CERN Accelerating science

Published Articles
Title Investigation of the fine structure of antihydrogen
Author(s)

Ahmadi, M (Liverpool U.) ; Alves, B X R (Aarhus U.) ; Baker, C J (Swansea U.) ; Bertsche, W (Manchester U. ; Cockcroft Inst. Accel. Sci. Tech.) ; Capra, A (TRIUMF) ; Carruth, C (UC, Berkeley) ; Cesar, C L (Rio de Janeiro Federal U.) ; Charlton, M (Swansea U.) ; Cohen, S (Ben Gurion U. of Negev) ; Collister, R (TRIUMF) ; Eriksson, S (Swansea U.) ; Evans, A (Calgary U.) ; Evetts, N (British Columbia U.) ; Fajans, J (UC, Berkeley) ; Friesen, T (Aarhus U. ; Calgary U.) ; Fujiwara, M C (TRIUMF) ; Gill, D R (TRIUMF) ; Granum, P (Aarhus U.) ; Hangst, J S (Aarhus U.) ; Hardy, W N (British Columbia U.) ; Hayden, M E (Simon Fraser U.) ; Hunter, E D (UC, Berkeley) ; Isaac, C A (Swansea U.) ; Johnson, M A (Manchester U. ; Cockcroft Inst. Accel. Sci. Tech.) ; Jones, J M (Swansea U.) ; Jones, S A (Aarhus U. ; Swansea U.) ; Jonsell, S (Stockholm U.) ; Khramov, A (TRIUMF ; British Columbia U.) ; Knapp, P (Swansea U.) ; Kurchaninov, L (TRIUMF) ; Madsen, N (Swansea U.) ; Maxwell, D (Swansea U.) ; McKenna, J T K (Aarhus U. ; TRIUMF) ; Menary, S (York U., Canada) ; Michan, J M (TRIUMF ; EPFL-ISIC, Lausanne) ; Momose, T (British Columbia U. ; British Columbia U.) ; Munich, J J (Simon Fraser U.) ; Olchanski, K (TRIUMF) ; Olin, A (TRIUMF ; Victoria U.) ; Pusa, P (Liverpool U.) ; Rasmussen, C Ø (Aarhus U.) ; Robicheaux, F (Purdue U.) ; Sacramento, R L (Rio de Janeiro Federal U.) ; Sameed, M (Manchester U.) ; Sarid, E (Soreq Nucl. Res. Ctr.) ; Silveira, D M (Rio de Janeiro Federal U.) ; So, C (TRIUMF ; Calgary U.) ; Starko, D M (York U., Canada) ; Stutter, G (Aarhus U.) ; Tharp, T D (Soreq Nucl. Res. Ctr. ; Marquette U.) ; Thompson, R I (TRIUMF ; Calgary U.) ; van der Werf, D P (Swansea U. ; IRFU, Saclay) ; Wurtele, J S (UC, Berkeley)

Publication 2020
Number of pages 10
In: Nature 578 (2020) 375-380
DOI 10.1038/s41586-020-2006-5
Subject category Particle Physics - Experiment
Accelerator/Facility, Experiment CERN ALPHA
Abstract At the historic Shelter Island Conference on the Foundations of Quantum Mechanics in 1947, Willis Lamb reported an unexpected feature in the fne structure of atomic hydrogen: a separation of the 2S$_{1/2}$ and 2P$_{1/2}$ states1. The observation of this separation, now known as the Lamb shift, marked an important event in the evolution of modern physics, inspiring others to develop the theory of quantum electrodynamics2–5. Quantum electrodynamics also describes antimatter, but it has only recently become possible to synthesize and trap atomic antimatter to probe its structure. Mirroring the historical development of quantum atomic physics in the twentieth century, modern measurements on anti-atoms represent a unique approach for testing quantum electrodynamics and the foundational symmetries of the standard model. Here we report measurements of the fne structure in the $n=$ 2 states of antihydrogen, the antimatter counterpart of the hydrogen atom. Using optical excitation of the 1S–2P Lyman-α transitions in antihydrogen6 , we determine their frequencies in a magnetic feld of 1 tesla to a precision of 16 parts per billion. Assuming the standard Zeeman and hyperfne interactions, we infer the zero-feld fne-structure splitting (2P$_{1/2}$–2P$_{3/2}$) in antihydrogen. The resulting value is consistent with the predictions of quantum electrodynamics to a precision of 2 per cent. Using our previously measured value of the 1S–2S transition frequency6,7, we fnd that the classic Lamb shift in antihydrogen (2S$_{1/2}$–2P$_{1/2}$ splitting at zero feld) is consistent with theory at a level of 11 per cent. Our observations represent an important step towards precision measurements of the fne structure and the Lamb shift in the antihydrogen spectrum as tests of the charge– parity–time symmetry8 and towards the determination of other fundamental quantities, such as the antiproton charge radius9,10, in this antimatter system.
Copyright/License publication: © 2020-2025 The Authors (License: CC-BY-4.0)

Corresponding record in: Inspire


 Record created 2020-02-22, last modified 2022-06-30