EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Total absorption spectroscopy of neutron-rich indium isotopes beyond N=82

May 13, 2020

A. Fijałkowska¹, B. Rubio², M. Fallot³, L.M. Fraile⁴, E. Nacher², K. Abrahams⁵,
G. de Angelis⁶, A. Algora², J. Agramunt², B. Bastin⁷, A. Beloeuvre³, J. Benito⁴,
N. Bernier⁵, M.J.G. Borge⁸, N.T. Brewer⁹, J.A. Briz⁸, T.D. Bucher⁵, C. Ducoin¹⁰,
L. Ducroux¹⁰, J. Dudouet¹⁰, S. España⁴, A. Espinosa⁴, M. Estienne³, E. Ganioğlu¹¹,
W. Gelletly¹², L. Giot³, R. Grzywacz¹³, V. Guadilla¹, Z. Janas¹, A. Jungclaus⁸,
M. Karny¹, R. Kean³, T. King¹³, A. Korgul¹, R. Lică¹⁴, J. López-Herraiz⁴,
M. Madurga¹³, M. Martini¹⁵, I. Matea¹⁶, C. Mazzocchi¹, K. Miernik¹, F. Molina¹⁷,
A.I. Morales², J.R. Murias⁴, F. de Oliveira⁷, N. Orce⁵, S. E. A. Orrigo², T. Parry¹²,
A. Perea⁷, S. Péru¹⁸, M. Piersa¹, Z. Podolyak¹², A. Porta³, B.C. Rasco⁹, B. Rebeiro¹⁰,
N. Redon¹⁰, K. Rykaczewski⁹, L. Sahin¹¹, D. Sánchez-Parcerisa⁴, K. Siegl¹³,
M. Stepaniuk¹, O. Stézowski¹⁰, V. Sánchez-Tembelque⁴, D.W. Stracener⁹, J.L. Tain²,
O. Tengblad⁸, J.-C. Thomas⁷ and J.M. Udías⁴, V. Valladolid⁴, Z. Xu¹³, R. Yokoyama¹³

¹Faculty of Physics, University of Warsaw, PL-02-093 Warsaw, Poland

²Instituto de Física Corpuscular, CSIC - Universidad de Valencia, E-46071 Valencia, Spain

³Subatech, IMT-Atlantique, Universit de Nantes, CNRS-IN2P3, F-44307 Nantes, France

⁴Grupo de Física Nuclear & IPARCOS, Universidad Complutense de Madrid, E-28040, Spain

⁵Dep. of Phys. and Astronomy, Univ. of the Western Cape, P/BX17, ZA-7535, South Africa

⁶INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy

⁷Grand Accelerateur National d'Ions Lourds, Caen, France

⁸Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain

⁹Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA

¹²Department of Physics, University of Surrey, GU2 7XH Guildford, United Kingdom

¹³Dep. of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA

¹⁴ISOLDE-EP, CERN, CH-1211 Geneva 23, Switzerland

¹⁵IPSA, 94200 Ivry-sur-Seine, Paris, France

¹⁰Institut de Physique des 2 Infinis de Lyon, France

¹¹Department of Physics, Istanbul University, 34134 Istanbul, Turkey

¹⁶IJCLab, IN2P3-CNRS and Universite Paris-Saclay, France

¹⁷Comisión Chilena de Energa Nuclear, Casilla 188-D, Santiago, Chile

¹⁸CEA, DAM, DIF, Arpajon, France

Spokespersons: Aleksandra Fijałkowska [aleksandra.fijalkowska@fuw.edu.pl] Berta Rubio [rubio@ific.uv.es] Muriel Fallot [muriel.fallot@subatech.in2p3.fr] Luis M Fraile [lmfraile@ucm.es] Contact person: Razvan Lică [Razvan.Lica@cern.ch]

Abstract The goal of the proposal is to study β -decay properties of nuclei around doublemagic ¹³²Sn, which is an ideal playground to explore the single particle energies and the two-body matrix elements of the residual interaction. The properties of the nuclei around double-magic ¹³²Sn are also relevant for the study of astrophysical rapid neutron capture process (r-process). Recently, neutron- γ -ray competition in the decay of neutronunbound states populated in β decay of ^{133–134}In was observed. The large Q-values along the isotopic chain of In isotopes from 132 to 134 offer an excellent opportunity to probe low-lying collective modes in the Sn daughter nuclei, where pygmy dipole resonances have been evidenced around 10 MeV at fragmentation facilities. Such phenomena are believed to have vast consequences for r-process modelling. We propose, in particular, to investigate the β decay of the ^{132–134}In nuclei by means of the LUCRECIA total absorption spectrometer.

Requested shifts: [22] shifts, (split into [1] runs over [1] years)

1 Introduction

The goal of this proposal is to investigate the β -decay properties of neutron-rich indium isotopes around the double-magic ¹³²Sn by means of the LUCRECIA total absorption spectrometer (TAS). This region of the chart of nuclei offers the unique possibility to look at nuclear properties of exotic nuclei beyond the N=82 shell closure. The study of ^{133,134}In isotopes, which decay to the one-neutron particle ¹³³Sn and the two-neutron particle ¹³⁴Sn nuclei represents an ideal case to explore the single particle energies and the two-body matrix elements of the residual interaction. These nuclei are rather simple systems, which renders them ideal cases for testing the predictive power of theoretical calculations far from stability, in the vicinity of ¹³²Sn. Despite their simplicity, theoretical calculations which include core excitations predict a rich spectrum of excited states, many of which can be populated in β decay [1]. The combination of such a rich spectrum with the large Q-values available for β decay (see Table 1) allows to expect several high-energy γ -ray transitions from excited states above the neutron-separation energy. Several cases have been reported in which γ -ray transitions successfully compete with neutron emission, in particular ¹³³Sn [2, 3] and ¹³⁴Sn [4].

The neutron- γ -ray competition in the decay of neutron-unbound states is believed to have important consequences for the astrophysical r-process around the double-magic

Table 1: The β -decay energy windows (Q_{β}) of ¹³²In, ¹³³In and ¹³⁴In [5].

¹³² In	¹³³ In	¹³⁴ In	
14.14(6) MeV	$13.41(20) { m MeV}$	14.8(3) MeV	

 132 Sn, since it was indicated that it may affect its modelling [6, 7]. So far, all theoretical calculations have assumed that neutron emission dominates the decay whenever it is energetically possible.

These recent observations suggest that the competition between γ -ray and neutron emission requires a more thorough investigation. In this respect, the effectiveness of using TAS to study the neutron- γ -ray competition phenomenon has been proven in several experiments [8, 9]. In the case of the neutron-rich indium isotopes, the use of total absorption spectroscopy is of particular relevance given the high energy of the γ -ray transitions involved, which would be difficult to detect with HPGe detectors.

The β decay could also populate low-lying collective modes such as pygmy dipole resonances (PDR), which may de-excite through high energy γ -rays carrying the collectivity of the state (direct decay). The excitation of PDR through the Gamow-Teller operator was predicted theoretically in [10, 11], showing that β -decay excites complementary components of the collective modes with respect to nuclear or electromagnetic reactions. These modes, besides their fundamental interest for nuclear structure, influence greatly the r-process calculations in the mass region A~130, N~82 and N~126 as was evidenced by Goriely in 1998 [12]. However, large uncertainties affect the predictions of PDR characteristics (Electric dipole strength function, excitation energy,...). The β -decay studies of low-lying collective modes in exotic nuclei may allow one to overcome the limited beam intensities, which prevent the study of the evolution of these modes in the most exotic nuclei with reactions.

Recently, the β decays of ¹³³In and ¹³⁴In have been measured at the IDS both with highresolution γ -ray detectors [3, 4, 13], as well as by means of the neutron time-of-flight technique [14]. Total absorption spectroscopy are therefore mandatory studies to find the answers to the still open questions and to quantify better previous observations. Thanks to the high efficiency of the LUCRECIA crystal and its geometry, covering almost a 4π solid angle surrounding the radioactive samples, the spectrometer has almost 100% efficiency for the γ -ray cascades produced after the decay. This is necessary to avoid the so called Pandemonium effect [15] and thus to be sensitive to weak β feedings at high excitation energy. As demonstrated in a number of cases (see e.g. [16], [17]), this is the best method to deduce the B(GT). Moreover, the high resolution data are often insufficient to correctly assign all γ -ray transitions to levels. Consequently the β -feeding is called 'apparent β -feeding'. With our TAS data we will be able to obtain the 'real β -feeding'. Still, the analysis of the TAS data relies on having sufficient knowledge of the decay scheme [18]. Fortunatelly, the high-resolution data needed for these analyses are available [3, 4, 13]. All measurements were performed at the ISOLDE Decay Station.

Total absorption spectroscopy of such short-lived nuclei will require the unique combination of high beam intensities for the exotic ¹³²In, ¹³³In and ¹³⁴In isotopes, beam purity and in-beam measurement during implantation of the radiation on the tape, which is offered by the LUCRECIA spectrometer in

combination with the use of RILIS at ISOLDE.

2 Physics cases

The decay of ¹³⁴In is particularly interesting. The daughter nucleus ¹³⁴Sn is a rather simple system with its magic proton number Z=50 and only 2 neutrons above the closed N=82 shell, see Fig 1. Understanding such a system is crucial in order to be able to make predictions about the structure of the nuclei further away from magicity. In addition, this simple system is still very poorly studied, with only 4 excited states in ¹³⁴Sn reported in the literature so far [19]. The β decay of ¹³⁴In was investigated for the first time in a measurement performed in the mid 1990s, but at that time only the population of states in the β -delayed neutron daughter ¹³³Sn was observed [20]. Large-scale shell-model calculations with core excitations predict the existence of several highly excited states in the ¹³⁴Sn nucleus [1]. Some light on the structure of ¹³⁴Sn was shed by the latest IDS experiment, which yielded the first observation of excited states in ¹³⁴Sn populated in β decay [4]. However, more excited states are expected and have still to be observed. Their experimental identification is essential in order to validate effective nucleon-nucleon interactions employed in these models and to investigate states populated via Gamow-Teller transitions, in particular the $\nu g_{7/2} \rightarrow \pi g_{9/2}$ transition.

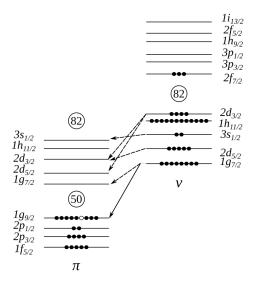


Figure 1: Single-particle orbitals relevant for the nuclei around ¹³²Sn. The dots represent the ground-state configuration for ¹³⁴In. Arrows represent Gamow-Teller transitions resulting in population of neutron-unbound states in Sn nuclei.

Another, extremely important aspect of the β decay study of ¹³⁴In is the possibility to investigate single-particle levels above N=82 in ¹³³Sn by looking at the delayed-neutron decay-branch. Singleparticle levels above N=82 were first investigated in the decay of ¹³⁴In [20], and then confirmed in the neutron-transfer reactions ¹³²Sn(d,p)¹³³Sn [21] and one-neutron knockout from a ¹³⁴Sn beam [2]. The neutron single-particle level $\nu i \frac{13}{2}$, which is expected at an excitation energy of about 2.5 MeV [22], has not yet been observed experimentally. The β -decay study of ¹³⁴In with total absorption spectroscopy is a very promising strategy for identifying this last experimentally-unknown neutron single-particle level in the region.

In the β decay of ^{133–134}In, Gamow-Teller transitions from neutron single-particle states inside the N=82 core to the empty proton orbitals above Z=50 will populate excited states located above the neutron separation energy [14], as shown in Fig 1. Expectations that all levels above the neutron separation energy in tin isotopes will de-

excite by the emission of a β -delayed neutron are not necessarily met. In fact, recent IDS measurements showed γ -ray transitions from levels located at energies exceeding the S_n by 1-to-3.5 MeV [3], a clear sign of the existence of neutron- γ competition. For ¹³³Sn this

phenomenon was observed first at RIKEN in one-neutron knockout from ¹³⁴Sn [2], later confirmed at IDS in the β -decay study of ¹³³In [3], and subsequently also in ¹³⁴In decay [4]. The investigation of the β decay of ¹³²In, ¹³³In and ¹³⁴In, with their large energy windows for population of neutron-unbound levels, by means of a high-efficiency detection system, will provide an ideal testing ground to probe the capability of γ -ray emission to compete with neutron emission well above the neutron-separation energy.

The study of the evolution of the β feeding and subsequent γ -ray emission along the isotopic chain from ¹³²In to ¹³⁴In feeding the corresponding Sn daughter nuclei will allow a deeper understanding of the mechanisms at play behind the high-energy γ -ray emission. Indeed several theoretical models predict an evolution of the collectivity with isospin asymmetry with a diminution of the energy centroid of the PDR and an increase of its strength [23, 24]. Experimentally, the dipole-strength distribution above the one-neutron separation energy was investigated in the unstable tin isotopes $^{129-133}$ Sn including the doubly-magic nucleus ¹³²Sn [25]. While two clear peaked structures at 10 MeV identified as PDRs were observed in ¹³⁰Sn and ¹³²Sn, the odd isotopes ^{129,131}Sn and ¹³³Sn exhibited a sharp increase of their dipole strength between 5 and 8 MeV [26, 27], a region energetically accessible through beta-decay of the Indium isotopes. The excitation of this dipole strength through β -decay is possible when the required spin and parity conditions are fulfilled, i.e. for the decay of the $9/2^+$ isomer of ¹³³In [28]. One could also wonder if other low-lying collective modes could be accessed through the Gamow-Teller operator. An increase of the transition strength of the quadrupole pair-addition mode in Sn isotopes with A>132 has been predicted [29] with a Skyrme HFB model. Studying the β decay of the two even ¹³²In and ¹³⁴In isotopes could provide access to other possible low-lying collective strength.

The measurement of ¹³¹In with lower delayed-neutron emission fractions and more intense beams will help the analysis of the most challenging cases ¹³²In, ¹³³In and ¹³⁴In.

3 Experimental set-up

As mentioned above for the proposed measurements we will use the LUCRECIA TAS. The LUCRECIA spectrometer is a single NaI crystal of cylindrical shape with dimensions 38 cm x 38 cm (diameter x length). Total efficiency for 1 MeV γ rays reaches 89% and drops only to 79% for 5 MeV γ s. Full-energy absorption efficiency is 62% for 1 MeV and 44% for 5 MeV γ rays. LUCRECIA is equipped with a plastic detector for β -particle coincidence and a germanium telescope detector for the detection of low energy γ rays. See Rubio *et al.* [30] for details. A newly-developed in-vacuum tape-drive system will also be used during the experiment. Due to the short half-life of the indium isotopes under investigation, the beam will be implanted onto the tape inside the spectrometer.

For the ¹³³In and ¹³⁴In cases we have to consider the neutron induced background in the spectrometer. Two different approaches are considered. The first is to use the available information on the β -delayed neutron spectroscopy already available for ¹³³In [14] and planned for ¹³⁴In [31], see Ref. [9]. The second strategy is to use the neutron- γ -ray detection time discrimination to characterize the neutron background as explained in Ref. [32].

4 Beam-time estimate and request

Beam times were estimated based on a proton beam at 1.4 GeV and with 2 μ A intensity impinging on a UC_x target (lower beam intensity will be needed for A=131 and 132 because of rate limitations of LUCRECIA) equipped with a neutron converter. The RILIS ion source will be employed to selectively ionise the indium isotopes while suppressing isobaric contaminants, which is crucial for the success of the measurement. The RILIS will be operated in narrow band to study the isomeric and ground state decays selectively, when required. A 70% beam transmission to the LUCRECIA measuring station has been considered. This value takes into account transport and collimation losses.

For the beam request we use the actual count rates from previous experiments (IS610), which are compatible with the ISOLDE yield database. The total γ - and β detection efficiencies were assumed conservatively to be 80% and 40%, respectively and delayed neutron branching ratios were taken from the available literature. The number of shifts requested was calculated to have at least 1M (A=131 – 133) and 200k (A=134) events in the $\beta - \gamma$ spectrum for each β -decaying state. In Table 2 the properties of the isotopes to be investigated, the corresponding yields and beam-time requested are summarised.

Since the evaluation of daughter and granddaughter decays with the same technique is essential for data analysis, 2 shifts are requested for the measurement of the daughter activities. This is achieved by measurements with tape-system cycles adapted to nuclei with a longer half-life, and it is specifically required for A=132.

The beam-time request includes one shift to measure the β decay of ¹³¹In, as shown in Table 2. Its high production rates makes it an excellent pilot beam for fine-tuning the experimental setup and in addition it allows a direct comparison with high-resolution data from ISOLDE. For the calibration of the LUCRECIA response function standard sources and an implanted ²⁴Na (T_{1/2}=15.0 hours) will be needed.

Isotope	T _{1/2}	\mathbf{P}_n	Yield	Intensity at LUCRECIA	Requested shifts
	ms	%	$ions/\mu C$	ions/s	
131 In	265-328 ^a	2-12 a		$5 \cdot 10^{3}$	1
132 In	202 [13]	12 [13]	$2 \cdot 10^{4} c$	$5 \cdot 10^{3}$	1
$^{133g.s.}$ In	162 [3]	74 [3]	900 c	1300	3
133m In	167 [3]	80 [3]	400 c	560	7
134 In	126 [33]	65[5]	50^{c}	70	8

Table 2: Half-life $T_{1/2}$, delayed-neutron branching ratios P_n , production yields, expected intensity at LUCRECIA and requested shifts for each case to be investigated.

^{*a*} $P_n=2\%$ for ¹³¹In g.s. and (1/2+) isomer, and 12(7)% for ¹³¹In (21/2+) isomer; $T_{1/2}=265$, 328 and 323 for the g.s., (1/2+) and (21/2+) isomers, respectively [34] ^{*c*} Private communication L.M. Fraile (from analysed data)

Summary of requested shifts: 2 shifts for masses 131 and 132, 3 shifts for $I^{\pi}(^{133}In)=(9/2+)$ g.s. decay, 7 shifts for $I^{\pi}(^{133m}In)=(1/2-)$ decay, 8 shifts for mass 134 and 2 additional shifts for measurement of the daughter activities are requested, for a total of 22 shifts.

References

- [1] H. Jin et al., Phys. Rev. C 84, 044324 (2011)
- [2] V. Vaquero *et al.*, Phys. Rev. Lett. 118, 202502 (2017)
- [3] M. Piersa *et al.*, Phys. Rev. C 99, 024304 (2019)
- [4] M. Piersa, β -decay studies of neutron-rich indium isotopes: γ -ray emission from neutronunbound states in ¹³⁴Sn and ¹³³Sn, ISOLDE Workshop and Users meeting, December 5-6, 2019
- [5] National Nuclear Data Center, www.nndc.bnl.gov
- [6] M.R. Mumpower et al., Prog. Part. Nucl. Phys. 86, 86 (2016)
- [7] M.R. Mumpower, T. Kawano, and P. Möller, Phys. Rev. C 94, 064317 (2016)
- [8] J.L. Tain et al., Phys. Rev. Lett. 115, 062502 (2015)
- [9] B. C. Rasco et al., Phys. Rev. C 95, 054328 (2017)
- [10] M. Scheck et al., Phys. Rev. Lett. 116, 132501 (2016)
- [11] A. Gottardo et al., Phys. Lett. B 772, 359 (2017)
- [12] S. Goriely, Phys. Lett. B 436, 10 (1998).
- [13] J. Benito et al, submitted to Phys. Rev. C (2020)
- [14] CERN-INTC-2016-059; INTC-P-487
- [15] J. C. Hardy et al., Phys. Lett. 71B, 307 (1977)
- [16] A. Algora et al., Phys. Rev. C 68, 034301 (2003)
- [17] E. Nacher et al., Phys. Rev. C 93 014308 (2016)
- [18] J. L. Tain and D. Cano-Ott, Nucl. Instrum. Methods Phys. Res., Sect. A 571, 728 (2007) and Nucl. Instrum. Methods Phys. Res., Sect. A 571, 719 (2007)
- [19] A. Korgul et al., Eur. Phys. J. A 7, 167-176 (2000)
- [20] P. Hoff et al., Phys. Rev. Lett. 77, 1020 (1996)
- [21] K.L. Jones et al., Nature 465, 454 (2010)
- [22] A. Korgul et al., Phys. Rev. C 91, 027303 (2015)
- [23] N. Paar, P. Ring, T. Niksic, and D. Vretenar, Phys. Rev. C 67, 34312 (2003)
- [24] Ebata et al., Phys. Rev. C 90 024303 (2014)
- [25] P. Adrich *et al.*, Phys. Rev. Lett. 95, 132501 (2005)

- [26] A. Klimkiewicz et al., Phys. Rev. C 76 051603 (2007)
- [27] D. Savran, T. Aumann and A. Zilges, Prog. Part. Nucl. Phys. 70, 210245 (2013)
- [28] Evaluated Nuclear Structure Data File (2020).
- [29] M. Matsuo and Y. Serizawa, Phys. Rev. C 82, 024318 (2010).
- [30] B. Rubio et al., Journal of Phys. G: Nucl. Part. Phys. 44, 084004 (2017)
- [31] R. Grzywacz et al., proposal to the present INTC
- [32] V. Guadilla et al., Phys. Rev. C 100 044305 (2019)
- [33] G. Lorusso et al., Phys. Rev. Lett. 114, 192501 (2015)
- [34] R. Dunlop et al., Phys. Rev. C 99, 045805 (2019)

Appendix

DESCRIPTION OF THE PROPOSED EXPERIMENT

The experimental setup comprises: (name the fixed-ISOLDE installations, as well as flexible elements of the experiment)

Part of the	Availability	Design and manufacturing
TAS	⊠ Existing	 □ To be used without any modification ⊠ To be modified (The Tape Station should be updated)

HAZARDS GENERATED BY THE EXPERIMENT (if using fixed installation:) Hazards named in the document relevant for the fixed [COLLAPS, CRIS, ISOLTRAP, MINIBALL + only CD, MINIBALL + T-REX, NICOLE, SSP-GLM chamber, SSP-GHM chamber, or WITCH] installation.

Additional hazards:

Hazards	[Part 1 of experiment/ equipment]	[Part 2 of experiment/ equipment]	[Part 3 of experiment/ equipment]		
Thermodynamic and	Thermodynamic and fluidic				
Pressure					
Vacuum	high vacuum $[10^{-6}]$				
	mbar]				
Temperature	LN2 temperature [77 K]				
Heat transfer					
Thermal properties of					
materials					
Cryogenic fluid					
Electrical and electro	magnetic				
Electricity	6.0kV (HPGe det. HV				
	supply)				
Static electricity					
Magnetic field					
Batteries					
Capacitors					
Ionizing radiation	-				
Target material [mate-					
rial]					
Beam particle type (e,	ions: ^{131–134} In				
p, ions, etc)					
Beam intensity	maximum $5 \cdot 10^3 \text{ s}^{-1}$				
Beam energy	60 keV				

Cooling liquids	[liquid]	
Gases	[gas]	
Calibration sources:		
Open source	\boxtimes	
Sealed source	\boxtimes [ISO standard]	
Isotope	152 Eu, 133 Ba,	
• Isotope	22 Na, 241 Am, 60 Co,	
	24 Na (open)	
Activity	1-10 kBq	
Use of activated mate-	1 10 110 1	
rial:		
Description	Π	
Dose rate on contact	[dose][mSV]	
and in 10 cm distance		
Isotope		
Activity		
Non-ionizing radiatio	n	
Laser		
UV light		
Microwaves (300MHz-		
30 GHz)		
Radiofrequency (1-300		
MHz)		
Chemical		
Toxic	[chemical agent], [quan-	
TOALC	tity]	
Harmful	[chem. agent], [quant.]	
CMR (carcinogens,	[chem. agent], [quant.]	
mutagens and sub-	[enem: agent], [quant.]	
stances toxic to repro-		
duction)		
Corrosive	[chem. agent], [quant.]	
Irritant	[chem. agent], [quant.]	
Flammable	[chem. agent], [quant.]	
Oxidizing	[chem. agent], [quant.]	
Explosiveness	[chem. agent], [quant.]	
Asphyxiant	[chem. agent], [quant.]	
Dangerous for the envi-	[chem. agent], [quant.]	
ronment		
Mechanical		
Physical impact or me-	[location]	
chanical energy (mov-	[[]	
ing parts)		
Mechanical properties	[location]	
(Sharp, rough, slip-	L · · · · · · · · ·	
pery)		

Vibration	[location]	
Vehicles and Means of	[location]	
Transport		
Noise		
Frequency	[frequency],[Hz]	
Intensity		
Physical		
Confined spaces	[location]	
High workplaces	[location]	
Access to high work-	[location]	
places		
Obstructions in pas-	[location]	
sageways		
Manual handling	[location]	
Poor ergonomics	[location]	

Hazard identification:

Average electrical power requirements (excluding fixed ISOLDE-installation mentioned above): [make a rough estimate of the total power consumption of the additional equipment used in the experiment]