
FullSimLight: ATLAS standalone Geant4 simulation

Marilena Bandieramonte1,2,∗, Riccardo Maria Bianchi1,2, and Joseph Boudreau1,2

1CERN, EP Department, Meyrin 1211, Switzerland
2University of Pittsburgh, Dept. of Physics and Astronomy, Pittsburgh, PA 15260, USA

Abstract. HEP experiments simulate the detector response by accessing all
needed data and services within their own software frameworks. However de-
coupling the simulation process from the experiment infrastructure can be use-
ful for a number of tasks, amongst them the debugging of new features, or the
validation of multi-threaded vs sequential simulation code and the optimization
of algorithms for HPCs. The relevant features and data must be extracted from
the framework to produce a standalone simulation application.
As an example, the simulation of the detector response of the ATLAS experi-
ment at the LHC is based on the Geant4 toolkit and is fully integrated in the
experiment’s framework "Athena". Recent developments opened the possibility
of accessing a full persistent copy of the ATLAS geometry outside of the Athena
framework. This is a prerequisite for running ATLAS Geant4 simulation stan-
dalone. In this paper we present the status of development of FullSimLight, a
lightweight simulation prototype that is being developed with the goal of run-
ning ATLAS standalone Geant4 simulation with the actual ATLAS geometry.
The purpose of FullSimLight is to simplify studies of Geant4 tracking and
physics processes, including tests on novel architectures. We will also address
the challenges related to the complexity of ATLAS’s geometry implementa-
tion, which precludes make persistent a complete detector description in a way
that can be automatically read by standalone Geant4. This lightweight proto-
type is meant to ease debugging operations on the Geant4 side and to allow
early testing of new Geant4 releases. It will also ease optimization studies and
R&D activities related to HPC development: i.e. the possibility to offload par-
tially/totally the simulation to GPUs/Accelerators without having to port the
whole experimental infrastructure.

1 Introduction

High Energy Physics (HEP) experiments need to simulate their detector response with a high
level of accuracy, to be able to correctly compare experimental data to simulated data from
theoretical models. This goal is achieved executing a series of intermediate steps that range
from the event generation to the Monte Carlo simulation of the interaction of particles with
matter and of their transport through the detector, to the reconstruction of the physical quan-
tities that represent the basic information to start the physics analysis. Each experiment has
implemented its own custom solution and uses complex and large frameworks, through which
∗e-mail: marilena.bandieramonte@cern.ch

Copyright 2020 CERN for the benefit of the ATLAS Collaboration. Reproduction of this article or parts of it is
allowed as specified in the CC-BY-4.0 license.

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 02029 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024502029



it is possible to perform their entire data workflow. However, HEP experiments are not static
and during their life-cycles many upgrade activities and R&D programs are in progress and
the software frameworks need to cope with the new needs and new developments. For exam-
ple, the upgraded detectors that the experiments at the Large Hadron Collider (LHC) foresee
to commission in the near future, with new modules or cell-level shapes, finer segmentation,
different materials and detection techniques, require additional developments of tools and
features and imply new demands of physics coverage and accuracy. The experiments’ up-
grade activity encourages, for instance, the development, improvement and optimization of
detector description tools that can make the modeling of complex detectors more efficient and
computationally faster, providing new features, simplifying and speeding up significantly the
development cycle. Each experiment carries out diverse R&D projects in order to success-
fully face all those challenges posed by near term and future research programs, everything
within some constraints for example given by the available computing budget.

In this context, particle transport Monte Carlo simulation, that is implemented using the
Geant4 toolkit [1–3], is considered as one of the main actors of the experiment simulation
stack, being the main CPU consumer in most scenarios. Any development that can improve
the performance of the Geant4 detector simulation, both in terms of speedup and accuracy,
is of utmost importance. In this paper we introduce FullSimLight, a standalone lightweight
ATLAS simulation prototype based on Geant4. It is conceived as a tool to streamline a
number of tasks related to simulation and detector description, like the debug of new features
and the early testing of new Geant4 releases or geometry clash detection. It could also be
envisaged as a useful tool to ease the validation of multi-threaded vs sequential simulation
code or the optimization of algorithms for HPC’s environments. In Sec. 2 we will describe
the complexity of Athena, the ATLAS software framework, in Sec. 3 we will describe the
basic building blocks that are pre-requisites for running a standalone ATLAS simulation and
in Sec. 4 we will present the status of development of FullSimLight, presenting some use
cases. Finally in Sec. 5 we will draw some conclusions and present some future work.

2 Athena framework and ATLAS detector simulation

The Athena [4, 5] framework is the main software infrastructure used by the ATLAS [6] col-
laboration. It is based on the Gaudi framework [7] that supports a variety of applications
through base classes and common functionalities, providing communication tools between
different components. ATLAS collaboration uses the Athena framework to run the full soft-
ware stack, that consists mainly of simulation, reconstruction and to some extent physics
analysis, by iterating over an input dataset associated with single particles collisions, called
events. The loop over each individual event is called the Event Loop and Athena controls
the sequence in which different algorithms are executed inside the event loop, through the so
called Athena AlgSequence. The full software chain can be summarized with the following
steps:

• Step 1 - Event generation : Outgoing particles from LHC collisions are generated with
specific energies and directions and stored in EVNT files

• Step 2 - Simulation : The generated particles are transported through the detector and
their interaction with the detector components is simulated, producing the HITS files that
represent the energy deposits of particles on the sensitive detectors cells

• Step 3 - Digitization: The ATLAS detector discrete response is calculated in forms of digits
from the HITS file generated in the previous step, producing RDO files

• Step 4 - Reconstruction: Times and voltages representing the detector response are recon-
structed into physics analysis objects and stored in AOD and ESD files

2

EPJ Web of Conferences 245, 02029 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024502029



Figure 1: ATLAS Simulation infrastructure flow, from event generators (top left) to recon-
struction (top right).

• Step 5 - Derivation and Physics Analysis: Only relevant data for a particular physics item
is kept, producing DAOD files from the AODs. Physics analysis starts from those.

Athena-based programs are configured depending on the required data flow of the algo-
rithms involved in the sequence. Jobs are configured through script files, so called jobOptions,
that are generated by job transform wrapper scripts and use Python as front-end language.
The ATLAS simulation software is being used for large-scale production of events on the
LHC Computing Grid (but also on HPC and clouds). This simulation requires many compo-
nents, from the generators that simulate particle collisions, through packages simulating the
response of the various detectors and triggers. All of these components come together un-
der the ATLAS simulation infrastructure [8], a very complex framework that manages many
different elements. The flow of the ATLAS simulation framework is illustrated in Figure 1.
The square-cornered boxes represents algorithms, while persistent data objects are placed in
rounded boxes. The dashed lines represents the optional pile-up portion of the chain that is
used only when events are overlaid. The generators are used to produce the outgoing particles
from LHC collisions in HepMC formats and Monte Carlo truth is saved in addition to the hits
that represent the energy deposition in the detector.

On one hand, the adoption of a common framework encourages the use of a standard
approach, providing a skeleton of an application into which developers plug in their code and
that embodies the underlying design and philosophy of the software. It is also useful to factor
out common components and functionalities that can be re-used in different scenarios. How-
ever, having a unique software stack that controls and handles many different services and
components, introduces extra-layers and extra-complexity that complicate some workflows
and that could be avoided in some cases. The purpose of FullSimLight is to have a "light"
standalone Geant4 simulation of ATLAS, light because no sensitive detector description is
embedded into it. FullSimLight decouples the simulation process from the experiment in-
frastructure, moving it towards a standalone and platform-independent prototype. A tool like
this can be very useful in terms of speeding-up some tasks and can also ease development cy-
cles providing an agile tool that can be run easily over different platforms and independently
from the main framework.

3

EPJ Web of Conferences 245, 02029 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024502029



3 Towards a standalone ATLAS full simulation

In order to have a standalone simulation, relevant tools and data must be extracted from the
main Athena framework. Some basic building blocks are required, the first of which is to
have a standalone access to the ATLAS detector geometry. The historical detector descrip-
tion tool used by the ATLAS experiment is GeoModel [9]. Thanks to a recent development,
GeoModel has been extracted from Athena, becoming a standalone package [10, 11] that is
linked as an external project into Athena. With the standalone GeoModel, there is now also
the possibility to make persistent any version/tag of the ATLAS geometry in a SQLite [12]
database file and building it back from the same file using GeoModelIO [13, 14]. The second
tool that is necessary to build a Geant4 simulation of the ATLAS detector, is a converter
from GeoModel geometry to Geant4 geometry, the GeoModel2G4 converter. This needed to
be extracted from the Athena code too and made available in a standalone fashion. Third,
we need a standalone access to the ATLAS magnetic field, if we want our tool to be use-
ful for tracking studies. Having these basic building blocks one could write a lightweight
Geant4 simulation, that builds the ATLAS detector, implements its magnetic field and runs
in a standalone and platform-independent way. A possibility could be to go further with the
I/O handling, i.e. events handling, conditions and alignment handling or HITS and sensitive
detectors implementation, but this would go out of the scope of our project which is not meant
to be a replacement of the simulation, but rather a tool to simplify R&D studies and testing
activities.

3.1 Standalone GeoModel and Geometry Persistency

GeoModel is the detector description toolkit used in ATLAS: it describes standard shapes
and nodes, which are then customized with parameters taken from an "online" Geometry DB
(Oracle-based). Historically there wasn’t the possibility to access a persistent copy of the AT-
LAS geometry, since the geometry was built on demand at run-time and kept only in memory.
The initial motivation for having access to a standalone, persistent copy of the ATLAS geom-
etry was the development of a light version of VP1 [15], the ATLAS 3D event display tool
integrated in Athena that can access all services and databases and can visualize all ATLAS
data (ESD, AOD, EVGEN, HITS,...). This light version, called VP1Light [13, 16], is an event
display visualization tool, that has been developed to run outside of the Athena framework
on different platforms such as MacOS or Ubuntu. For that purpose the ATLAS geometry
should be accessible outside of the Athena framework in a persistent format. This is what
lead to the extraction of GeoModel from Athena and the development of routines to write-out
and read-in a GeoModel geometry with GeoModelIO; a full toolkit suite based on GeoModel
has been developed, including visualization of detector geometry and input/output tools. A
persistent version of the full GeoModel tree as described in Athena, after the application of
the parameters taken from the Geometry DB, is accessible in a standalone way and all the
GeoModel libraries can be built outside Athena, easing the development of new code and its
use in standalone applications.

3.2 GeoModel2G4 converter and complexity of the ATLAS geometry

As said before, GeoModel2G4 converter [17] is needed to convert the ATLAS geometry, that
is read back from the persistent copy and built in GeoModel geometry format, into Geant4
geometry. For this purpose two main ATHENA packages are needed: GeoMaterial2G4 and
Geo2G4, which are respectively handling the material conversion and the shapes conversion.

4

EPJ Web of Conferences 245, 02029 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024502029



Figure 2: Cut-away view of an end-cap
cryostat showing the positions of the three
end-cap calorimeters. The outer radius of
the cylindrical cryostat vessel is 2.25 m
and the length of the cryostat is 3.17 m.

Figure 3: Picture of an electromagnetic
end-cap module showing the accordion
structure of the ATLAS EM calorimeters.

The extraction of the major part of these packages imply the extraction of a very specific AT-
LAS sub-detector with a custom, complex geometry: the ElectroMagnetic End-Cap (EMEC)
special shape.

The EMEC [18] is a lead/liquid-argon sampling calorimeter with interleaved accordion-
shaped absorbers and electrodes. Figure 2 shows a cut-away view of the end-cap cryostat
with three calorimeters. During the experiment design phase, the geometry has been chosen
of accordion type, shown in Figure3, for several reasons: i.e. it allows very good hermeticity,
it increases the absorber rigidity which improves their relative positioning and hence con-
tributes to the response uniformity, and it minimizes inductance in the signal paths. Due to
the very complex geometric form of the EMEC detector, which is not represented by any
stardard shape or volume implemented both in GeoModel and in Geant4, it has been chosen
to describe it with a custom solid implementation [19]. For this reason it is not possible to
directly make this shape persistent into standard geometry formats that are widely used in
the HEP community such as GDML [20], or dump it in a way that can be automatically read
by standalone Geant4. For this purpose it has been indeed necessary to export the code that
implements the EMEC special shape in GeoModel as well as the code that implements the
EMEC custom solid in Geant4. This work has been completed, so now we have the possibil-
ity to make persistent the whole ATLAS geometry, containing also the EMEC sub-detector,
in SQLite files that can then be read-in in FullSimLight to build back the whole geometry and
convert it into Geant4.

4 FullSimLight: status and features

FullSimLight [21] is a standalone Geant4 based simulation of the full ATLAS detector, built
on top of GeoModelCore [11], GeoModelIO, GeoModel2G4, and Geant4 projects. It can run
both in sequential and multi-threaded mode (the latter requires Geant4 to be compiled with
multi-thread support). Figure 4 shows the different elements that compose this application.

The detector construction supports the following formats:

• SQLite geometry files: dump of ATLAS geometry, portions of it or other geometries

• GDML geometry files: dump of ATLAS geometry, portions of it or other geometries

5

EPJ Web of Conferences 245, 02029 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024502029



Figure 4: Sketch describing the main components of FullSimLight application at the present
status.

• .so/.dylib plugins: self-contained packages describing a particular geometry

At the time of writing this paper a constant magnetic field is implemented in the appli-
cation, and its value can be set through the default Geant4 input file. The integration of
the ATLAS magnetic field map is in our near term working plan. FullSimLight uses a par-
ticle gun to generate particles at a specific position and with specific kinematic properties.
Different physics lists can be specified and used for the simulation. A minimal set of "ob-
servables" is collected during the simulation per-primary particle type: mean energy deposit,
mean charged and neutral step lengths, mean number of steps made by charged and neutral
particles, mean number of secondary particles. The result is reported at the end of each event
for each primary particle that was transported. At the end of the run some per-primary par-
ticle type simulation statistics of the above mentioned quantities are also reported. Sensitive
detectors are not implemented, since FullSimLight is not conceived as a replacement of the
entire Monte Carlo simulation, but rather as a tool that can be used to speed development
up and testing activities, or R&D studies. We envisage the use of FullSimLight in many use
cases such as studies of performance and optimization of Geant4 steppers for transport in
magnetic field, easy production of geantino maps for ATLAS sub-detectors, studies about the
implementation and use of Geant4 parallel geometries [22]: i.e. event biasing, scoring of
radiation, and/or the creation of hits in detailed readout structures. Furthermore FullSimLight
allows very easily to perform geometry overlap checks on each plugged-in geometry, taking
into account the hierarchy of volumes which are organized in mother-daughters relationships
inside the detector simulation. This is a very useful feature, that has already been used for
debugging geometries and to detect clashing volumes or misplaced geometries. As an ex-
ample, Figure 5, that has been produced with VP1Light, shows a clash of two volumes in
a complex geometry, that has been detected running a geometry overlap check from within
FullSimLight.

5 Conclusions

We have a first working prototype of FullSimLight: a standalone light MonteCarlo simulation
of the ATLAS detector at the LHC. The relevant features have been extracted from the main
experiment framework, Athena, to produce a first standalone simulation application. This
lightweight prototype is meant to ease debugging operations on the Geant4 side and to allow
early testing of new Geant4 releases, but it has shown already to be an useful tool for detec-
tor description geometry debug, in order to easily detect clashing volumes. In the near term

6

EPJ Web of Conferences 245, 02029 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024502029



Figure 5: Two clashing volumes in a complex Muon geometry, detected running a geometry
overlap check with FullSimLight

FullSimLight will be used to simplify studies of Geant4 tracking, allowing to test new step-
pers and Geant4 features, to assess different performance gains using ATLAS detector and
its magnetic field. In the long term we envisage the use of this prototype to produce geantino
maps and ease optimization studies and R&D activities related to HPC development: i.e. the
possibility to offload partially/totally the simulation to GPUs/Accelerators without having to
port the whole experimental infrastructure.

References

[1] S. Agostinelli et al. (GEANT4), Nucl. Instrum. Meth. A506, 250 (2003)
[2] J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006)
[3] J. Allison et al., Nuclear Instruments and Methods in Physics Research Section A: Ac-

celerators, Spectrometers, Detectors and Associated Equipment 835, 186 (2016)
[4] P. Calafiura, W. Lavrijsen, C. Leggett, M. Marino, D. Quarrie, The Athena control

framework in production, new developments and lessons learned, in Computing in high
energy physics and nuclear physics. Proceedings, Conference, CHEP’04, Interlaken,
Switzerland, September 27-October 1, 2004 (2005), https://cds.cern.ch/record/
865624

[5] The Athena Framework, https://atlassoftwaredocs.web.cern.ch/athena/
athena-intro/

[6] The ATLAS Collaboration, Journal of Instrumentation 3, S08003 (2008)
[7] G. Barrand et al., Comput. Phys. Commun. 140, 45 (2001)
[8] The ATLAS Collaboration, The European Physical Journal C 70, 823 (2010)
[9] J. Boudreau, V. Tsulaia, The GeoModel toolkit for detector description, in Comput-

ing in high energy physics and nuclear physics. Proceedings, Conference, CHEP’04,
Interlaken, Switzerland, September 27-October 1, 2004 (2005), pp. 353–356, https:
//cds.cern.ch/record/865601

[10] R.M. Bianchi, J. Boudreau, I. Vukotic, Journal of Physics: Conference Series 898,
072015 (2017)

7

EPJ Web of Conferences 245, 02029 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024502029

https://cds.cern.ch/record/865624
https://cds.cern.ch/record/865624
https://atlassoftwaredocs.web.cern.ch/athena/athena-intro/
https://atlassoftwaredocs.web.cern.ch/athena/athena-intro/
https://cds.cern.ch/record/865601
https://cds.cern.ch/record/865601


[11] GeoModelCore, https://gitlab.cern.ch/GeoModelDev/GeoModelCore
[12] SQLite Library, https://www.sqlite.org
[13] S.A. Merkt et al., EPJ Web Conf. 214, 02035 (2019)
[14] GeoModelIO, https://gitlab.cern.ch/GeoModelDev/GeoModelIO
[15] T. Kittelmann, V. Tsulaia, J. Boudreau, E. Moyse, Journal of Physics: Conference Series

219, 032012 (2010)
[16] R.M. Bianchi et al., Journal of Physics: Conference Series 898, 072014 (2017)
[17] GeoModelG4, https://gitlab.cern.ch/GeoModelDev/GeoModelG4
[18] The ATLAS Electromagnetic Liquid Argon Endcap Calorimeter Group, Journal of In-

strumentation 3, P06002 (2008)
[19] J.P. Archambault et al., Tech. Rep. ATL-LARG-PUB-2009-001-1. ATL-COM-LARG-

2008-002. ATL-LARG-PUB-2009-001, CERN, Geneva (2008), https://cds.cern.
ch/record/1095009

[20] R. Chytracek, J. McCormick, W. Pokorski, G. Santin, IEEE Trans. Nucl. Sci. 53, 2892
(2006)

[21] FullSimLight, https://gitlab.cern.ch/GeoModelDev/FullSimLight
[22] J. Apostolakis et al., Parallel geometries in Geant4: Foundation and recent enhance-

ments, in 2008 IEEE Nuclear Science Symposium Conference Record (2008), pp. 883–
886, ISSN 1082-3654

8

EPJ Web of Conferences 245, 02029 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024502029

https://gitlab.cern.ch/GeoModelDev/GeoModelCore
https://www.sqlite.org
https://gitlab.cern.ch/GeoModelDev/GeoModelIO
https://gitlab.cern.ch/GeoModelDev/GeoModelG4
https://cds.cern.ch/record/1095009
https://cds.cern.ch/record/1095009
https://gitlab.cern.ch/GeoModelDev/FullSimLight

	Introduction
	Athena framework and ATLAS detector simulation
	Towards a standalone ATLAS full simulation
	Standalone GeoModel and Geometry Persistency
	GeoModel2G4 converter and complexity of the ATLAS geometry

	FullSimLight: status and features
	Conclusions

