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ABSTRACT

We review a method for the study of systems with quenched disorder, such as
Ising models with random field or coupling, by means of annealed averages where
appropriate constraints are imposed. It allows one to understand the role of the
intensive variables of the disorder (mean magnetic field, impurities concen’;ration,
frustration ...) and improves the annealed approximation of the quenched free energy.

The constrained annealing can be obtained by introducing generalized Gibbs-like
potential depending on Lagrangian multipliers associated to the intensive variables of
the disorder. The minimum of the potential gives a lower bound of the quenched free
energy which can be a very accurate estimate for a proper choice of the constraints.

The method is first applied to one dimensional Ising models with random magnetic
fields. In this case the frustration is properly taken into account and the quenched
free energy density is estimated with a precision higher than the numerical results.
As a first step to higher dimensional model we then introduce an Ising model with

two competing interactions: nearest neighbour random couplings and a positive
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infinite range coupling. At low temperature the model exhibits a new type of non-
trivial ‘ferrimagnetic’ order in a region of low temperatures and intermediate disorder
strength. The qualitative features of the model (in particular the phase transition line
between ferromagnetic and ferrimagnetic phases) is reproduced by the constrained
annealing.

Finally we apply our method to d-dimensional Ising models with random nearest
neighbour coupling. In this case, we also introduce an alternative new way to obtain
constrained annealed averages without recurring to the Lagrange multipliers. It
requires to perform quenched averages on small volumes, in a analytic or numerical
way. We thus give a sequence of converging lower bounds for the quenched free energy.

In particular, in 2d the known analytic estimates are considerably improved.

PACS NUMBERS: 05.50.+q, 02.50.+s, 75.10.N
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1. Introduction

1.1. Systems with annealed and quenched disorder

The statistical mechanics of disordered systems which was initially confined to solid
state physics is now an active field of research bridging different disciplines as physics,
biology, information science. From a mathematical point of view, disordered systems
are characterized by two types of variables: the hot variables which arrange themselves
for minimizing the free energy and the cold variables which have much longer evolution

times. A classical example is a spin glass with Hamiltonian

Hy =) Jijoio; (1.1)

4J
where the N spin variables {o = £1} are of the first type and the random couplings
Jij are of the second type. This fact corresponds to two different kinds of averages:
quenched and annealed averages. The typical free energy is thus given by the quenched

average over the disorder cold variables

1

—ﬂ—Nln ZN = fN (1.2)

where

Zn =) e PHN =N < ~BHN 5 (1.3)
{ei}

is given by an annealed average over the hot variables {o;} which take the two possible
values +1 with equal probability. In the thermodynamic limit, all the disorder

realizations of {J;;} (a part a set of zero probability measure) have the same free

energy
. 1 .
Nm, ~ gy mIN{T}) = lim v = f (14)

This property is called self-average [M-P-V] since (In Zx)/N becomes a non random
quantity for N — oo.

The calculation of the quenched free energy is a difficult problem even in simple
one-dimensional models. In practice, it is much easier to estimate the quenched

average In Z by the annealed average In Z which is a lower bound of f. However,
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annealed averages are often poor approximations and, more important, can fail to
describe even the qualitative aspects of a disordered system. This is due to the fact that
in an annealed average the main contribution comes from a set of disorder realizations
with zero probability measure in the limit N — oo. In these realizations the disorder
variables (for instance couplings and fields in a random Ising model) are arranged in
order to minimize the free energy while in a typical realization of a ‘quenched’ model
they are frozen in some given configuration. The latter is the realistic assumption,
since, in general, the disorder variables have much longer evolution times than the
thermodynamic variables (e.g. spins).

As a direct consequence of the freezing, quenched systems are often characterized
by a fundamental feature that is missed in annealed systems, the so-called frustration
[T]. Indeed a generic disordered system has some disorder realizations where the
energy minima are reached by many spin configurations, which, in general, exhibit
different physical properties: for instance, they could have different magnetization. At
sufficiently low temperature, when the entropic term in the free energy is negligible,
all these spin configurations represent a possible equilibrium state for the quenched
system, and thus it has a problematic choice (i.e. it is frustrated). For simplicity, we
usually refer to those disorder realizations that can induce this feature as the frustrated
ones. To be more precise, one would have called frustrating the disorder realizations,
since the spins or, in general, the system are frustrated.

The classical example is a triangular plaquette with Hamiltonian
H = —-Ji010; — Jyoy03 — J30103 (1.5)

with J; = %1, where the frustration can be defined as J, = ~-[IJ: I jp =1,a
coupling realization is frustrated and there are different energy minima in contrast
with the case jp = —1, where the configuration with aligned spins is favourite.

In more complicated quenched systems, which generally are a set of elementary
interacting plaquettes, frustration is present not only on the elementary plaquettes,
but also on plaquettes of different sizes, built up from the elementary ones, for a proper

choice of the disorder realization.

Recalling the concept of frustration, we have remarked that it is a consequence of
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the freezing of the disorder variables. In fact, an annealed system has no frustrated
realizations since the couplings in a plaquette, or in general the disorder variables, can
evolve into a non-frustrated configuration which permits the system to get a further
diminution of the free energy. The absence of frustration in the annealed system
considerably reduces the physical relevance of the approximation.

However, beside frustration, there are other relevant disorder variables which are
modified in the annealed approximation. For example, the typical realizations of an
Ising ferromagnetic model with impurities (negative coupling constants) has a fixed
concentration of negative couplings. The realizations which contribute to the annealed
approximation have a lower concentration of negative couplings, and, moreover, at low
temperature the concentration vanishes and the annealed free energy becomes that of
the pure ferromagnetic model. Another example is a ferromagnetic model with locally
independent random magnetic fields. Assuming that the fields are positive or negative
with same probability, the typical realization of the disorder will have vanishing mean
magnetization. On the contrary, in the annealed approximation the fields will arrange

to point preferably in the same direction and, at vanishing temperature, they will be

all aligned.

1.2. Constrained annealed averages.

An alternative method to study a system with quenched disorder is to consider
an annealed system where the most relevant qualitative features of the original
models are saved. The idea is to compute annealed averages where frustration,
impurity concentration, mean magnetization and other relevant intensive variables
of the disorder are fixed to their ‘quenched’ values. In other terms, although we treat
random couplings and /or fields as hot (annealed) variables, we require that they satisfy
appropriate constraints which determine the main physical properties of the model.

The standard way to impose a constraint in an average is the method of the
Lagrange multipliers [S-P]. The thermodynamic limit of the annealed average thus
gives a generalized thermodynamic potential which is function of the Lagrange
multipliers (related to some disorder intensive variables), playing the role of the

chemical potential in ordinary statistical mechanics. The value of the Lagrangian
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multipliers which minimizes the thermodynamic potential selects the realizations
with a correct value of the related disorder intensive variables, and, at the same
time, minimizes the difference between the mean free energy density and its annealed
approximations.

However the practical difficulties of implementations increases with dimensionality
and at present we are able to obtain analytic results for spin glasses in two and three
dimensions, while the infinite range Sherrington-Kirkpatrick model is still a challenge
for the method.

The general formulation of the constrained annealing for disordered systems and
most of the applications reviewed in this paper are new although the method and
similar approaches has been proposed and applied in special contexts by many authors
(see [M], [T-B] [K-G-H], [T-V], [D-P]).

We want finally to stress that it is possible to perform constrained annealed
averages, even without Lagrange multipliers, in d-dimensional spin glasses. One needs
only to perform a quenched average over a sub-system with a finite small size. This
is often possible both in an analytic and numerical way. With that second method,

we are able to obtain very good lower bounds of the quenched free energy of two

dimensional spin glasses.

1.3. The models of the review

We have applied the method of constrained annealed averages to one-dimensional
Ising systems with random magnetic fields and couplings, to nearest neighbour Ising
spin glass-in two or more dimensions and to a one-dimensional model with two

competing interactions: a long range ferromagnetic interaction and a short range

random interaction.

In one dimension, we have considered the Ising model with a constant positive
nearest neighbour coupling J and a local field k; which can take at random two possible
values H+h or H—h. At low temperature, for some values of the three constants J, H
and h, the system exhibits a frustrated behaviour. This is due to the fact that a single
spin has two energetically equivalent choices, either to align with the first neighbour
spins or to align with the local magnetic field. The frustration implies that the zero
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temperature entropy is positive . However, the annealed approximation destroys the
typical behaviour associated to the frustration. On the contrary, the constrained
annealed approximation is able to properly take into account the frustration and to

give an extremely accurate qualitative and quantitative description of the model.

We have then introduced a competing interaction Ising model which has two kinds
of couplings: nearest neighbour random couplings +J with equal probability and a
positive infinite range coupling A. At low temperature T the model exhibits a first
order phase transition between a ferromagnetic state (with magnetization m; = 1 at
T = 0) and a ‘“ferrimagnetic’ state (with m, = 2/3 at T = 0), when the disorder
strength J/A is increased. For 5/12 < J/A < 1, a whole spectrum of ferrimagnetic
ground states with magnetization m, =2/(n +1) (n = 2,.-+,00) is present while for
J/A > 1 the ground state is given by a trivial one-dimensional spin glass with m = 0.
The main qualitative features of the model can be described by an annealed average
with the constraint that the number of positive couplings is fixed to its quenched
value. This constrained annealed model is exactly solved at all temperatures and the

diagram of phase is calculated.

At increasing the dimensionality, the application of the method of constrained
annealing becomes more and more difficult, since the relevant variables are connected
to the frustration on loops of bonds on the lattice. The problem is equivalent to
a lattice gauge theory as pointed out by Toulouse and Vannimenus [T-V]. Some
MonteCarlo simulations have been performed following this proposal (see e.g. [Cr],

[B-C], [A-B]), though, as far as we know, no analytic results have been obtained.

In this paper we consider two and three dimensional Ising spin glasses , with nearest
neighbour coupling and no external magnetic field. The couplings are independent
random variable which are either gaussian or take two possible values +1 with equal
probability. We also review the results of [T-B] in the case of diluted disorder, i.e.
Ji = +1 with probability p and J; = —1 with probability 1 — p.

These models have been widely studied from a numerical point of view and also by
finite size exact calculations. It is commonly accepted that in two dimensions, when

Ji = £1 with equal probability, the model has no finite temperature transition to a
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glassy phase. Nevertheless, its behavior at zero temperature is not still completely
understood. In particular, it is unclear what is the scaling behaviour of the heat
capacity at vanishing temperature.

The annealed approximation is very poor and gives a completely wrong description
at low temperature. In order to get an analytic close form for the free energy we impose
a simple constraint: the frustration associated to the square plaquettes corresponding
to the black squares of a chessboard is fixed to the correct quenched value. In this
way, we find out a qualitative behaviour of the vanishing temperature heat capacity

in agreement with the data obtained by finite size calculations (see [S-K]).

1.4. Organization of the paper

The paper is organized as follows.

In Section 2 we introduce the method of Lagrange multipliers for constrained
annealed averages, showing that it is able to give good estimates (lower bounds) of
the free energy and a deeper understanding of the role of the intensive variables of the
disorder. The physical meaning of our proposal is explained in terms of large deviation
properties of the free energy and of the intensive variables of the disorder. In order to
clarify the practical aspects, we first test the method in two exactly solvable examples
and then in a less trivial one-dimensional model.

In Section 3 we systematically apply the method to a one-dimensional
ferromagnetic Ising model with random dichotomic magnetic fields. We compute
the free energy with a precision which is higher than that one obtained by numerical
methods. Moreimportant, we are able to find out the relevant variables of the disorder.
These variables completely determine the physical properties of the model. The mean
magnetization is also computed.

In Section 4, as a first step toward analytic results in higher dimensions, we
introduce a one-dimensional Ising model, with competing interactions: a nearest
neighbour random coupling J; = +J and a positive infinite range coupling A. We
exactly solve the model at temperature T' = 0 and we show that for an intermediate
range of values of J/A it exhibits a ferrimagnetic order, which also survives at T' # 0.

The ferrimagnetic phases are frustrated with zero temperature entropy which does
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not vanish and with a non-trivial value of the overlap between the degenerate ground
states. We then introduce a constrained annealed version of the model which retains
the ferrimagnetic order, although without taking into account the frustration. The
advantage is that in this case the phase diagram can be computed in analytic way for
all T', without Montecarlo simulations.

In Section 5 we discuss the Ising spin glass model on the d-dimensional lattice Z¢.
We consider three cases:

a) gaussian couplings models for which we improve the annealed estimates for the
free energy and ground state energy;
b) two dimensional Ising model with diluted disorder (we essentially review the results

of [T-B]);

c) dichotomic couplings in two and three dimensions where we are able to fix the
frustration on some of the elementary plaquettes of the system.

The third case is the most interesting since, in two dimensions, the local frustration
is properly taken into account and the qualitative behavior at low temperature is
similar to that of the quenched model.

In section 6, we introduce a new method to obtain constrained annealed averages
without recurring to Lagrange multipliers. We are thus able to improve the result of
section 5 and to get accurate estimates of the free energy of a two dimensional spin
glass.

Finally, in Section 7 the reader can find a summary and a critical discussion on our

results. In the same section we also give an outlook on the expected future applications

of our method.

2. Lagrange multipliers and Gibbs potentials

2.1. The method

Let us denote the finite volume free energy at fixed coupling realization {Ji;}

un = —Niﬂln Znl{Jis}] 2.1)
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The variables J; ; are used here to indicate any kind of cold variables: couplings,
magnetic fields, impurities,... In general, yn is a random quantity which depends on
the configuration {J; ;}, nevertheless, in the thermodynamic limit N — oo, almost all

the disorder realizations correspond to the same free energy, so that

dm yn = f (22)

with probability one. This property is called self-average since yn becomes a non
random quantity for N — oco. It is useful to introduce the finite volume mean free

energy fn = YN. In terms of the probability Pn(y)y that the free energy density yn
falls in the interval [y,y + y], one thus has

fN=9N = —ﬁ—lN-ln ZN = / y Pn(y) y (2.3)

where the integral is over all possible value of y. For N — oo, the probability of
finding yn # f should vanish, because of the self-averaging. Therefore for large N,

Pn(y) is peaked around the most probable value f, and one can make the ansatz
Pn(y) ~ e ROV (2.4)

where the rate function R(y) > 0 for y # f, and R(f) = 0. This large deviation
property holds in the great majority of physical models; in Appendix 1 we discuss its
validity in the relevant case of nearest neighbour Ising spin glass in d dimensions. The
large deviation property (2.4) allows one to perform a saddle point estimate of the

integral (2.3) which gives the expected result
Jim =1 (2.5)
The case of the annealed free energy
fo= 1 2, (Zn (2.6)
¢ Ngoo N,B . N) )
is rather different. Taking into account (2.4), one has
_Z?=/ y Pn(y) e BYN N/ y e N(R(y)+8y) (2.7)
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In the large N limit this integral can be estimated by the saddle point method so that

Bfa = n:;Iin[R(y) + Byl = R(y*) + By". (2.8)

In general y* differs from the most probable value f and therefore fo # f. This
equality shows that the main contribution to f, comes from a set of realizations of the
disorder of probability ~ e~ B(¥" )N which exponentially vanishes in the thermodynamic
limit. This set of realizations can be very different from the most probable set and,
therefore, the physical properties of the annealed model can be very different from the
quenched one.

In order to improve the annealed estimate (2.8) of the free energy, let us consider
intensive disorder variables defined in terms of the microscopic quenched variables.
Variables of this type e.g. are: >, Jij or # D J% in Ising models with nearest
neighbour random couplings and # Y; hi in Ising models with random magnetic fields.
As we will see in Section 6, one of the most relevant intensive disorder variables
is the single plaquette frustration T{T prp where fp indicates the product of the
coupling constants Ji; on the four bonds {i,;} which form a square plaquette on the
d dimensional hypercubic lattice.

Let us indicate by a one of these quantities which are supposed to self-average to
@. In the previous cases, if J;; and h; are independent identically distributed (ii.d.)
random variables, in the limit of large N « self-averages to J or to k because of the

large number law. It follows that the joint probability
Pn(y,a) ~ exp[ —~R(y, )N ] (2.9)

has a maximum at y = f, @ = & which means that R(y,a) > 0 for (y,a) # (f,@),
and R(f,@) = 0. Furthermore since Pn(y) = J Pn(y, @) do one has from saddle point
method

R(y) = min[R(y, o)] = Rly, o(y)] (2.10)

This equality obviously implies that a(f) = @. The introduction of the new variable
o has no effects in the integral f = limy_.o0 [ dydaPn(y,a)y for the quenched

free energy but shows that only the disorder realizations which correspond to a = @
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contribute to f in the thermodynamic limit. The introduction of the new variable also

has no effect in the calculation of the integral

/dy daPn(y,a) e NPY (2.11)

so that one has
Bfa = I;ﬁg[R(y, a) + Byl = R(y*,a") + By". (2.12)

where a* = a(y*) as it can be seen by comparison with (2.8) and (2.10). The above
expression is the same as (2.8) but explicitly shows that the minimum condition is
realized for a free energy y = y* and for @ = a*. These two quantities both differ from
the quenched averages f and @. In other words, the main contribution to f, comes
from disorder realizations of exponentially vanishing probability with a wrong value
of a. At this point, it is clear that it would be useful to restrict the annealed average
only on the set of realizations with the correct value of @. This is indeed possible by
means of a Lagrange multiplier 4. In the following we take @ = 0, to simplify the
notation. In order to average over the disorder configurations with o = @ = 0, we

start by computing
Znehon N = / dy daPn(y,a) e PVN e=raN =98 m) N (2.13)
where we have introduced the new Gibbs-like thermodynamic potential
9(8,) = lim (~ 37 1n Zne7on ™) = min(R(y, ) + By + ol (214)

At given p and B, the value of the variable oy which minimizes (2.14) can be expressed
as a function of the Lagrange multiplier 4, that is a(u) = —g%. Therefore, the value

£ of the Lagrange multiplier which fixes « = @ = 0 is given by the condition

9(B,p)|
| = 0 (2.15)

i

The relation (2.15) simply says that the constrained free energy

fac = %g(ﬂaﬁ) (2'16)
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is obtained by computing the maximum of the Gibbs potential (2.14). As the minimum
of a in (2.14) for 4 = fi is reached at a = 0, one has the constrained annealed free

energy fac
Bfac = 9(B,) = m;'n[R(y,O) + Byl = R(9,0) + By (2.17)

which should be compared with (2.12) where a = a* is a free parameter different from
its self-average @ = 0. Furthermore, by the convexity of the logarithm function, one

can prove the inequality

f 2 fae 2 fo=g(B,pn=0) (2.18)

showing that f,. is a better approximation of f than the annealed free energy f,.

In fact, foc — fo has an important physical meaning. When aN is considered as the

sum of hot variables, the system minimizes the annealed free energy f, = % 9(8,0)

while when o is taken as a cold variable, the system cannot arrange itself and it

should minimize f,. = %g(ﬁ,ﬁ). In other words, W = f,. — fo = foﬁ afp)dy is the

work needed to freeze the variable a. This consideration indicates that a macroscopic

variable can be of two types:

(1) W = 0. In the thermodynamic limit the variable is not relevant since no work is
needed to freeze it. It follows that & = 0 and f,. = f..

(2) W > 0. One obtains a better approximation of the quenched free energy f by
computing f, instead of f,, since & # 0 and g(8, ) strictly larger than g(8,0).
Our arguments can be trivially extended to a set of M relevant variables {a;}.

Such a set will be complete only if g(B,/1,---fim) = Bf and it might be rather
difficult to individuate it.

In conclusion our method works as follows. First compute

9(8,4) = Jim (= InZye ron ) (2.19)

than obtain f,. as

fuc = 5 maxg(8,) (2.20)

15



2.2. An alternative picture of the method

The theory of large deviation allows us to give an alternative way of looking at
constrained annealing, which leads to a deeper insight on the method of Lagrange

multipliers. Let us introduce a class of random variables y~ defined as

1
Y Sun + %aN = — 35 n(Znerer) (2.21)

where yn is the ordinary finite volume free energy and ay is one of the intensive
disorder variables before introduced. Since ax selfaverages to zero, the variables Y
selfaverage to the quenched free energy density f, independently of p. The averaged
;1‘3 also converges to f. By the convexity of the logarithm one has the inequality

— 1

Ve 2 ~ 5 In(Ewe o) = 29(6,0) (2:22)

which holds for any g, so that in the thermodynamic limit

£ 2 5maxg(B,p)] = fue > 59(8,0) = fo (223)

We thus have shortly re-obtained the fundamental inequalities (2.18).

The physical meaning of this alternative picture is that a disordered system can
be described by means of the class of random variables yn- These variables equals
the ordinary free energy in the thermodynamic limit, but have different finite volume
fluctuations. Inside this class, one chooses the less fluctuating variable corresponding
to fi for which the difference between the free energy and its annealed approximation
is minimal.

For any variable yj;, it is possible to consider the associated probability density
Pi(y) ~ e RN (2.24)
and, using this large deviation property, the Gibbs potential g(B, 1) is obtained as
9(B,p) = min[R*(y) + By] (2.25)
a comparison with (2.14) allows one to see that
R*(y) = min[R(y, a) + pa] (2.26)
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In Appendix 2 we discuss the large deviation property (2.24) for the relevant case of
nearest neighbour Ising spin glasses. Our conclusions, by virtue of (2.26) also applies
to the large deviation property (2.9).

To illustrate our method, in the following we study two exactly solvable models
where the introduction of a single variable oy allows us to recover the exact free

energy.

2.3. Two ezactly solvable ezamples

Let us start with a one-dimensional nearest neighbour model without magnetic field,

whose Hamiltonian is

H = Z J,'O','O’H.l (2.27)

with independent random couplings which assume two possible values, say J; = 1 or

Ji = 2 with equal probability. The finite volume partition function is
ZN = Z exp (—8H) =2V Hcosh(ﬂJg) (2.28)
{oi} i

The quenched free energy f of this model is thus exactly computable:

. 1 —— 1 :
f= Nh_rfloo —N—ﬂln Zn = —ﬁ(ln(coshﬂ) + In(cosh 23)) (2.29)

The annealed free energy can also be easily computed

cosh 8 + cosh 23 )
2

fo= lim —-—l—ln7;= —%ln(

Aim — (2.30)

Which is smaller than f. In order to compute the constrained free energy we introduce

the intensive disorder variable

1 3
an = N;Ji—-z- (2.31)

where 3/2 is subtracted in order to have a vanishing average variable (&y = 0). Since
the couplings are independent, the large number law ensures that apy selfaverages
to zero gets in the thermodynamic limit (ay — 0 with probability one). Let us

remark that ax gives the relative concentration of the two types of couplings. In fact,
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an = ny +2n, — 3/2 where n; is the concentration of couplings of magnitude one and
n2 = 1 — n, is the concentration of couplings of magnitude two.

Using o we can compute

1,  e*/2coshfB + e #/? cosh28

)
9(B,p) = lim ——lnZye ron¥ = —g 5 ) (2.32)
The maximization with respect to u gives
1 1
fac = ~3 m‘fxxg(ﬂ,u) = éﬁ(ln(coshﬂ) + In(cosh2B8)) = f (2.33)

We thus see that fixing the correct value of @, one obtains the quenched free energy by
the constrained annealed average. This means that the only relevant disorder variable
is the relative concentration of bonds. The ordering of the couplings is thus irrelevant
for what concerns this model.

Let us now consider, as second example, the infinite range Random Field Ising

Model with Hamiltonian

H = Z Jaia'j + Z h;o; (234.)

i>] z
where J is a constant coupling and the magnetic fields h; are i.i.d. random variables
with zero mean value. Also in this model InZ # In Z, indicating the presence of
at least one relevant variable ay. Let us limit ourselves to consider the disorder

realizations of {hi} which satisfy the law of the large numbers, that is

1 N

i

We can thus compute the annealed average over the h-distribution

S — 1
Ze—HanN — Z exp[—ﬁ Z Joo; + Z hi(o: + p)] (2.36)
{o:==%1} i>j i

where 8 = 1 is chosen for simplicity. Using the independence of the random variables

hi, the average over the disorder can be performed:

Z exp| —le Z Joio;] exp] Z hi(o: + p)] (2.37)

{0.'=:t1} i>j i
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To be explicit, we consider the binomial distribution h; = +k with respective weights

1/2, so that (2.37) takes the form

N
Z exp[—llir— Z Joioj) H cosh[h(o; + p)] (2.38)

{oi=%1} i>j ;
One should note the identity cosh[h(o; + p)] = exp(A(p) + B(p)o;), where A
and B are solutions of the equations cosh[h(l + p)] = exp(A(p) + B(u)) and
cosh[A(~1 + )] = exp(A(x) — B(p)), obtained by taking o; = +1. After some trivial

algebraic manipulations, one thus gets

- J
Ze—waN — z exp[N (A(u) + Emz + B(p)m)] (2.39)
{oi==%1}
where m = Eia;/N is the magnetization density. The sum over the thermal

configurations can be transformed into an integral over the magnetization that is
J
/ P(m)dm exp[N (A(u) + 5m? + Blz)m)] (2.40)

where P(m) is given by the binomial factor and can be approximated for large N by
the Stirling formula as P(m) ~ exp[—s(m)N] with

_(1-m) (1-m) (I+m), (1+m)
s(m) = 5 In 5 + 5 In 5 (2.41)
The usual saddle point estimation of (2.40) gives
J * * *
98 =1,p) = A(p) + S (m")* + B(u)m* ~ s(m”) (2.42)

where m* is the value of m maximizing the exponent in the integral. The exact
solution for f (see [AM-FP]) coincides with g(8, /) where dg/dp|s = 0. Our result

shows that > h; is the only new relevant thermodynamic variable in this mean field

model.

2.4. One more ezample

Let us now describe a less trivial model where one constraint is not sufficient to get

the quenched free energy by the Gibbs potential. It is the one-dimensional Ising model

with Hamiltonian

H = Z Joioiy, + z hio; (2.43)
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where J is a positive coupling and h; = a + bz; is a random field with a, b arbitrary
constants and z; i.i.d. random variables identically distributed according a standard
gaussian. One can repeat the previous calculation for the Gibbs potential introducing

the variable @ = ) z;/N up to obtain

N
e~ 9(B=L) N _ Z Hexp[JO’i oit1 + aa;] explzi(bo; + p)] (2.44)
{oi=%1} i
2 2 N
= +eON2 N T explJoi 0341 + (a + bu)os] (2.45)
{oi==%1} t

where the disorder average is performed by an integral over the standard gaussian
P(z) = (27)7*/2 exp(—2?/2). The resulting thermodynamic potential is given by the
solution of a one-dimensional Ising model under constant magnetic field a 4 by. The

free energy (8 = 1) of such a model is well known to be —In~ where
v(1) = e’ cosh(a+ bu) + [e27 cosh®(a + bu) — 2sinh(2J)]*/2, (2.46)

so that the Gibbs thermodynamic potential is

2

9(B8=1,p)= - —Iny(p). (2.47)

Although ¢(8,2) is a much better approximation of the quenched free energy than
the annealed free energy g(8,p = 0), it is still different from f, as shown in Fig 1.
In fact, we can impose a further natural constraint on the system by considering
only the disorder realizations that have the correct mean value and variance for
the total magnetic field, i.e. the realizations where, besides a = 0, one also has
ay = Efv(zf —1)/N = 0. To do it, we introduce a second Lagrange multiplier p,
related to the new variable a3, as well as the generalized thermodynamic potential

92(B, 1, p2) defined by the relation

N
e~ 9:(B=limma) N _ Z Hexp[]a’i oi+1 + ao;) explzi(bo; + u) + po(z? —1)]
{a;::i:l} i
(2.48)
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After some trivial gaussian integrations, the problem is again reduced to the solution

of an appropriate one-dimensional Ising model without disorder. One thus finds

b2 +“2
92(8 =1,p,p2) = pa — (———2) 1n(1 2u2) — Iny(p, p2) (2.49)
where (g, p12) is obtained from (2.46) substituting the magnetic field a + by with the
new magnetic field H = a + bu/(1 — 2p2). The potential g, becomes equal to g for

p2 = 0. The maxima of g, are reached at p = i1, yy = 4, given by the relations

i)
ou

_ 9 _, (2.50)

B,z

fi1,fia Oz
Fig 1 shows the potentials —g(8 = 1,u) and ~G(A) = min, —§,(8 = 1,u,A) with
92(8 = Lp, A(p,p2)) = g2(B = 1,p,2) and A = p/(1 — 2p2). Their minima give
increasingly better estimates of the quenched free energy. The exact solution of the
model is not known. However, two constraints are not sufficient to obtain f by the
corresponding generalized potential. In the next section we will consider again the
one-dimensional Ising model (with dichotomic disorder) and we will find out what are

the relevant intensive variables needed to properly describe the model.

3. One-dimensional Ising spin glass

3.1. One constraint

Here, we study the one-dimensional Ising model with a random field and Hamiltonian

= — z Joioi — E hio; (3.1)

where J = 1 is the positive coupling and h; = H + h1; is a random field (H >0,
h > 0) and 7; are independent random variables which assume the values n; = +1
with equal probability.

It is well known that the quenched free energy can be written as a product of

transfer random matrices [C-P-V]

f=- lim ﬂ_ﬁ In Tr HA,,, (3.2)
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where the average is over the 7; distribution and

eBU+H+Rn)  B(~J+H+hn;)
m T\ eA(=J-H-hn)  B(J-H-hn;) ) (3.3)
The quenched free energy is thus given by f = —)/8 where A is the maximum

Lyapunov exponent of the matrix product. The multiplicative ergodic theorem [O]
assures that the thermodynamic limit (3.2) exists and is unique for almost all #;
realizations (a part a set of zero probability measure).

The method of constrained annealed averages allows one to obtain the Gibbs

potential

1 N
9(B, k) = — 55 InfemwenNTr [I14x] (3:4)

i=1
where in this section y = {p1,---pap} indicates M Lagrange multipliers which fix M
self-averaging quantities o = {ay,---ap} to their mean values @ = 0. The maximum
with respect all components of i gives the constrained annealed estimate of the free

energy.

In our case, the simplest quantity to be considered is

o= Zni (3.5)

with @ = 0. This constraint is derived by the large number law. In this case the

variable  has a single component and the maximization of g(8, x) leads to the estimate

Bfse = maxlg(B, )] (3.6)

with

1

9(B, 1) = — In[ max eigenvalue 5( Aje™ + A e)] (3.7)
The previous expression is obtained by a calculation which is identical to an annealed
average without constraints, so that, after averaging over the disorder, one obtains
a transfer matrix corresponding to a particular one-dimensional non-random system.
Its eigenvalue is given by the secular equation which requires the solution of a second

order polynomial, while the minimization over 1 corresponds to the solution of a 4t*

order polynomial. In the case of average magnetic field H = 0 , it is possible to show
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that the value of the multiplier that realizes the minimum is p;* = 0. This means
that imposing a; = 0 does not require any thermodynamic work, and there is no
difference between annealed averages with or without constraint, as a consequence of
the invariance, at H = 0, under a simultaneous inversion of all the fields and spins.
The annealed average without constraints f, = g(8,p1 = 0)/8 can be very
different from f while fii) is in general a reasonable estimate, as shown in Fig 2.
In Fig 3, we show the relative error of f,g,l:) with respect to the numerical value of
f obtained by a numerical simulation, at varying H and h with inverse temperature
B = 1. The error is maximum when the parameters satisfy the relation h = H + 2 J.
This condition is that one which makes frustrated a spin in a site which roughly
speaking répresents the elementary plaquette of the model. It also leads to a non-zero
entropy at T' = 0 [D-V-P]. Indeed, consider the case of a site 7 with random field
hi = H — h (that is 7; = —1) and with two spins up in the 2 neighbour sites, see Fig
4a. The energy of the configuration o; = +1is E; = —2J — H + h while if o; = —1
the energy is E_ = —E_ . The two configurations are degenerate when E, = E_ = 0.
However, the constrained annealed system can still move its random fields to minimize
free energy though the number of sites where n; = 1 is fixed to be N/2. It follows that
it does not exhibit the local frustration of the quenched system since it can separate

itself into two parts (e.g the first N/2 sites with ; = +1 followed by a sequence of
N/2 variables n; = —1).

3.2. More constraints

In this situation, if the temperature is not too large, the constraint a; = ﬁ Ymi=0
is not sufficient to obtain a good qualitative description of the quenched system. In
fact, we must impose a further constraint on the system that does not permit the
formations of these islands of random variables of the same sign. Such islands lead to
a predominance of 7;7;11 = 1 with respect to 7;7;41 = —1 while, in a typical realization
of the quenched system, the law of large numbers implies that a; = ﬁ > Minier = 0.
In terms of product of matrices, imposing the constraints a; = 0 and a; = 0 is
equivalent to consider only sequences where the number of every possible couple of

consecutive matrices appears with a frequence which, in the thermodynamic limit, is
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equal to the probability. In our case each type of couple has probability 1/4.

The estimate of the free energy with two constraints is

BfY = max{g(B, 1, 2] (3.8)
where
) N
9(Bsp1,p2) = =5 In [em(krcatpa )N Ty [[An]< L (3.9)

i=1
As in the case of one constraint (see Appendix 3) g is given by minus the logarithm

of the maximum eigenvalue of the 4 x 4 transfer matrix

1 (Ale—ux—uz Ale_‘“+“2) (3.10)

Gz(#l,ﬂz) = 5 A_jetrtea A_jetr—m

In Fig 2 one sees the new constraint a; = 0 permits us to obtain a very accurate
estimate of the free energy f. Fig 5 gives the relative error of fg) with respect to
free energy f as a function of H and h: it is always below 1.5 per cent. With two
constraints, the error is maximum when the parameters verify the relation h = H + J.
As before, this condition is related to a frustrated situation, involving now the spins
on a non-elementary plaquette of two sites (see Fig 4b). Indeed, consider two random
fields h; = h;1; = H — h and two spins up on the neighbour sites. If h = H + J , there
exist two energetically equivalent configurations where the two spins of the plaquette
(¢, i+1) have the same direction (up or down). The annealed system with constraints
@ = 0 and a; = 0 can avoid this frustrated situation, selecting configurations of
islands of size N/4: two of them with fields, respectively equal to H + k and H — h,
and the other two islands with variables 7n: which have alternated sign.

Our constraints can be easily generalized to avoid that the corresponding annealed
systems choose particular disorder realizations of equilibrium which ignore frustration
over plaquettes of larger and larger size. For plaquettes of size n — 1, this goal can be
achieved by imposing that in the product of random matrices (3.4), each type of n-
ple of consecutive matrices appears with the ‘right’ frequence (in the thermodynamic
sense), e.g. among the triples A; A; A; has to appear N/8 times when N — oo.

In terms of the s , we have to perform annealed averages with constraints on all
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the 2"~1 quantities of the type

1 N
anmk ey (3.11)
i=1
with ¢ <k < --- < 8 < i+ n. For example for n = 3, we have to impose the correct

frequencies for A; (and A_;) by the multiplier p,, for the couples of matrices by u,

and for the tern of matrices by two new Lagrange multipliers ps and pg related to

1 & 1 &
N E i Mit1 Nit2 and N Z ;i Nit2 (3.12)
1 =1

=1
In practice, the problem can be reduced to the determination of the largest eigenvalue

of a matrix G, of size 2™ x 2", as proved in Appendix 3. The upper bound fé?) is

then given by a maximization on y and obviously
F2f0> 5 fork > (3.13)

The computation of féi) for H = 0.5 is shown in Fig 6, where one sees that there
is a considerable improvement over the estimate fég) . However the frustration on
plaquettes larger than n = 2 still produces a difference between fé‘z) and A which
attains its maximum (0.2 per cent) when & ~ 1.

For a vanishing magnetic field H = 0, as generalization of what discussed for
n =1, it is possible to prove by symmetry arguments that the constraints on products
of an odd number of 7’s are irrelevant so that the corresponding Lagrange multipliers
are zero.

More important, the constraints on the n-ples of matrices that we have considered
are very general in a wide class of functions. To be explicit, let us consider the case of

the couples. In this case, a pair of constraints on two independent sufficiently regular

functions of two variables r and s,

1 & 1 &
N Dot misn) N D s(niy misa) (3.14)
=1 =1

are equivalent to impose a; = 0 and a; = 0, i.e. one exactly has the same disorder

realizations in the two ensembles of full 77 probability measure selected by the different
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constraints. The generalization to n-ples with n > 2 is immediate and this equivalence
provides a strong indications that our results are quite generic. We thus expect that
the sequence of estimates f,, .S,l;) cer 5’:) converges to f. This conjecture is based on
the physical argument that when n — oo the quenched system has the same degree of
frustration of the constrained annealed system since the former as well as the latter
can be regarded as the superposition of frustrated plaquettes of different sizes k < n.
The convergence of fi’:) toward the free energy seems to be extremely fast, probably
exponential in n, at least for non zero temperature. For instance, in the random field

Ising model at inverse temperature 8 = 1, the maximum relative error of £, is 30 per

cent, of fgi) is 10 per cent, of fg) is 1.5 per cent and of f,(,i) is 0.2 per cent.

3.3. Other thermodynamical quantities

The method of constrained annealed averages is also able to give good estimates of

other thermodynamical quantities, such as the quenched magnetization, defined as:

m = lim ((% Z oi)) (3.15)

where ((---)) represents the thermodynamic average with respect to the Gibbs
measure. The magnetization m is related to the derivative of the free energy,

_9f
oH

(3.16)

so that the difficulty of calculating the magnetization is almost the same of f. It is
thus natural to introduce an estimate my, of the quenched magnetization substituting

f with an upper bound f.ﬁ?’
: (n)
O
0H

However, m,, is not an upper bound of m at variance with fﬁ,';) and f, although we

(3.17)

expect that m,, is quickly convergent to m at increasing n.

To be explicit, let us consider the case n = 2

19 1 al S
= —_—— 1 —_— - N oy 292
my = ﬂaH{l\}l—I»noo I In Tr (I | A,,..) e” Nlpaatu, 00} (3.18)




where (u;, 41, ) are the values of the Lagrange multipliers that realize the maximum of

(3.9). After simple algebraic manipulations, one obtains:

N
Tr (a‘Z I1 Am‘) e~ N(pjortp;az)

N—oo N . .
Tr (H A,.,'.) e~ N(piartpzaz)
i=1

(3.19)

where

= (5 2) (3.20)

is a Pauli matrix. As previously discussed, the denominator in (3.19) can be reduced
to the trace of the N-th power of the transfer matrix G(py,p2). It is easy to show

that even the numerator can be expressed in a similar way, so that

TrDGN(uy*, p2
r (#1 7/‘1'2)) = max eigenvalue S_l(pl*,#z*)DS(ul*,#z*)

(3.21)

D - (fg :) (3.22)

and S(uy,p5) is the matrix of the similarity transformation which diagonalizes

=1
m2 N—rPoo TTGN([.Ll*,[Lz*

where D is 4 x 4 matrix:

G(p1,45). From the computational point of view, m, can be easily evaluated,
once f<2) is known. In the general case for m,, S(u) is the 2™ x 2™ matrix of the
similarity transformation which diagonalizes the related transfer matrix G(u), and D
is a diagonal matrix with entries equal to +1, alternated along the diagonal. In Fig
1, we compare my,---,m3 with the values of the quenched magnetization obtained
by derivating with respect to H a polynomial fit of numerical calculation of the free
energy, for h = 2 and 8 = 1, as function of H.

In conclusion, we have estimated the quenched free energy and the magnetization
by annealed averages with constraints which prevent the disappearing of frustration.
This method is extremely efficient in one-dimensional random systemm with short

range interactions, where all the interesting physical properties of a spin glass can

be reproduced, without knowing the exact solution of the quenched system.
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4. The competing interaction model

4.1. The quenched system

In the previous section we have seen that the method of constrained annealed averages

is able to accurately describe the mean features of a one-dimensional Ising model with
short-range interactions. Indeed our goal is to apply the method to higher dimensional
problems where new and more rich behaviours appear. As an intermediate step, in
this section we consider a one-dimensional Ising model with nearest neighbour (n.n.)
random couplings +J which has a ferromagnetic infinite range interactions. The two
Limit cases are both trivially solvable: the one-dimensional disordered Ising model by a
simple computation and the mean field model by the Curie-Weiss approach. However,
the competition of the two types of interactions leads to a rather reach behavior.
Beside the paramagnetic and ferromagnetic phases (which are present in the mean
field system), and spin glass phase (which is present at zero temperature in the one-
dimensional system), this model exhibits a new type of ferrimagnetic order in a region
of low temperatures and intermediate disorder strength. It is a non-trivial consequence
of the disorder, and could appear in more complicated systems which share the same
ingredients of this model.

The Hamiltonian of the model is

N

A

H = - Z J,‘ 0041 — —N- Z 0’,'0':,' (4.1)
t=1 >5

where A is a positive infinite range coupling and J; are i.i.d. random variables which

assume the two values J; = +J with equal probability. The partition function is a

random variable depending on the {J:} realization of disorder variables J;. It can be

written as,

Zn = Zexp[ﬂz Jioioip1 + g%(z o;)? — %] (4.2)

o;
The free energy can be numerically computed through the product of random
transfer matrices [C-P-V], since (4.2) can be transformed in an integral over an

auxiliary variable ®. Neglecting the factors which vanish in the thermodynamic limit,
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it reads:

+oo
Zn = / dd Zge 1N (4.3)
with
Zs =) exp()_ BJicioir1 + (BA) /28 o) (4.4)
The quenched free energy is given by the saddle point estimate of the integral (4.3),
@2
~ff =max[A(@) - 2] (45)
where
M) = lim —1InZs = lim llnuﬁ'r,-n (4.6)
Nooo N Nooo N :

i=1
is the maximum Lyapunov exponent of the product of random transfer matrices

(4.7)

T, = ( exp(8J; + (BA)!/>2) exp(—ﬁJi-F(ﬂA)l/z‘I’))
" \exp(—BJ; — (BA)!/?®) exp(BJ; — (BA)'/?)

corresponding to the random Ising model (4.4). However, we can describe the main
features of the phase diagram without a numerical calculation by some qualitative
arguments at zero temperature, and by the analysis of an exactly solvable annealed

model, as discussed in this and in the next sections.

4.2. The ferrimagnetic phases

Our model obviously has some trivial phases: at high temperature 7', the
paramagnetic phase of magnetization m = 0 and, at low temperature and weak
disorder (J small enough) , the ferromagnetic phase. On the other hand, when A = 0
and T = 0 the system is in a spin glass phase with m = 0 where the up or down position
of a spin 0; is determined by the nature (ferro or antiferro) of the coupling J;. This
phase is of antiferromagnetic type, since one can define an analogous of the staggered
magnetization which is equal to unity at T = 0, even if the true magnetization m

remains zero. In particular, the overlap

1
ol — a
A Ei 0i0; (4.8)
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between two equilibrium states a and ¢ is ¢ = £1 in both ferromagnetic and glassy

phases.

It is natural to expect that a third kind of phases might appear at intermediate
values of w = J/A and low temperature with a non trivial magnetic order, neither
ferromagnetic nor glassy. In other terms, as a consequence of the disorder, the ground
states can have a magnetization m # 0, # 1. Using a language borrowed from solid
state physics, such a phase of a disordered system can be called ferrimagnetic. Notice
that in the following, we limit ourselves to consider states with magnetization m > 0,
since the system is invariant for spin inversion, o; — —o; for all i’s.

In this section, we show that at T' = 0, the model exhibits three type of behaviours
at varying the disorder strength:

1) ferromagnetic phase for 0 <w < 5/12
2) ferrimagnetic phases for 5/12 < w < 1
3) spin glass phase for w > 1

In particular, there is a first order phase transition at w; = 5/12 between

ferromagnetism (m; = 1) and ferrimagnetism (m, = 2/3). Moreover, there exists

a whole spectrum of ferrimagnetic phases with magnetization

2
n+1

n=23--,00 (4.9)

for disorder strength:

n(n + 3/2)
(n +1)(n + 2)

W E |Wn ywni1| with wy, =

(4.10)

as shown in Fig 8. At zero temperature, the calculation is possible because one has to
consider orﬂy the energy of the different configurations to determine the equilibrium
states. The key idea is that the system has a ferrimagnetic state with magnetization
m # 1 which is energetically convenient if the disorder is not too small, as a result of
the competition between the antiferromagnetic nearest neighbour coupling J; = —J
and the mean field couplings A > 0.

Here we limit the discussion to the arising of the first ferrimagnetic state m, via a
phase transition at w;. In [P-P-S-2] the interested reader can find the full proof that
an infinity of ferrimagnetic phases exists as anticipated by (4.9) and (4.10).
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For sake of simplicity, suppose that initially w = J/A is close to zero. In this case
at T = 0 the infinite range interaction prevails and the equilibrium state is given by
all spins up. Inserting o; = 1 for all ¢’s in (4.1), we see that the energy density of the

ferromagnetic state is
.1 A A
Ep = lim — {- Z Ji-5N}=-3 (4.11)
since in the thermodynamic limit

] 1
Nim Y Ji=0 (4.12)

At increasing w, some of the spins will flip in order to lower the energy due to the
n.n. interaction. To illustrate the mechanism, Fig 9a shows a ferromagnetic state,
where the first spins to flip are o3 and 0y since they have two lateral negative J;, so
that their jumps produce the maximal energy loss. This consideration is general, as
the first spins to flip are always the spins with two lateral negative n.n. couplings.
However, the situation is more complicated for the island of negative J;'s of size larger
than two. For instance, as illustrated in Fig 9b, in an island of 3 negative J;’s, only
one of the two spins with two negative lateral n.n. couplings flips; in an island of size
4, only two non-consecutive spins flip to lower the energy.

In general, immediately above a critical value w;, the antiferromagnetic order will
predominate in each island of k negative couplings J; = —J, so that a number S = k /2
of spins are be down if k is even, and a number S = (k— 1)/2 if k is odd. Let us stress
that the ‘even’ island has only one spin configuration of minimal energy, unlike the
‘odd’ island which has (k + 1)/2 equilibrium configurations of minimal energy since
one negative n.n. coupling is unsatisfied in the r-th site, with odd 1 < r < k.

Calling NV the total number of spins which flip in all the islands, the resulting

configuration has magnetization

m=1- 2% (4.13)

It is easy to get convinced that the number of islands of negative n.n. couplings is

N/4 + O(N'/?). Since the probability that an island is made of k negative bonds is
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1/2)¥, the number of islands of k n.n. couplings is
8
Ni = (1/2)’“-];£ (4.14)

and, if the antiferromagnetic order is present in all the islands, the total fraction of

spins down can be easily estimated by
o0
<)
k=1

Inserting (4.15) into (4.13), one has 2 < m < 1. At T = 0, to determine whether a

SIS

(1/2)*S, =1/6 (4.15)

W~ | -

him

ferrimagnetic state m; or the ferromagnetic one m; = 1 is of equilibrium, we should

compare their respective energy densities which are given by

E(m)=-4J _(_1—2_m) - %mz for2/3<m<1 (4.16)

as shown in Fig 10. E(m) is a convex function of m (a parabola) so that its minimum
is given by one of its two extrema (either at m = 1 or at m = 2/3) separated by a
energy gap AE = Ey,,, — max[E(2/3), E(1)] where E,,,, is the maximum of E(m)
for m € [2/3,1], reached at m = 2w.

The two states have the same energy at w; = 5/12 where there is a first order
phase transition, since the magnetization has a discontinuous jump from m; =1 to
mg = 2/3.

However the first ferrimagnetic phase (n = 2) cannot exist when the disorder is

too strong. Indeed, its energy is obtained by inserting m = 2/3 into (3.8), so that

2 2
Eferri=—=J — = A 4.17
! 3 5 (4.17)
On the other hand the spin glass phase with m = 0 has energy F, = —J, because all

the spins are aligned with the n.n. random couplings. It follows that for w > 2/3, the
first ferrimagnetic phase has higher energy than the spin glass phase. Actually, the
first ferrimagnetic phase does not minimize the energy already for w > wp = 7/12
(where a second ferrimagnetic phase with ms = 1/2 appears), while the spin glass

phase prevails only for w > 1. In fact, a numerable infinity of different ferrimagnetic
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phases are exhibited by the quenched model for 5/12 < w < 1 with magnetization
given by (4.9).

This result is obtained by a renormalization procedure which generalizes the
argument used for the first ferrimagnetic phase. The transition from a n-phase to
the (n + 1)-phase is of a first order with an energy gap decreasing with n. The last
transition toward the spin glass phase thus is continuous and one has a critical point
atw=1,T=0.

We can also consider the entropy and the overlap of a ferrimagnetic state at T = 0.
These two quantities are indicative for the presence of many different minima of the
energy as consequence of the frustration. In the ferromagnetic phase the system is
completely ordered and there are only two minima so that the entropy S(T'=0) =0
and the overlap ¢(T' = 0) = +1. This is also true for the spin glass phase. On the

contrary, in the first ferrimagnetic state one can show that the entropy is
S(T = 0) = 0.034... (4.18)

and the thermal average of the overlap is

19 2. 3
T = = — — =Iln- = 0.895... 4.1
< ¢( 0) > 77 T 3 n y 0.895 (4.19)

The non-zero value of the entropy and the non-trivial value of the overlap
indicate that a ferrimagnetic phase share an important aspect of high dimensional
disordered systems, namely the existence of many degenerate ground states. Moreover
ferrimagnetism and first order phase transitions survive at non-zero temperature, in
contrast with the spin glass phase which disappears at T > 0, because the system for
w > 1 is basically a one-dimensional system. We thus expect that in the diagram of
phase 7 = T'A versus w = J/A, there are a set of lines of coexistence of two different
ferrimagnetic phases, which end in critical points where the phase transition is of
second order. In order to check this conjecture, we study an annealed version of the

model with the method of constrained annealed averages.

4.3. The constrained annealed ferrimagnetic system

The annealed version of the competing interactions model is quantitatively poor

approximation and, more important, fails to describe even the qualitative aspects of
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the quenched system. In fact, the annealed version has no ferrimagnetic phase. This
is due to the fact that the J;’s are treated as hot variables. At low temperature the
J;’ are allowed to arrange themselves in a prevalently ferromagnetic configuration.

In order to reproduce the ferrimagnetism in a solvable model, we should consider
random couplings J; which are only partially frozen, in the sense that they must satisfy
appropriate constraints although minimizing the (annealed) free energy.

In our case, the minimal requirement is that the system has the right number
of negative n.n. couplings in the thermodynamic limit, in order to reproduce the
fundamental aspects of the quenched system. Let us stress again that we do not
pretend to obtain a quantitative agreement between the quenched and the constrained
annealed model. The purpose is to understand what are the important effects from
a qualitative point of view. In a certain sense, a realistic annealed system is a more
convenient model of the physics of a disordered system than a quenched system, since
it contains the essential ingredients with the advantage of being exactly solvable.

As discussed, in our case we have to impose the correct number of negative n.n.

couplings, using the intensive variable of the disorder

= ]—t,- U (4.20)

which is a self-averaging quantity to the value @ = 0, as a consequence of the large
number law.
In order to compute the constrained free energy f,., it is thus convenient to

introduce a Grand-partition function which depends on the Lagrange multipliers ,

QOn(p) = e #BanN Zy (4.21)

where Zx is the canonical partition function defined in (4.2). Notice that we have
redefined the lagrangian multiplier in order that p — Bu. This is only to have more
treatable thermodynamical variables in the vanishing temperature limit.

Since the random variables are independent, we can easily perform the disorder

average which reads

N A
On(p) = Z H cosh(BJ(oi0i41 — p)) exp {m(z g'i)z} (4.22)

{6;=:f:l} i
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where we have not written the constant factor exp(—(A/2) in the partition function
(4.2) which gives a negligible contribution to the thermodynamic potentials when
N — oo. This formula indicates that the system has two relevant thermodynamic

parameters, the magnetization
1
m= = > o (4.23)
t

and the one-step correlation

1
n= -JV Z: Ti0it1 (4.24)

The Grand-partition function (4.21) can be written in terms of n, m as

N

N
> > P(n,m)[coshBI(1 — ) 04 1 oshBI (1L + )N T AN
(4.25)

where (1 £ n)/2 is the number of times that the variable o;0;41 = %1 and P(n,m)
is the joint probability that a spin configuration has a given value of n and m, and is
non-zero for a given m only when n € [2m — 1,1]. Let us notice that the two sums
in (4.25) are limited to those values of n and m compatible with their definitions.
This probability is obviously symmetric with respect to m, so that we can limit the
discussion to the case m > 0. The calculation of P(n,m) (see [P-P-S-2]) gets for large
N

P(n,m) ~ e~ S(mm N (4.26)

with

2 2 2

—_$(n,m) = 1+m1n(1+m) N 1—mln (l—m) +

_1—2m-+-'nln 1-2m+n 1—{—2m-¥—n1 1+2m+n +
4 4 4 8 4

~In(2) - 5" In (t”) (4.27)

Inserting (4.26) into (4.25) the Grand-partition function becomes

N N
On(p)= Y, ). e stmmmlN (4.28)

nN=—~N mN=-N
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where we have introduced the Gibbs thermodynamic potential

BAm?

5 _nlncoshﬂJ(l-{-y)

(4.29)
In the limit N — oo, the sum (4.27) can be estimated by an integral so that the saddle

g(ma n, #) = +S(nam) -

5 nlncoshﬂJ(l —p) -

point method gives

QOn(p) ~exp[-N i nefimin, ) 9(amym)] (4.30)

This expression gives the formal solution of the constrained annealed system:

1
foe(B) = Iél[lonl] nelgg g Hax ﬂg(u,n ,m) (4.31)

The discussion of the phase diagram of (4.29) becomes particularly simple at zero
temperature, since the entropic factor S(n,m) disappears in —g(#,m,m)/B when
B — oo. As a consequence, one has that

s g(ﬂ)n’m) (1 + n) (1 — n)
li = — 1-— —_
am = 5 JI1—ul 5

JI1+p|— %mz (4.32)

The maximization with respect to y and the minimization with respect to n and m

gives for w < 3/8 the ferromagnetic state
m=1 n=1 (4.33)
while for w > 3/8 one obtains a ferrimagnetic state with
m=1/2 n = 0. (4.34)

Let us stress that in the constrained annealed model the spin glass phase is not present
and only one ferrimagnetic phase exists for 3/8 < w. This is the price we must pay for
obtaining an exactly solvable model at any temperature. However, the ferrimagnetic
order survives and that is our main goal.

As in the previous section, we also use combinatorial arguments to determine
the phase diagram at zero temperature, instead of using (4.29), in order to make

transparent the nature of our approximations. The constrained annealed system can
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organize the random couplings under the constraint that one half of them are negative.
The ferromagnetic part of the energy is independent of the spatial organization of the
couplings and also of the organization of the spins, depending only on m. Therefore,
for any given value of m, the J;’s will organize themselves in order to minimize the
contribution to the energy due to the n.n. interaction. It is easy to convince oneself
that the energetically favourite configuration is that one which has only islands of
an even nﬁmber of negative n.n. couplings. In this case, the spins can organize in
order to be all positive except in some of the islands of antiferromagnetic J;’s where
they alternate up and down. This is due to the fact that islands of an even number
of negative couplings are not frustrated as discussed in Section 5 and a ground state
without frustration has a lower energy than a frustrated one. The annealed system
with the constraint (4.20) is thus able to escape frustration at difference with the
quenched model. As a consequence at T' = 0 the entropy vanishes and the overlap
is ¢ = %1 even in the ferrimagnetic state. This is the main qualitative failure of our
annealed approximation. It is worth noting that it would be possible to introduce
further constraints to take into account the frustration effects.

In order to determine the ground states, we can limit ourselves to the configurations
with magnetization m > 1/2. Indeed, at m = 1/2 one fourth of the spin must be down
and in all the (even) negative islands the spin alternates up and down (see Fig 11).
The contribution to the energy due to the n.n. coupling is now —J N and cannot be
any reduced. On the other hand, the reduction of m to values lower than 1/2 would
rise the energy because of the infinite range positive interaction. As a consequence,
m = 1/2 is the lowest possible value for the magnetization at T = 0 for all finite w’s.

The energy as function of m has the same qualitative shape as in (4.16) with the
difference that the interval for m is [1/2, 1] instead of [2/3, 1]. E(m) is a convex
function and its minima are given by the extrema. We thus have to compare the two

energy densities at the interval limits, which are

E(m=1)=—-A/2 (4.35)
and
E(m=1/2)=-A/8 — J (4.36)
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They coincide at w = 3/8 where a first order phase transition occurs.

As well in the quenched model, one can argue that this phase transition survives
at non-zero temperature until a critical value T.. The advantage is now that this
hypothesis can be checked without a Montecarlo simulation. In fact, the free energy
(4.29) is an extremum of the Gibbs potential g, which can be computed in two steps.

First, we determine
f(n,m) = max B~ g(p,n,m) (4.37)
HER

This can be easily done by solving the equation

dg
| =0 4.38
3 . (4.38)

which gives the maximization value of the Lagrange multiplier as a function of n,

ut = -2L arcsinh(n sinh 2_w) (4.39)
T

w

where we have introduced the reduced temperature 7 = T/A. The constrained

annealed free energy is now the maximum with respect to n and m of

L
f(n,m) = 'E 9(p (n),n,m) (4.40)
To find it, we should solve the two equations

og(w(n)ymym) _ oo Bg(u*(n),n,m)

= 4.41
on om 0 (4.41)
By the first one, m* is obtained as a function of n, that is
m* =n'/? cosh BJ(1 — p*) (4.42)

In conclusion, it is left only one implicit equation in the variable n:

'n:: =m" <1 + tanh 2‘0—:‘- tanh M) (4.43)

T

tanh

which can be easily solved numerically. When the solutions are more than one we
have to choose the solution which minimizes f(n,m(n)). This procedure permits us

to obtain the magnetization as function of the temperature at fixed w. In Fig 12
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one sees that the magnetization as function of the temperature has a jump for w
in the interval [3/8, w.], while at w. = 0.4, m(T) is a continuous function with a
discontinuous derivative at 7. = 0.18. On the other hand, for w > w, and w < wy, the
magnetization as function of the temperature is an analytic function for r < 1.

Fig 13 shows the phase diagram in the w-T plane where there is a line of first
order phase transitions which ends at the critical point w., 7. where the transition is
continuous. Moreover, for 7 = 1, independently of the value of w we have a second
order phase transition to the paramagnetic phase, the same as in the mean field model
given by w = 0. This can be easily proved by expanding f(n,m) in power of n and
m and finding its minimum. Finally from (4.39) and (4.41), one can show that in the
limit w — oo for non zero A the magnetization is a monotonous decreasing function

of 7 from m(7 =0) =1/2 to m(r =1) = 0.

4.4. Final considerations on the competing interaction model

We have studied a one-dimensional Ising model with nearest neighbour random
couplings where some aspects of high dimensional systems are introduced by
considering an infinite range positive coupling. As a consequence of the competition
between the two interactions, our model at low temperature and in a range of
intermediate disorder exhibits an infinity of disordered ferrimagnetic phases with
magnetization m, = 2/(1 + n), (n = 2,3,---00) which are separated by lines of
first order phase transitions. These phases are a real high dimensional effect since
they are frustrated and have many degenerate ground states (the zero temperature
entropy does not vanish). They could appear in more complicated systems which share
the same ingredients of our toy model. For instance, long period commensurate and
incommensurate phases are observed in X — Y models with competing interactions
and anisotropy without disorder ([F-S]). It would be interesting to understand whether
the same type of behaviors might arise in spin glass models.

Although our model can be studied in a lengthy numerical way at non-zero
temperature via products of random matrices we have decided to test the method
of the constrained annealed averages to reproduce its behavior. The constraint is the

simplest one (the number of positive couplings is fixed by the law of large numbers) and
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thus is not able to retain the frustration of the quenched disorder system. However, the
ferrimagnetic order survives and the main qualitative feature of the model is described
by this first rough approximation. The introduction of a further constraint such as
1—{,— 2. JiJiy1 = 0 can also take into account the gross effects of frustrations, although
the analytic calculations become rather tedious, and is far beyond the purpose of this
paper. More important in our opinion is the fact that our results pave the way to
the analysis of new disordered phases of ferrimagnetic type in annealed models of spin

glasses, without recurring to numerical simulations.

5. Spin glasses in two and more dimensions

The ferrimagnetic model of the previous section is a first step toward the
application of the method of constrained annealed averages in systems which are not
one-dimensional. However, the challenge is two and three dimensional Ising models
with independent random couplings, where the relevant variables a to be constrained
should be related to frustration, as first suggested by Toulouse and Vannimenus in
1976 [T-V]. As far as we know, there are only Montecarlo simulations [Cr], [A-B], [B-
C] which used that idea while no analytic calculations have been performed on that
ground. Here we want to show that is possible to get analytic results in dimension
d > 2 with constraints connected to frustration, after a brief review of the simpler
findings obfained for gaussian couplings [P-S-S] and for the 2d Ising model with diluted

disorder [T-B] using the standard constraints of one-dimensional type.

5.1. Constraints for disordered Ising models

Through all section 5 we consider d-dimensional Ising models with nearest neighbour
couplings J;; which are independent identically distributed (i.i.d.) random variables,
in absence of external magnetic field. In particular, the probability distribution of
the coupling is either gaussian or binomial (that is J;; = J with probability p and
Jij = —J with probability 1 — p).

Let us briefly sketch what is the dependence of the free energy on the disorder

variables in order to determine the relevant variables to be frozen in the annealed
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averages. The partition function of the random Ising models is

ZN = Z Hexp{ﬂJijaiaj} (5.1)
{o} i

where the product runs over 7,5 which are nearest neighbours. Using very basic

relations of the hyperbolic functions, (5.1) becomes

Zn = Z HCOSh(ﬂJij) [1+ o;0; tanh(8J;;)] (5.2)
{o} 4J

This form is useful since shows that the non-trivial part of the partition function
is given by [[;.[l + oi0;tanh(8J;;)]. A typical term in that product is
0i0j0501 - --tanh(BJ;;) tanh(BJ;;) - - -, where the bonds {7, 3}, {j,{} - - - can form either
a closed or an open line on the lattice. If the bonds form an open line, at least two
distinct spin variables survive as factor of the product of the various tanh(8J;;), and
the related term gives a zero contribution to the partition function, after performing
the sum over the & configurations. As a consequence, one has to consider only the
terms corresponding to bonds which form a closed line (where the product of the o’s
is equal to unity since they appear twice) so that (5.2) can be written as a sum over
all the possible loops LE,’), where r > 4 indicates the length of the loop (r has to be

even) and s labels different loops with the same length:

By = 2 mHAI) N [ § [1 tenh(8J;) (5.3)
L7y figyerl”
It follows that in a system with a finite number N of spins, the free energy of a disorder
realization is given by
1 ~
Yn = —'E (B+FN(t(4))"',t(R))) (5'4)

where R is the maximum possible length of a loop in the system and R < const N,
while

1
B=In2 + I Zln cosh(8J;;) (5.4a)
i,
and
~ 1
- ()
Fy==h(1+ Y £ (5.4b)
L}




This function depends on the new set of variables

7= J] tenh(8Jy;) (5.4¢)
{i.jyeLf”

given by products which run on the loops LS’), i.e. plaquettes of larger and larger
perimeter at increasing r. For instance, the loop L(*) is the elementary plaquette of
four bonds. Let us stress that a loop L("™) can be built up as a set of two (or more)
distinct and separate loops L{™) and L(™?) with r; +r; = r. In the following we often
label a coupling by only one label instead of two ones, i.e. Ji; is denoted by Ji, since
there is no risk of ambiguity on a closed line.

As the number of the nearest neighbour couplings in a hypercubic d-dimensional

lattice is dN, in the thermodynamic limit the quenched free energy reads

f= —% [dTocosh(AT5) + F +1n2 ] (5.5)

where we have assumed that Fiy in (5.4b) selfaverages to the function

F = Nli_r{lw-}vln[ 1+ Y 7] (5.6)
L}
Note that the reduction of the partition function (5.1) into (5.3) is the procedure used
in the Kac and Ward solution of the 2d Ising model without disorder.

Eq (5.5) is fundamental since it shows that the quenched free energy depends only
on the distributions of the variables #(™, apart the mean value m We
are allowed to classify the relevant variables apn to be fixed to their mean value in a
constrained annealed average of the free energy. With increasing difficulty we must
consider the variables related to
1) IncoshfBJ;;

2) #*) = tanh(8J;) tanh(8J;)tanh(8Js) tanh(8J,)
3) (") with r > 6 (considering only connected loops).

Fixing all the constraints corresponding to those quantities in an annealed average
is equivalent to solve the system with quenched disorder. This can be understood

noting that in (5.6) we have a sum over all the possible £.”. Because of the law
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of the large numbers the rescaled sum of the t-variables corresponding to the same
topological kind of loops self-averages to its quenched mean value. Moreover, it is
possible to prove that this result holds even in a finite volume system: the quenched
free energy can be obtained by a minimization of an annealed average of the Grand-
partition function with respect to the Lagrange multipliers related to the variables £{™
over all the possible loops of the finite system.

In one dimension there are no loops, and we shall show in section 5.2 that the
constraint related to point 1) is sufficient to obtain the exact solution. In general,
we expect that many physical aspects of a spin glass can be reproduced already by
considering the first two points.

The case of random couplings J;; = +1 with equal probability is particularly
simple in this respect, since the variable In cosh BJi; is a constant and thus can be

ignored. Moreover, one immediately sees that (5.4c) becomes
7 = tanh"(3) H Jij (5.7)
{i.j}eL(”
implying that the quenched free energy only depends on the values of the product of

Jij on closed lines of bonds. The non trivial part of the free energy yn in (5.4) is thus
~ 1
Fn = N In(1 4 z4 tanh*(B) + z¢ tanh®(8) + - - -)

where the coeflicients {z4,z¢,---} are non-independent random quantities. As a

consequence, the quenched free energy is

f= —% (dln coshf +1In2 + A}im %ln(l + z4 tanh*(B) + z6 tanh®(8) + - - ))

In the annealed model, its last non-trivial term vanishes since z; = 0 (each z; is a
sum of products of independent random couplings). In the limit of high temperature
(B — 0), the difference between annealed free energy and quenched free energy thus
is of order tanh* 8 ~ 8. More important, the simplest relevant constraint in the +J
spin glass is the frustration on the elementary plaquette, that is J, = —J1J2J3 s,
since t(4) = —j;, tanh* 3 (see section 5.4).

Let us conclude by stressing that for all symmetric distributions the variable

an = 72 Jij already assumes its mean value Ji; = 0 in the annealed estimate
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so that no improvement is reached by fixing the related comstraint. This is a
straightforward generalization of the one-dimensional case where we have shown [P-
P-5-1] that any variable constructed with an odd number of J’s can be constrained
without thermodynamic work. However, it is still meaningful to use such a constraint
when J;; # 0, as in the case of diluted random Ising models where one gets results

very close to those of the quenched system (see section 5.3).

5.2. Ising model with Gaussian random couplings

A major example where the variable In cosh(fJ;;) is a relevant constraint is given
by the d-dimensional spin glass with ii.d. couplings Ji; distributed according to a
normal gaussian ( J;; = 0 and J_f] = 1). In 1d, the model can be exactly solved and

the free energy density reads

lm—uo—— 1
f= —~Eln cosh(B3J;;) — 3 In2 (5.8)

In higher dimension d, it is not possible to find an exact solution for the quenched free
energy, although it is easy to compute the annealed average Zy since in (5.1) one has

a product of d N (the number of bonds) i.i.d. random variables Jij, so that

Zw=3 ([ e -rn 2L )dN (59)
oy Ve van

and the annealed free energy density is

N PR <
fo=-3l2-3 (5.10)

This approximation is very poor at low temperatures, since f, diverges as 8 — oo,
while the quenched free energy tends to a finite value, e.g. in 1d the ground state energy
Ey = limg_.o f(B) = |Jij|. Another unphysical feature is that at small temperature
the entropy of the annealed system is negative and diverges like S(8) ~ —dB?/2.
However, there is a more intelligent way proposed by [T-V] to use the annealed free
energy for obtaining an estimate of the ground state energy. The idea is that the

entropy must be positive for a well defined quenched model and, therefore, f(T) must
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be a non-increasing function of T' = 8~!. As a consequence, one can conclude that

Eq = supg f(B) > supg fo(B) and in our case one obtains
Eq 2> sup fo(B8) = —vV2dIn 2 (5.11)
B

Both (5.10) and (5.11) can be improved using the constrained annealed
approximations of the free energy. The natural choices for ay have been discussed

in the section 5.1. In this case we can start by using the simplest one that is by the

variable
an = % > $(Ji5) (5.12)
1,3
where
¥(Ji;) = In{cosh(8J;;)} — In{cosh(BJ;;)} (5.13)

Note that this constraints automatically leads to the exact solution in 1d where it
corresponds to consider an annealed average restricted to the disorder realizations
which have free energy equal to the quenched free energy (5.8). In terms of the
discussion of section 5.1, this is a consequence of the fact that in 1d there are no
loops, so that the free energy (5.5) is given by averaging only on the random variable
In cosh(BJ;;).

The Grand-partition function

On(p) =10 > [[ exp{8Jijoi0; — wp(Ji;)} (5.14)
{o} #j

can be easily computed since the product runs over independent variables. After

taking the supremum with respect to p of the related Gibbs potential, the free energy

of the constrained annealed system reads

fac = —% In2— gln cosh{8J;;} (5.15)

which is a better approximation than f,, since at finite temperature strict inequality
fac > fa holds. It is worth stressing that at zero temperature foo(T = 0) = —d [J;;]
and does not diverge as in the annealed case. This is in qualitative agreement with

the quenched model. However the zero temperature entropy Sp = (1 — d)In2 is
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still negative for d > 1, indicating that the constraint (5.13) gives a too crude
approximation and is not fully satisfactory. However it is possible to use it in order

to improve the annealed estimate of the ground state energy by the method of [T-V]:

Ey > Sgp fac(ﬂ) ' (5'16)

For example, in 3d the inequality (5.11) gives Eg > —2.04 while the inequality (5.16)
gives Eq > —1.82. The free energy densities f, and f,. as functions of the temperature
are shown in fig 14 for the 3d case.

5.3. Ising model with diluted disorder in two dimension

A second - less trivial - case where constraints of the one-dimensional type give rather

good results is the 2d nearest neighbour Ising model with i.i.d. couplings Ji; which
assume the value 1 with probability p > 1/2 and the value —1 with probability 1 — p.
The quenched density of positive coupling is p and, obviously, when p tends to 1 the
ordinary ferromagnetic Ising model is recovered.

The annealed approximation of the free energy density is unsatisfactory because
at low temperature the density of positive bond is higher than p. In fact, since the
couplings are treated as hot variables which are allowed to flip, they preferably align
in the same direction to minimize the annealed free energy.

It is then clear that the annealed approximation can be improved by fixing the
density of positive bonds to the correct quenched value p. This constraint will be
not sufficient to obtain the quenched free energy since the ordering of coupling is
also altered by the annealing. Better results would be obtained introducing further
Lagrange multipliers associated to the loop variables #™). However, frustration should
not play an important role if p is not too close to 1/2 so that we expect a considerable
improvement with respect to the brute annealed approximation. The constrained

model has been introduced and solved by [T-B].

The intensive variable of the disorder to be considered is

ay = % Z Jij — (2p - 1) (5.17)

t,J
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where J;; = 2p — 1 has been subtracted to Ji,; to have a variable ay with zero mean

value.

The Grand-partition function is given by

On(p) =Y [] exp{B7ijoi05 — u(Ji; — 2p + 1)} (5.18)
{o} i

and it can be easily computed since the product runs over independent variables. One

obtains
n(p) =) [[(pexp{Boio; — u(2 ~ 2p)} + (1 — p)exp{—Boio; + 2up})  (5.19)
{o} 4Jj
Let us remark now that a function p(z) of a dichotomic variable z = +1 can be always
written in a exponential form exp(A4 + Bz) where A and B are given by the solutions
of the equation system exp(A + B) = p(1) and exp(4 — B) = p(-1).
In our case, the dichotomic variable is the product o;0;j, so that the Grand-

partition function becomes

On(p) = Z H exp{A + Bo;o;} (5.20)
{o} i

where A = A(B,p,p) and B(B,u,p) are the solution of the system

exp{4 + B} = pexp{8 — u(2 — 2p)} + (1 - p)exp{—p +2up} (5.21)

exp{A — B} = (pexp{—f — u(2 — 2p)} + (1 - p)exp{B + 2up}) (5.22)

We see that the Grand-partition function, a part a constant multiplicative term
exp(2AN), is formally identical to the partition function of an Ising model. In other
words, we have mapped our model into an ordinary ferromagnetic Ising model with

an effective inverse temperature B. We then easily obtain

9(B,u,p) = —24(8, 1, p) — T'(B(B, 1, p)) (5.23)

where I'(B) is the Onsager solution of the 2d Ising model

| I(B) = +In{2 cosh(2B)} + % / " dor VY ~ (i) (5.24)
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with
__ 2sinh(2B)
- (cosh(2B))?

To obtain the constrained free energy is sufficient to maximize g. We have in fact:

(5.25)

1
fac(ﬂ7p) = E mfx{g(ﬁ,p,p)} (5'26)
In practice, one has to find the value p* = p*(8,p) which satisfies the equation
0A OI'(B)oB _
2('3# + 3B op 0 (5.27)

so that
FaclB,p) = -;—g(ﬂ,#*,p) - —%{uw,m,p) +T(B(B,utp)]  (5.28)

For comparison, we recall that the annealed energy simply is

1
B

We can now study the qualitative behaviour of the two free energies in the phase

fa(8,p) = %g(ﬁ,O,p) = —L[24(8,0,p) + T(B(8,0,p))] (5.29)

space (3,p). In particular, one is interested in determining the transition line between
paramagnetic and ferromagnetic phase.

We preiiminary observe that we can limit ourselves to the region p > 1/2 since
both f, and f.. are symmetric with respect to this value of p. Then we observe that
both the free energies depend on I' which is the Onsager solution of the Ising model.
The function I'(B) has a singularity, corresponding to the ferro-para transition, when
its argument equals the inverse Onsager critical temperature 8. = 1In(1 + v2). The
transition line p(8) can thus be found by simply equating B to .. For what concerns
the annealed free energy the transition between the paramagnetic and ferromagnetic

phases is obtained from the relation

B(ﬂvﬂ' = O,P) = ﬂc (530)

Using (5.21) and (5.22), which give B, one immediately gets

cosh(23)
(2v2 + 2) sinh(28)

pa(B) = % + (5.31)
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Similarly, for the constrained annealed system the transition line is obtained from

B(ﬂ,/‘*,p) = B (5.32)

In this case pu* is a function of  and p given by (5.27) while B is again obtained from
(5.21) and (5.22). After some lengthy but simple calculations one gets

V2 cosh(2)

4 sinh(203) (5:33)

pac(ﬂ) = % +

Both the transition lines p,. and p, are shown in in Fig 15. In the annealed model,
as expected, the ferromagnetic phase is larger than in the constrained model. This
is a consequence of the fact that the couplings are allowed to flip and they arrange
preferably in a positive ferromagnetic configuration. Nevertheless, even at vanishing
temperature one has a paramagnetic phase below p,(T = 0) = 0.707...

For the constrained model, at vanishing temperature, the paramagnetic phase
appears below p,.(T = 0) = 0.853... This value seems to coincide with the numerical
results on the quenched model (see [T-B]). In fact, we expect that the concentration of
positive bonds is the only relevant intensive variable of the disorder for what concerns
the transition from a paramagnetic and a ferromagnetic behaviour. This does not
mean that other variables are not significative, but only that they probably do not

influence the ferromagnetic order at large scale.

5.4. Ising model with random dichotomic couplings

Let us now consider a d-dimensional spin glass with i.i.d. nearest neighbour couplings
which assume two possible value J;; = +1 with equal probability p = % As discussed
at the end of sect 5.1, the annealed free energy density is

f,,=-% (In2+dIncosh ) (5.34)

In one dimension, it is equal to the quenched free energy density, since In cosh BJi;
is a constant, at difference with the gaussian case where that variable is random and
has to be fixed by a Lagrange multiplier. In section 5.1, we have discussed why it is

not useful to consider intensive variable ay of the type (5.12) with 3 depending on a
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single coupling J;;, and we have shown that it is necessary to introduce variables ay
associated to the loop variable #(*), in order to improve (5.34). With this choice, we

should consider the intensive variable

-117 VA (5.35)

{L}

aN =

where j;, is minus the product of the four couplings on the elementary square plaquette
L®,

As usual, the Grand-partition function is given by the average

On(p) =Y exp{d_Blijoio;— > ply} (5.36)

{c} t,J { LS*) }
Taking into account that the couplings are dichotomic with equal probability we can
perform the gauge transformation J;; — Jijoio; which leaves unchanged the free
energy of a disorder realization of the system as well as fp, ie. fp — fp. The

Grand-partition function rewrites

On(p) =2 exp{d)_BJ;;— Y ulp} (5.37)
b {Li}
This expression (which is meaningful for any dimension d > 2) cannot be computed
exactly including all the possible square plaquettes L$® of the d-dimensional lattice.
It can be shown that the problem is equivalent to solve a d-dimensional gauge model
without disorder, whose solution is not known for d > 2.
However an exact solution can be achieved if we restrict the sum (5.35) only on
a part (of order N) of the plaquettes. vLet us consider the 2d model. It is convenient
to limit ourselves to consider one half of the plaquettes, which must be chosen in
such a way that they do not share any coupling, as it happens for the black squares
of a chesshoard. With this restriction (5.37) contains a sum over products of N /2
independent variables (corresponding to the N/2 black plaquettes) and the Grand-

partition function can be rewritten as:

N
2

() =2 (exp{B(Ts + 92 + 35 + 9) ¥ wdi T oa} (5.38)
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where Jy, J2, J3, Jy are the couplings of one of the plaquettes. The average (5.38)

can be easily computed and, after maximizing with respect to p, one obtains
'q=—l{-1-ln2+-1-1ncosh2,8+-1-1n(3 + cosh43)} (5.39)
ae B2 4 4

thus improving the annealed estimate (5.11). The functions f, and f22 of the 2d
spin glass are shown in fig 16. At difference with the annealed case the entropy of
the constrained annealed system is never negative. We have thus obtained a real
qualitative improvement.

The ground state energy of the constrained annealed system is f4(T = 0)=-1.5
and the residual entropy is zero. The d = 2 estimate obtained from supg fa(B) gives
Eo > —1.56 (see Fig 16). These results can be usefully compared with the numerical
or finite volume estimate Ey = —1.404 £ 0.002 and S, = 0.075 + 0.004 (see [S-K]).

More interesting is to consider the heat capacity C which can be explicitly

computed. For 8 — oo one has

C ~ B2 (5.40)

The argument of the exponential has been conjectured in [S-K] for the quenched model
and it is different from the exact one-dimension result where the argument is —28.
Note that the annealed system also gives C' ~ exp(—23)

Finally, since we have fixed only one half of the single plaquette frustration, it is
reasonable to ask what is the residual frustration ¢,.. Since the black plaquettes have
zero frustration, this quantity will be one half of the frustration of a white plaquette.
The four couplings forming a white plaquette are independent since they are not
coupled by the Lagrange multiplier. Therefore, the white plaquette frustration can
be written as — << J; >>*, where << - >> is an average on the Gibbs measure

associated to the Grand-partition function (5.39). One has therefore

<< ;i >>= —%@g—é”—) (5.41)
where p* is the value which maximizes g(B, ). Since
3 1 *
ac(B) = 5 9(8:1°(8)) (5.42)
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and since the derivative with respect to p vanishes, one has

1d(8fs)

J = — 5.4
<<J>> T (5.43)
Using the expression (5.39) for ¢,. we can compute the residual frustration
1 1 [th(2 th(2 ‘
¢ac = —= <L Ji >>4= __ ( ,B) + ( ﬂ) (544)

2 2| 4 4 — 2th?(2p)

At zero temperature ¢, = 3*/2° ~ 0.158. This result indicates the presence of a small
but non vanishing residual frustration. An analogous expression can be found from
the annealed free energy f,. In this case all plaquettes can have negative frustration

and one has

fo = — << J; >>*= —th*(B) (5.45)

where the average is in the Gibbs measure generated by the annealed average. The
frustration ¢4(T = 0) = —1 since at zero temperature the spins are aligned and the
annealed system is completely ferromagnetic. Both ¢, and ¢, are reported in Fig
17. The fact that in the constrained annealed model the residual frustration does not
vanish indicates that the free energy estimate could be improved by further lagrangian
multipliers as we shall discuss in the next section.

It is not immediately evident that our approach can be repeated in any dimension
d > 2, i.e. that it is possible to find a way of grouping the couplings in independent
elementary plaquettes. In three dimensions, after some reasoning and some experiment
in a kindergarten with toy cubes, one get convinced that this is, in fact, possible. The
only difference is that the number of plaquettes is 3/2 larger than in the d = 2 case
This considerations leads to the expression for the d = 3 constrained free energy
density

;g:—-l- {-l-ln2+§1ncosh2ﬂ+§ln(3 + cosh4ﬂ)} (5.46)
g 4 8 8

which is shown together with f, in fig 18. The estimate (5.46) is still unsatisfactory
since f7¢ is unphysical at low temperature because the entropy becomes negative. The
ground state energy is estimated by the supremum of (5.46) as Eo(d = 3) > —1.939.

In the next section we shall show that all these results can be improved in a

systematic way by a new method of imposing the constraints.
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6. Constraints without Lagrange multipliers for dichotomic spin glasses

6.1. The method

Up to now, we have performed annealed averages where the relevant constraints
have been imposed by means of Lagrange multipliers. Actually, in most cases it is too
difficult to derive analitically an annealed average using more than one constraint. The
spin glass with dichotomic couplings (section 5.4), however, presents some algebraic
features which permit us to introduce an alternative method, in order to obtain
constrained annealed averages without Lagrange multipliers, avoiding in this way the
problem of their maximization.

In order to introduce the new method, since Ji; = £1 with equal probability, it is
convenient to make a change of random variables from the couplings to an appropriate
set of independent plaquette frustrations {T = H§=1 Ji = £1} with equal probability,
where the index 4 runs over the four sites of each square. In this context we neglect
the boundary conditions, so that in the 2d case all the random variables {7;} are
independent; in the thermodynamic limit N — oo their number is of order N.

By virtue of this fact, any generic loop L can be thought as the union of some

elementary plaquettes, and the related variable tS’) defined in (5.4c) can be written

as:
k

M = tanh"(8) H j;(’i) (6.1)

=1
where we have supposed that the loop is built up by k elementary plaquettes. Let us
stress that a loop can be connected or not, i.e. it is not necessary that the plaquettes

are neighbours. As a consequence, the function (5.6), which is the free energy apart a

constant, becomes:

N
F=lim —Ifl+) Y J . J™ taphie) ()] (6.2)

where one considers all the products of k € [1, N] elementary plaquettes ( the indexes
i1 #42 # ... # 1k run from 1 to N) and r(y,...,4) is the length of the loop built up
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by the k plaquette, while the overline represents now the average over the plaquette
frustrations.

Let us now perform a decomposition of the set of plaquettes of the system into
subsets such that each coupling J;; belongs to one and only one of the subsets. It
follows that two distinct subsets could have in common only isolated lattice points.
For instance, three different decompositions of the bonds of a 2d lattice (the black
regions) are illustrated in fig 19. It is worth stressing that, after the decomposition,
we get a collection of sub-systems which do not cover the whole original lattice, e.g.
in fig 19a only one half of the 2d lattice is covered. This kind of decomposition
divides the plaquettes in two classes: the ‘black’ ones, which are organized in groups
corresponding to the sub-systems (e.g. the crosses in fig 19b), and the ‘white’ ones,
which do not belong to any sub-system.

At this point we can derive a lower estimate F,. of the function (6.2), by treating
the frustrations related to the ‘white’ plaquettes as annealed variables, i.e. by
averaging over these variables only the argument of the logarithm in (6.2), instead

of the logarithm itself:

(b)
———( ) , .
Fpe = lim —ln[1+Z S WL tanh ein) ()] (6.3)

k=1 iy...4;
where <) and ) represent the averages over the frustrations related to,
respectively, the ‘white’ and the ‘black’ squares. In (6.3) only the terms j,(,i‘) e .i,(,i")
with all ‘black’ plaquettes do not vanish after performing the ‘white’ average:

(b)

Foe = lim lnfl + Z Y VLW tanh i) () (6.4)
N—eo k=1 ty..0;
where now the indeces 7;,...,7; run only over the N, ‘black’ plaquettes. In general

a loop is now a set of ‘sub-loops’, each of them is limited to a single sub-system.
This implies that tanh’(i“""i")(ﬂ) can be factorized, that is r(4,...,%) is the sum of
the lengths of the various ‘sub-loops’. As a consequence, the whole argument of the

logarithm in (6.4) is factorized among all the sub-systems, and it immediately follows:

ac=—1n[1+Z 3 LTS tanh i) (g)] (6.5)

k=1 11...0x
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where the average is performed over the frustrations of the n, plaquettes that build up
a single sub-system, and where n; is the number of couplings in the sub-system, so that
;dj- represents the total ﬁumber of sub-systems, rescaled with N in the thermodynamic
limit. Recalling (5.5), from (6.5) the lower estimate f,. of the quenched free energy
yields:

~Bfac=dIn cosh(ﬂ)+ ln 1+ Z 3 5V LT tanh i) (8)] +1n 2 (6.6)
k=1 1.0k
Let us stress that, after choosing a particular decomposition of the system, Fj. is
practically equivalent to the quenched free energy of the sub-system, a part a factor
proportional to Incosh 3. However it is convenient to keep the formalism based on
frustrations, to reduce the number of independent random variables. If np is not too
large, the computation of F,. can be executed analitically or numerically.

The correct multiplicative factors to transform the quenched free energy of a sub-
system to the global constrained free energy (6.6) can also be obtained by a simple
argument. Indeed the partition function Z,, of a sub-system made of n, spins and n;
couplings is the sum of 2™ terms which are given by the product of n; exponentials
while the global constrained Grand-partition function Qp of a system with N spins
and dN couplings is the sum of 2V terms which are given by the product of d N
exponentials. In order to compare two quantities of order one, one has to write the

following equality:

i
ﬂ

(27Nay)TF = (27™ 2, )%

so that

face = ——(1 —-d ——) In2 + d —f,ub (6.7)

nj
This formula is completely equivalent to (6.6), but has the advantage that the
quenched free energy fous of the sub-system explicitly appears. The ground state
energy can be estimated by the saddle point method when 8 — oo in the quenched

average of Z,,:

Fue(T = 0) = nij—“n{lg}xﬂ({n) (6.8)
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where the maximum is taken over all the o configurations for each disorder realization.

One can also obtains the residual entropy as
See(T =0) = (1 - %d) In2 + In deg({J}) (6.9)
j

where deg({J}) is the number of disorder configurations which have energy H({J})
equal to E,.(T = 0).

Let us briefly resume the discussion, in order to clarify the meaning of the result.
Using a decomposition of the system into independent sub-systems, we have derived
a lower estimate of the quenched free energy that depends from the quenched free
energy of the single sub-system. As discussed in sect 5.1, the quenched free energy
of a sub-system can be obtained by a minimization of an annealed average of the
Grand-partition function with Lagrange multipliers over all its possible loops. Using
our procedure, we are able to get the annealed average f,. of the global system where
the constraints are imposed over all the possible rescaled sums of frustration on all
the loops that appear in the various sub-systems.

To illustrate this alternative method, we apply it in the case of sect 5.4, i.e. the
decomposition of a 2d spin glass in ‘white’ (annealed) and ‘black’ (quenched) square
plaquettes, like in a chessboard, see fig 19a. In this case we have n; =4 and n, =1,

so that (6.6) becomes:
_Bf2% = 2 Incosh(B) + %ln[l — tanh®(8)] + In2 (6.10)

It is easy to check that after trivial algebraic manipulations one gets again (5.39).

The ground state energy and the zero temperature entropy can be directly

computed from (6.10), and respectively are:
EY(T=0)=-1.5 ST =0)=0 (6.11)

The method of constrained annealed averages without multipliers can be applied to
non-elementary sub-systems in an easy numerical way, since one has not to introduce
a set of corresponding Lagrange multipliers. In order to improve (6.10) and (6.11), we

have considered a partition of the 2d lattice into independent crosses of n, = 5 square
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plaquettes, as shown in fig 19b. We thus obtain a constrained annealed average where
all the relevant variables on the non connected loops inside the crosses are frozen.
Since n; = 16, from (6.6) the free energy is easily evaluated, and is shown in fig 16.

The ground state energy and the residual entropy are respectively

E:Z(T — 0) — —-1.484375 S;r(T = 0) = 0.00885-- (6'12)

[+

The next step is to considered the elongated cross of the type shown in fig 19¢
(np = 8 and n; = 24). In this case we get

[

ES(T =0) = —1.477865  S°<"(T = 0) = 0.0130.. (6.13)

At increasing the size of the subsets of the decomposition, the convergence to the
quenched ground state energy Ej is rather slow as the numerical result of [S-K] gives
Ey = —1.404 £ 0.002 and Sy, = 0.075 £ 0.004. However the main qualitative feature
(positive residual entropy) is reproduced by our approximations.

We have also considered a 3d lattice with a partition into sub-systems of n, = 5
square plaquettes, placed on the faces of a cube. These cubes are aligned one behind
the other in such a way that two of them have only one lattice point in common
(the 3d equivalent of the 2d chessboard). In this case the constraints are imposed
over the p?oducts of the J;;’s on all the closed loops of bonds in these cubes. The
resulting free energy fUb¢ is shown in fig 18, together with the annealed free energy,
for comparison. Unfortunately, the residual entropy is still negative, indicating that
in three dimensions more constraints are necessary to get a fair approximation of
the quenched system at low temperature. The ground state energy can be estimated
using (5.16) as Eo(d = 3) > —1.917 which improves the lower bounds obtained by
supremum of (5.46), Eq > —1.939, and by the supremum of the annealed free energy,
Ey > —1.956.

6.2. Constrained annealed averages on infinite loops

The method introduced in sect. 6.1 can be extended to obtain very accurate estimates
(lower bounds) of the quenched free energy using products of random matrices. Indeed

the main limitation we have met is that the number of plaquettes n, of the sub-system
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should be not too large in order to perform the calculation of its quenched free energy
in a resonable computer time. For instance in 2d we have stopped the estimates at

the elongated cross with n, = 8 plaquettes.

However, we can consider infinite loops by estimating the free energy of sub-
systems of infinite size only in one direction, via the Lyapunov exponent of the product

of random transfer matrices.

To simplify, let us consider again the two dimensional Ising model with J;; = +1
with equal probability, although our discussion can be extended to three and higher
dimensions. The idea is to find an independent decomposition of the 2d lattice in strips
of size L. We then compute the quenched free energy of the strip as the Lyapunov
exponent of the infinite product of random transfer matrices of size 2% x 2%, In such
a way, we automatically obtain the annealed average where the products of J;;’s on
all the possible loops inside the strip are constrained to their quenched mean value.
In particular, some of the loops are of infinite size in one direction. Our proposal
requires a numerical calculation of the Lyapunov exponent, but it is superior to the
direct application of the transfer matrix method [C-M], since it allows one to obtain
lower bounds of the free energy which become more and more accurate at increasing
the size L of the strips, as a consequence of the standard inequalities satisfied by the

constrained annealed averages.

In order to reduce the number of random variables, it is convenient to perform
a gauge transformation, before computing the free energy of the spin glass. In two
dimensions, we have chosen a gauge transformation which map the original system
into a new one where the horizontal couplings are i.i.d. random variables (Jij = +1
with equal probability) and the vertical couplings are positive and constant (J;; = 1).
We consider strips of L spins which are parallel to the bisectrix of the lattice as shown
in fig 20, in order to obtain a convenient independent decomposition of the lattice
with the properties discussed at the beginning of sect 6.1. The basic cell of the strip
is formed by three layers, the first and the third ones of length L and the intermediate
layer of length L + 1. We denote by o the spins of the first layer, ¢ the spins of the
second layer and 7 the spins of the third layer. The particular form of the strip allows
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one to perform a preliminary analytic integration over the spins of intermediate layers.
For instance, the case L = 3 is illustrated in fig 20. The partition function of that
strip can be obtained by a product of transfer matrices between the first and the third
spin layers:
B N
ZN(L=3)=Tr [[TG;J1,---,J5) (6.14)
i=1
where there are 2° different random transfer matrix T. As the Boltzmann factor

exp(—BH) of three consecutive layers of the L = 3 strip is
exp(0181 + 0262 + 03&s) exp(J101€s + J202€s + J305€s)

exp(n1€2 + n2€s + n3€s) exp(Jam s + Tsnaba + Jensés)

one immediately sees that, after integrating out the intermediate lay (the four ¢ spins),

the elements of the 8 x 8 transfer matrices are

T

01,02,03,M1,M2,13 —

cosh(ay + Jym) cosh(Jro1 + Jsn2 + 09 +11) cosh(Jy02 + Jem3 + 03 + 12) cosh(J3 03 + 73)
(6.15)
The extension to a generic value of L is straightforward, and one has to deal with the

22L

product of independent random matrices of size 2L x 2L,

The Lyapunov exponent X of the product of the transfer matrices is related to the

quenched free energy fff;,)tp by:
A= —nBf, (6.16)

A moment of reflection shows that there are n, = 2L +1 spins and n; = 4L couplings,

so that from (6.7) one obtains the constrained annealed free energy ff.f) of the total

system:

A—=In2
— (L) = ——
Bfac 2L

The constrained free energy as function of the temperature for L =1, L =2, L = 3

(6.17)

and L = 8 is shown in fig 21. It is evident that the difference between the constrained

annealed free energy f.Sf) and the quenched one increases at lowering the temperature,
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since the frustration effect becomes more and more important. In two dimensions
at varying the size of the transversal length L we found a monotonous convergent
sequence of approximations from below to the ground state energy and to the residual
entropy:

L=1 E,=-1500 S, =0.00
L=2 [Ey=-1464 S, =002
L=3 E,=-1448 S, =0.03
L=4 E,=-1438 S, =0.04
L=5 Ey=-1429 S, =0.05
L=6 E,=-1425 S, =0.05

L=1 Ey = -1.423 So = 0.05

h
I
[0 ]

5
I

-1.421 So = 0.05

L=9 Ey=-1.419 So = 0.06

7. Conclusions

In this paper we have presented a general tool for estimating the free energy of
disordered systems. Far from being a simple quantitative approach, the method leads
to a deeper understanding of the role of the intensive variables of the disorder. Its
range of applicability is extremely wide, varying from infinite range models to products
of transfer random matrices and it can compete with the replica trick for practical
purposes. The constrained annealing is able to transform a system with quenched
disorder into a new model without disorder, although depending on new variables
beside the temperature, the Lagrange multipliers. It is thus necessary to perform a
maximization to choose the appropriate value of these variables.

The major problem is its application to Ising spin glasses in three or more
dimensions where replica symmetry breaking is expected. In this case the ideas of

sections 5 and 6 should be adapted to dimensions higher than two. The simplest
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generalization is to fix the frustration on the elementary plaquettes composed of four
independent couplings. We have seen that this can be done in 2d by choosing the
black plaquettes of a chessboard. In this way one obtains that any coupling belongs
to one and only one of the plaquettes. This can be done in 3d, too, although there is
a physical breakdown at low temperature where the entropy becomes negative.

We have also shown that the constrained annealing in +J spin glasses can be
performed even without Lagrange multipliers, by performing quenched averages on
sub-systems of small size. However, it is an open problem to extend it to other
coupling distributions such as the gaussian distribution. The equivalence between
the two methods has rather deep consequences. Indeed, we do not expect to find
a transition to a glassy phase in the approximations of sect 5 and 6.1, where the
constrained annealed free energies are analytic functions of the inverse temperature
B, since they can be expressed as the sum of a finite number of terms. Analiticity
breaking might appear when there is an infinite number of terms in the sum, and one
is tempted to conjecture that this corresponds to the necessity of considering infinite
loops as we have done in sect 6.2, by infinite product of random transfer matrices.

In conclusion, more constraints have to be imposed. The first step will be to fix the
frustration on interacting square plaquettes and not only on independent plaquettes.
This is possible in an analytic way and the corresponding constrained annealed systems
is given by a decorated Ising model without disorder. In our opinion the solution of
such a model or even its numerical study is a quite interesting open problem. A more
ambitious goal is to fix the frustration of larger plaquettes of 6, 8, ...and more couplings.
In fact, fixing the frustration on plaquettes of all sizes corresponds to recover the exact
quenched result. This program is now under study and we hope that it might become

a new tool for the characterization of the glassy phase in disordered systems.
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Al. Appendix: Large deviations

Al.1. Mathematical definition of the model

We consider an Ising spin glass system on the d-dimensional lattice Z¢ with nearest

neighbour interactions. The Hamiltonian which defines the model is
Hp = — Z Jijoio; (Al.1)
5

where A is a finite subset of Z¢ with cardinality [A| and the sum is on nearest
neighbours sites 7,5 in A. The {J;|4,j € Z%} are random couplings and the
{o:|i € Z} are spin variables which can take values +1 or —1. In the following

the couplings J;; will be chosen to be i.i.d. random variables.

The associated partition function is obtained as a sum over all the configurations
of o = {o;li € A}
Za(B) = ) _ exp{-BHs} (41.2)
{oi}
where B > 0 is the inverse of the temperature. The free energy density is then defined

by the following limit

. 1
f(8) = - Ao, MIH{ZA(ﬂ)} (41.3)

The thermodynamic limit (A1.2), performed in the sense of Van Hove, was shown
to exist with probability one for very general coupling distributions by different authors
(see [V], [VH-P], [L], [K]). Their proofs are not limited to nearest neighbour couplings
but they extend to the case of generic short range interactions. Moreover, the same
authors rigorously proved the self averaging property: the free energy density f(3)
equals the mean free energy density m almost surely.

In this appendix we discuss the large deviation properties of the model. We refer to
[C], [VH-VE-C] and [VH-P] for some already established rigorous results on disordered

systems and in particular on spin glasses.
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Al.2. Large deviation upper bounds

Let us consider a sequence {An} of regular cubes of increasing size with [An| = N
and such that Ay C An+1 ./~ Zd, and the associated sequences of random variables

{Zx,}. We then define the moment generating function
1
¢n(t) = 37 1n(Zay )’ (Al1.4)

1t is well known that if the moment generating function

#(t) = Jim gn(t) (41.5)
exists finite for all ¢ € IR, then the following large deviation upper bound is verified
1
i — K)<-i Al.
lim sup In Qn(K) < — inf R(y) (AL.6)

for each closed set K C IR, where Qp is the distribution of the random variable
—yN = _NLB In(Zs, ) on R. The random variable yn(B) is the finite volume free
energy density and R(y) is the rate function given by the Legendre-Fenchel transform
(see [E))

R(y) = sup(—tBy — ¢(t)) (ALT)

telR

In the physical literature the moment generating function and its Legendre transform
are widely studied in the context of the so-called multifractal approach (see [P-V] for

a review). We will prove the following result which, as remarked, implies (A1.6):

Theorem A1l.1: Assume there is a function \: Rt — Rt such that one has

exp{—Mu)} < exp{—u|J;;|} and exp{+u|J;;|} < exp{+A(u)}, then the function ¢
defined in (A1.5) exists finite on IR.

Proof: Let subdivide the cube Ay in sub-cubes {A%|i = 1,..... ,k?} of cardinality
Al = M = m? for all i so that N = (km)? = k*M. To any sub-cube of such
decomposition it is associated the partition function Z! = Z A, From definitions (A1.1)

and (A2.2) it is easy to state the following inequalities:

kd kd
([ 2)ex0l8 S -1} < Zay < ([[ Z)exp(8 3 410l (418)
=1 <ig> =1 <iy>

64




where the sum runs over all the couples of nearest neighbour sites < 7,7 > with ¢ and

j in different sub-cubes. Since the couplings J;; are independent random variables,

we have from (A1.8)

1 & 1

T 0@V + 5 Y Inewp =BT < (41.9)
i=1

<iji>

kd
1, — 1 —_ 1
PR COES SVRCORS DI

=

moreover, since the couplings J;; are identically distributed, we have (Z%)t = (Z1)¢,
This implies

-L§MEW=Em@W=lmEW (A1.10)

N = N M
The total number of couples of nearest neighbour sites < i ,J > with ¢ and j in different
sub-cubes is estimated from above by dk%m?-1, Therefore, using our hypotheses and
inequality (A1.9) we get

dk4md—1

70T - 307 < ET 0118 = L) (41.11)

i.e., with the notations of (2A1.4),

1 —— c
t)— —In(20)f < < .
[63(0) ~ 2 In (27 < < (41.12)
where ¢ = ¢(8,t,d) > 0. The above estimate now implies
0 < limsup ¢n(t) — liminf pn(t) < Ze (A1.13)
N—-oco N—eo m

for all m. The result follows. [

Remark A1.1: There is a well known argument (e.g. [Ruelle]) which ensures that
the existence of the limit for the sequence {#n} attached to the geometrical sequence

of cubes {Anr} implies the existence of of the thermodynamic limit for {¢n} (A / Z°

in the sense of van Hove).

Remark A1.2: The result of the theorem 2.1 remains true, up to small technical

modifications, for short range interaction systems.
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Remark A1.3: The hypothesis on the J;;’s contained in the theorem defines a
large class of distributions which includes all distributions with finite support and the

gaussian distribution.

Before concluding this section we give an alternative proof of the existence of the

mean free energy density.

Theorem A1.2: Assume the hypothesis of theorem 2.1 and moreover assume

Mu) = O(u) as u — 0 then the derivative of ¢(t) at ¢t = 0 exists and equals -Bf(B).

Proof: by (2.11) and the hypothesis on A we have

R A A < =

= @< —
with ¢ = ¢(8,d) > 0 and |t| small enough. Letting N — oo (as before M is kept fixed),
by theorem A1.1 we have that (A1.14) also holds with ¢(t) replacing @n(t).

(A1.14)

By a first order Taylor expansion of the exponential and logarithmic functions we

obtain
In(Z1)t = (t + o(t))In(21) (Al1.15)
for |t| sufficiently small.
Therefore
ot) 1 oft) N« €
2 (=42 < = .
| . (M+ : )In(Z )|_m (A1.16)
which implies
0 < limsup ) — lim inf $(t) < 2 (A1.17)
t— o0 t—oo t m

for all m. Since ¢#(0) = 0 the differentiability of ¢ at ¢t = 0 follows. Now we take in
(A1.16) the limit for ¢ — 0 and we get

14'(0) — %ln(ZA;,)l < (AL.18)

3o

(in order to stress the dependence on M we avoided here the use of the short notation

Z'). Then for m = Mi — oo we obtain the result. [

Remark A1.4: Since ¢(t) ia a convex function vanishing at the origin one has
f(8) 2 —%‘ﬁ—(:z for any positive ¢. In particular one has the well known lower bound
f(B) 2 fa(B) = —5¢(1).
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A1.3. Large deviation lower bounds

The problem of the large deviation upper bound is still open in dimension d > 1,
while in one dimension has a trivial answer. Let us consider, in fact, the partition
function of the one dimensional Ising spin glass

N = E H exp{BJioicit1} =2V HCOSh{ﬂJiJ’} (A1.19)
{o:} <i> ij

since the variables J; are i.i.d. we immediately obtain
é(t) = Nlim %ln (Zn)t =tln2 + In{(cosh{BJ;})t} (A1.20)

where J; is anyone of the couplings. Let us recall that equation (A1.7) gives the
entropy function R(y) as a Legendre-Fenchel transform of ¢(¢) computed in (A1.20).
Assume now a distribution of the couplings J; such that the expectation in (A1.20) is
differentiable for all real t. In this case, the function ¢(f) is also differentiable for all
real ¢ and the following inequality holds:

1
N > .
h}\r{rg&f N InQn(G) > ;gg R(y) (A1.21)

for each open set G in IR. This inequality is the large deviation lower bound for Ising
spin glasses in one dimension. The extension of this result to higher dimensions is an
open problem. The large deviation upper bound previously stated, on the contrary,

holds for Ising spin glasses in arbitrary dimension.

A2. Appendix: Large deviations for generalized free energies

In this section we consider again an Ising spin glass system on the d-dimensional
lattice Z¢ with first neighbours interaction. The random couplings {J;;} are assumed
to satisfy the condition of theorem A1l.1.

Let ¢: IR — IR be a function such that the {¥(Ji;)} are i.i.d. random variables
which satisfy ‘c,lz_(r,) = 0. We then define a class of finite volume generalized free

energy densities:

YA =ya+ %QA = (42.1)
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1

= —’m In| Z exp{—BH\ — pasyN} (A2.2)
{oin}
where
ap = %Eiﬁ(%’) (42.3)
t,J

As before, A is a finite subset of Z% with cardinality |A| = N and the sum is on
nearest neighbours sites 7,5 in A. The real variable y has to be seen as a lagrangian

multiplier, we have

Proposition A2.1: For any real p the following equality holds:

Jim, v = f(6) (A2.4)

Proof: Only one has to take into account that @ = 0 for any subset A. [

Proposition A2.2: Assume that the i.i.d. random variables {¥(Ji;)} satisfy the
condition IE[|%(J;;)[] < oo, then the following limit holds almost surely:

Aljr;d ya = f(B) (A2.5)

Proof: 1t is sufficient to remark that the strong law of large numbers implies

i =0 A2.6
Jm, ea (A2.6)

almost surely. [

We consider now, as before, a sequence {An} of regular cubes of increasing size

with |[An| = N sit. ANy C Any1 / Z%. We can define:
aN = apy, (A2.7)

and

YN = Yk, (A2.8)




By virtue of propositions 3.1 and 3.2, the generalized free energy densities yh, are
equivalent to ordinary free energy density in the thermodynamic limit. The finite
volume fluctuations, on the contrary, depend on .

We are now interested to give estimates on the large deviations of the y&. Define

1
¢n(t) = 77 1n(Z exp{—panN})* (A42.9)
The following theorem shows that under suitable conditions the function
#4(t) = Jim k(1) (42.10)

exists finite for all ¢t € IR.

Theorem A2.1: Let ¢ be a real number for which there is a function A¢: Rt — R*
such that the following inequalities: exp{—A‘(u)} < exp{—u|Jij| + eua(J;;)} and
exp{+u|Ji;| + eua(Ji;)} < exp{+A%(u)} hold. Then for p = €8 the function ¢*
defined in () exists finite on IR.

Proof: The proof is a trivial modification of the proof of theorem 2.1.

Theorem A2.2: Assume the hypothesis of theorem 3.1 and moreover assume that

A%(u) = O(u) as u — 0, then the derivative of ¢#(t) at ¢t = 0 exists and equals -Bf(B).
Proof: The proof is the same as in theorem 2.2. [

The existence of the function ¢#(t) for any real ¢ (notice that ¢°(¢) = #(t) where
¢(t) is defined in the previous appendix) allows us to estimate the large deviations of

the variables y* — N. In fact, the following large deviation upper bound is verified

lim sup%ln QN(K) < —ylglf{ R*(y) (A2.11)

N—oo

for each closed set K C IR, where QA% is the distribution of yk) on IR. The rate

function R¥(y) is given by the Legendre-Fenchel transform
R (2) = sup(~1fy — (1) (42.12)
tclR
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We can give to our results the following interpretation: the multiplicative term
exp{uanN} has the effect of a constraint on the disorder which modifies the

distribution of the finite volume free energy.

Remark A2.1: Since ¢*(t) is a convex function of ¢, vanishing at ¢ = 0, one has

fZ—%%QforanytElR*' and g € R.

Remark A2.2: Notice that if the {J;;} have distribution of the type described in
remark 2.3 then theorem 2.1 holds and T includes the origin.

Remark A2.3: It is in general possible to extend the previous results to the case
of short range interactions and to the case where the function 1 depends not only on

the variable J;; but also on the variables J;s; with i'j' in a short range around ;.

Remark A2.4: The results can be also easily extended to the case where a vectorial
function an and a vectorial lagrangian multiplier x are considered. In this case the

exponent pa will be the scalar product pa = p1og + poas + ... + pran.

A3. Appendix: Constraints on n-ples of matrices

In this appendix, with reference to section 3, we give a proof that the calculation
of annealed averages where the frequence of the different n-ples of matrices is fixed to
the law of large numbers can be reduced to the determination of the largest eigenvalue
of a 2™ X 2™ matrix G,,. It is possible to show that in order to impose the constraints

on the n-ples, we have to compute quantities of the type

N
Tr Z Hg(ni, N ) 77i+n—1) (A3'1)

m==1,-gn==%1 i=1

where g(7i,*+ ,Mitn—1) is a 2 X 2 matrix depending on n parameters 7; « - * N4 n—1 and
7; are random independent variables which can assume 2 different values 1 and with
periodic boundary conditions 7; = 1,4 n. The generalization to variables 7; which can

assume M different values and to a matrix g of size D x D is straightforward.
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Our goal is to write (A3.1) as the trace of a transfer matrix GN. For n = 1 (the
case of one constraint) the result is trivial with
Gn=1 = Z g(n) = ‘;'Aﬂi”‘ + %Aqe_“ (43.2)
' n==%1
G is thus a matrix of the same size of g and L, is the logarithm of its largest
eigenvalue. The second equality refers to the matrices considered in Section 3 and
there used to compute féi). The key point is that when g depends on more than one
variable 7;, we can write a transfer matrix G of size larger than g(n:,-* , Mitn-1),
although many entries of G are zero. The matrix G should be built up as a block
matrix at starting from the different matrices g(n;,- -+ , 9i+n—1). From the parameters
(i *Mi+n—1) We get the arrow and column index of the single block, in such a way
that the former becomes the latter when ¢ — i + 1. We thus obtain a 2 x 2 block of
G as

G(Tl-'-"n-'+n-z) v(FigrMign-1) T g("li ter ni-{-n—l)' (A3'3)

The remaining blocks are 2 x 2 zero matrix, so that one has (e; = 1)

i+n—2

G("’i""’li-{-n—?);(ei“'ei+n-—2) = g(n’v "t Nitn-2, ei+n—2) H 6774 1€s—-1 (A3'4)
s=i+1

where 8, is the 2 x 2 identity matrix if @ = b and the zero matrix otherwise. In
conclusion G is a matrix of size 2", and each arrow has only 4 non-zero entries (only
for n = 2 all the elements of G are non-zero).

Using (A3.3) and (A3.4), the trace of GV is given by (¢; = +1)

N k-1 N . .
Tr Z e Z (H H 659),6?_.*-:)) ( H g(ﬁgz) e é(t‘)‘l’éitj:))
=1

fgl)"‘»f(l_).l fg.N)V"iE(Ai)], 1=1 8=2
(A3.5)
It is easy to see that in (A3.5) there are N groups of n — 1 indices ¢ which are equal,

because of the various § matrices. In particular one has

€0 =gy (43.6)
and, as a consequence,
N
A R I T (437

6(11)"'55.”) 1=1
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which is equal to (A3.1). This concludes the proof.
Let us finally write the form of G for n = 2 (constraint on the couples of matrices)
and n = 3 which are used in the paper to determine fgi) and féi) In the former case

we have the 4 x 4 matrix

— g(+1’+1) g(+17_1)
N e ) (438)

with the 2 block matrices

1
g(’ha’h) = -2-Ame—#1 N1—p2 M N2 (A43.9)

while in the latter case we have the 8 x 8 matrix

g(+1,+1,+1) g(+1,+1,-1) 0 0
Goos = 0 ] g(+1,-1,41) g(+1,-1,-1)
" g(-1,+1,+1) g(-1,+1,-1) 0 0
0 0 g(—1’_1a+1) g(—l,—l,—l)
(A3.10)
with the 2 block matrices
g(m,n2,m3) = %Am e HLMTHAI M N2 —H3INL N3 —HaN1 N2 73 (A43.11)
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Figure Captions

Fig. 1 1d Ising model (2.43) with J = 1 and random magnetic field h; = a + bz;

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

(¢ =1, b = 1 and z; normal gaussian variables). The full line is the Gibbs
potential —g(8 = 1,u) and the dashed line is ~G(A) = min, —§,(8 = 1,p,A)
with §2(8 = 1,p, A(p, p12)) = 92(8 = 1,4, 82) and A = p/(1 — 25). The straight
line indicates the numerical result for the quenched free energy f = 2.031 +0.001.
Our approximations are obtained by taking the minima of the thermodynamic
potentials, that is —g(8 = 1,2 = —0.81) = 2.0530 and —G(A = —0.75) = 2.0389
(corresponding to the values ji; = —0.489, fi; = 0.198). The annealed free energy
is obtained by —g(8 = 1, = 0) = 2.5029.

1d Ising model (3.1): annealed averages without constraints f, (full line), and with
constraints féi) (dashed line) |, £ (dotted line) compared with the numerical

results for the quenched free energy f (circles) for # =1 and H = 0.5 as function
of h.

1d Ising model (3.1) with 8 = 1: relative difference between f.Si) and the numerical
value of of the quenched free energy f, as function of H and h.

1d Ising model (3.1): illustration of a frustrated spin configuration in : (a) an
elementary plaquette of one site; (b) a plaquette of two sites. The spins are the
arrows; the dashed vertical line represents the random field H — A; the solid line

represents the positive J coupling.

1d Ising model (3.1) with 3 = 1: relative difference between féi) and the numerical
value of of the quenched free energy f, as function of H and h.

1d Ising model (3.1) with H = 0.5 and 8 = 1: relative difference between féi) and
the numerical value of of the quenched free energy f (dashed line). For comparison,
the full line indicates the relative difference between féz) and f. The relative error

is maximum (0.2 per cent) at h ~ 1.

1d Ising model (3.1) with 8 = 1: quenched magnetization m as function of H,

compared with the annealed estimates mg, m;, m,, ms, at h = 2 and g=1.

76




Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

1d Ising model (3.1): magnetization m(w) at zero temperature. The jumps at wy,
given by (3.2) correspond to the first order phase transitions between the n-phase
and the n + 1-phase. The transition at we = 1 toward the spin glass phase is the

only continuous one. The dashed line is the constrained annealed approximation.

The competing interactions model (4.1): description of the transition from the
ferromagnetic to the first ferrimagnetic state. The full line are the positive n.n.
couplings J; = +J and the wrinkled lines are the negative ones J; = —J. The
arrows represent the spins.

9a) : disorder realization with islands of £ < 2 negative Ji’s. At increasing
disorder strength w and for T' = 0, the first spins to flip are located in the middle
of the k = 2 islands.

9b) : disorder realization with some long islands of negative J;’s. The flipping

spins are distributed in an alternated way among the islands of negative couplings.

The competing interactions model (4.1): energy density E(m) as function of the
magnetization m for the quenched model at A = 1 for different values of w. In the
first case (w = 0.4 < w; = 5/12) the energy minimum is reached for m = 1, in the
second case (w = w;) the minimum is obtained both for m = 2/3 and for m = 1,

and in third case (w = 0.45 > w;) for m = 2/3.

The cbmpeting interactions model (4.1): disorder realization and spin
configuration for the constrained annealed model at T = 0 and w > 3/8. The
full line are the positive n.n. couplings J; = +J and the wrinkled lines are the
negative ones J; = —J. The arrows represent the spins. The alternated flipped

spins are distributed only in the (even) islands of negative couplings.

The competing interactions model (4.1): magnetization m(r) for the constrained
annealed model as function of the reduced temperature 7 = T/A, for different
disorder strength w = J/A: at w = 0.39 (discontinuous jump at 7 = 0.08); at
w = we = 0.4 (discontinuous m-derivative at 7 = 7. = 0.18); at w = 0.45 (m is a

analytic function for 7 < 1).

The competing interactions model (4.1): phase diagram r = T/A versus w = J /A
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Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

for the constrained annealed model. The dashed line is the line of the second order
phase transition between ferromagnetic and paramagnetic phases. The full line is
the line of first order phase transition between ferromagnetic and ferrimagnetic

phases ending with a critical point.

14 3d Ising model with gaussian couplings (5.9): the annealed free energy f, (dashed

15

16

17

18

19

20

line) and constrained free energy f,. (full line) versus T = 1/8. The maxima of

the two functions (dotted lines) estimate the quenched ground state energy.

2d Ising model with diluted disorder (5.18): transition line between para and
ferromagnetic phases in the space temperature (T) - probability (p) that J;; = +1

for the annealed case (dashed line) and for the constrained case (straight line).

2d Ising model with dichotomic couplings: the annealed free energy f. (5.34)
(dashed line) and constrained free energy f,. (5.39) (full line) versus temperature

T = 1/B. The constraint is on N/2 independent plaquettes. The dotted line

indicates the maximum of f,.

2d Ising model with dichotomic couplings: residual frustration for the 2d annealed
model (#q) (5.45) and for the constrained model (¢..) (5.44). The constraint is
on N/2 independent plaquettes.

3d Ising model with dichotomic couplings: the annealed free energy f, (dashed
line) and constrained free energies f27 (full line) given by (5.46) and fc*b¢ (dotted

ac

line), obtained with the constraints on all the loops of alternated cubes, versus

T =1/8.

Ising model with nearest neighbour interactions on a 2d lattice: decompositions of
the set of the couplings in independent subsets (the black areas): a) squares, b)

crosses and c) elongated crosses.

Ising model with nearest neighbour interactions on a 2d lattice:

a) decompositions of the set of the couplings into independent subsets of infinite

area (the black strips) in the case I = 3

b) the basic cell of the strip (L = 3) is formed by three layers: o, ¢ and 7 spins;
after the gauge transformation the vertical couplings are fixed (Ji; = +1, full lines)
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and the horizontal couplings are random (J;; = +1, dashed lines)

Fig. 21 2d Ising model with nearest neighbour interactions: quenched free energy of the
system obtained by a decomposition of the lattice into independent strips, as

function of the temperature T at different widths L = 1, 2,3,8 of the strips.
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