic uncertainty are taken into account. The impact of
using an averaged efficiency in the signal mode is considered by comparing the results
using samples of B0→ D0D0K∗0 simulated events. An event-by-event correction to the
efficiency is also considered, based on various three-dimensional parameterisations of the
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Figure 2: Invariant-mass distributions and fit projections for B0 candidates in (left) the signal
and (right) control mode for all subsamples combined. The data are shown as black points with
error bars and the fit components are as described in the legends. The small single-charm and
charmless background is included in the signal component.
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Figure 3: Projections of background-subtracted data (black points) in (left) m(D0D0), (centre)
m(D0K+) and (right) m(K+π−) with the phase-space only distribution (orange dashed line)
superimposed for reference. The data contain a few single-charm and charmless background
candidates.

full five-dimensional phase space. The fit model uncertainty is calculated by comparing
the nominal background model to a polynomial form, and varying the signal shape
parameters by sampling multivariate Gaussian distributions to account for the variance in
the fit to simulation. The overall fit procedure is tested by generating pseudoexperiments
from the nominal fit model using the measured values and fitting them with the same
model. The results are compared to those from the nominal fit and no bias is observed.
The limited simulation sample size introduces a systematic uncertainty related to the
spread in results obtained by varying the overall selection efficiencies within statistical
uncertainties. Additionally, the weighting algorithm used to correct the simulation, as
well as the data-driven method correcting the PID variables, introduce an associated
statistical uncertainty. An uncertainty is also assigned to the estimation of single-charm
and charmless background yields, by varying this contribution during the simultaneous
fit to data. A correction is applied to the NNB neural network classifier to account for
possible mismodelling between data and simulation, and this uncertainty is calculated
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Table 1: Systematic uncertainties expressed as a percentage of the branching fraction ratio
R. The statistical uncertainty is included for comparison. The single-charm and charmless
backgrounds are considered together.

Source Uncertainty (%)
Signal model 5.0
Background model 2.0
Fixed fit parameters 2.0
Simulation sample size 2.5
Simulation weighting 2.0
PID weighting 1.2
Charmless backgrounds 2.0
Classifier modelling 2.0
Selection efficiency 0.6
Sum in quadrature 7.3
Statistical 7.7

from the resulting difference in selection efficiencies. A small uncertainty is introduced
due to the difference in the efficiency of selections applied to reconstruct candidates in
signal and control modes. The systematic uncertainties are summarised in Table 1; they
are summed in quadrature to give an overall relative systematic uncertainty on the ratio
of branching fractions of 7.3%.

In summary, the decay B0 → D0D0K+π− is observed for the first time, and its
branching ratio relative to B0→ D∗−D0K+ is measured to be

R = (14.2± 1.1± 1.0)%, (2)

where the first uncertainty is statistical, and the second systematic. This measure-
ment uses the full kinematically-allowed range of B0 → D0D0K+π− outside of the
D∗− region, including the entire K+π− mass range, encompassing the K∗(892)0 res-
onance and the broad K+π− S-wave. The most precise measurement of the branch-
ing fraction of B0 → D∗−D0K+ decays, performed by the BaBar collaboration, is
B(B0→ D∗−D0K+) = (2.47± 0.21)× 10−3 [21]. Substituting in this value gives

B(B0→ D0D0K+π−) = (3.50± 0.27± 0.26± 0.30)× 10−4, (3)

where the third uncertainty comes from the uncertainty on the branching fraction
B(B0→ D∗−D0K+). Recently, the LHCb collaboration performed a measurement of

the ratio of branching fractions B(B
0→D∗−D0K+)

B(B0→D0D−K+)
[22]. However, the current precision on

the branching fraction of the decay B0 → D0D−K+ [39] does not yet allow for a more
precise measurement of the decay rate B(B0→ D∗−D0K+). The results in this paper
provide a crucial first step towards studying the rich resonant structure of these decays.
An amplitude analysis will provide insights to both the spectroscopy of cs and cc states,
and charm-loop contributions to b→ s`+`− decays.
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Supplemental Material

This supplemental material includes additional information to that already provided in
the main paper. Section 1 details the correction applied to the selection efficiency of
the control mode. Section 2 shows the invariant-mass distributions and fit projections
separately for the data subsamples.

1 Efficiency correction

To account for variations across the Dalitz plot, m2(D∗−K+) and m2(D0K+), in the
control mode, the efficiency is calculated, in each category, as

εcon(m2(D∗−K+),m2(D0K+)) =

∑
iwiεi(m

2(D∗−K+),m2(D0K+))∑
iwi

. (S1)

Here wi is the weight derived from the sPlot technique, with the B0 candidate invariant
mass distribution as the discriminating variable. The symbol εi refers to the efficiency as a
function of the Dalitz plot position for candidate i in the control mode data sample. The
efficiency variation across the Dalitz plot is displayed in Fig. S1. The average uncertainty
across the bins of the Dalitz plane ranges from 1−8% for the four data samples. The
two exclusive trigger categories are henceforth referred to as Trigger on Signal (TOS), for
events triggered by the signal decay, and Trigger Independent of Signal (TIS), for events
triggered by other particles in the event and that do not fall into the TOS category.

i
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Figure S1: The efficiency εcon, as a function of position in the Dalitz plot of B0→ D∗−D0K+

decays obtained from simulated samples. The top row shows Run 1 samples for (left) TOS and
(right) TIS. The bottom row shows the same trigger categories for 2016 samples.
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2 Mass fits

The invariant-mass distributions and fit projections of the fit model results for each run
period and trigger category are shown in Fig. S2 and Fig. S3 for the signal and control
mode, respectively. The pulls of the fits are also shown, defined as the difference between
the data and the fit with respect to the expected uncertainty. In both modes, the signal
is modelled with a double-sided Crystal Ball (DSCB) function [45], defined as

fS(x; ~θ) =


(
nL

|αL|

)nL exp
(−|αL|2

2

)(
nL

|αL|
− |αL| − x−µ

σ

)−nL , for x−µ
σ
≤ −αL

exp(−1
2

(
x−µ
σ

)2
), for −αL < x−µ

σ
< αR(

nR

|αR|

)nR exp
(−|αR|2

2

)(
nR

|αR|
− |αR|+ x−µ

σ

)−nR , for x−µ
σ
≥ αR,

(S2)

where ~θ represents the parameters of the DSCB function, with µ, σ denoting the usual
Gaussian shape parameters. In the control mode, the combinatorial background is
modelled with an exponential function. As detailed in the paper, in the signal mode this
function is modulated by a correction factor, denoted c(x) such that

fB(x) = c(x)λe−λx. (S3)

The full extended model is then taken as a sum of the signal and background components.
Figure S4 shows the invariant-mass distributions for each category in an extended range

to include the partially reconstructed backgrounds B0 → D0(∗)D0(∗)K+π− for illustrative
purposes. The partially reconstructed peaks are modelled with Crystal Ball functions. Fur-
ther systematic uncertainties would be required to account for the effects of modelling these
additional peaks, motivating the nominal fit range 5235 < m(D0D0K+π−) < 5600 MeV/c2,
where the partially reconstructed contributions are negligible. As a cross check, performing
the fit in this extended range results in a branching fraction ratio R that is in good
agreement with the measurement from the nominal fit.
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Figure S2: Invariant-mass distributions and fit projections for B0→ D0D0K+π− candidates,
shown separately for each run period, (top) Run 1 and (bottom) 2016, and trigger category, (left)
TOS and (right) TIS. The data are shown as black points with error bars and the fit components
are as described in the legends. Pull projections are shown beneath each distribution. The data
contain a few single-charm and charmless background candidates.
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Figure S3: Invariant-mass distributions and fit projections for B0→ D∗−D0K+ candidates,
shown separately for each run period, (top) Run 1 and (bottom) 2016, and trigger category, (left)
TOS and (right) TIS. The data are shown as black points with error bars and the fit components
are as described in the legends. Pull projections are shown beneath each distribution.
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Figure S4: Invariant-mass distributions and fit projections for B0→ D0D0K+π− candidates
over an extended range, shown separately for each run period, (top) Run 1 and (bottom) 2016,
and trigger category, (left) TOS and (right) TIS. The data are shown as black points with
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distribution describes partially reconstructed backgrounds. Pull projections are shown beneath
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13I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
14Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
15Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
16Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
17School of Physics, University College Dublin, Dublin, Ireland
18INFN Sezione di Bari, Bari, Italy
19INFN Sezione di Bologna, Bologna, Italy
20INFN Sezione di Ferrara, Ferrara, Italy
21INFN Sezione di Firenze, Firenze, Italy
22INFN Laboratori Nazionali di Frascati, Frascati, Italy
23INFN Sezione di Genova, Genova, Italy
24INFN Sezione di Milano-Bicocca, Milano, Italy
25INFN Sezione di Milano, Milano, Italy
26INFN Sezione di Cagliari, Monserrato, Italy
27Universita degli Studi di Padova, Universita e INFN, Padova, Padova, Italy
28INFN Sezione di Pisa, Pisa, Italy
29INFN Sezione di Roma Tor Vergata, Roma, Italy
30INFN Sezione di Roma La Sapienza, Roma, Italy
31Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
32Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam,
Netherlands
33Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
34AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science,
Kraków, Poland
35National Center for Nuclear Research (NCBJ), Warsaw, Poland
36Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
37Petersburg Nuclear Physics Institute NRC Kurchatov Institute (PNPI NRC KI), Gatchina, Russia

14



38Institute of Theoretical and Experimental Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow,
Russia, Moscow, Russia
39Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
40Institute for Nuclear Research of the Russian Academy of Sciences (INR RAS), Moscow, Russia
41Yandex School of Data Analysis, Moscow, Russia
42Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia
43Institute for High Energy Physics NRC Kurchatov Institute (IHEP NRC KI), Protvino, Russia,
Protvino, Russia
44ICCUB, Universitat de Barcelona, Barcelona, Spain
45Instituto Galego de F́ısica de Altas Enerx́ıas (IGFAE), Universidade de Santiago de Compostela,
Santiago de Compostela, Spain
46Instituto de Fisica Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain
47European Organization for Nuclear Research (CERN), Geneva, Switzerland
48Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
49Physik-Institut, Universität Zürich, Zürich, Switzerland
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gUniversità di Ferrara, Ferrara, Italy
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iUniversità di Milano Bicocca, Milano, Italy
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