CERN Accelerating science

002710810 001__ 2710810
002710810 003__ SzGeCERN
002710810 005__ 20220630134810.0
002710810 0247_ $$2DOI$$a10.1038/s41586-020-2006-5
002710810 0248_ $$aoai:inspirehep.net:1781389$$pcerncds:CERN:FULLTEXT$$pcerncds:FULLTEXT$$pcerncds:CERN$$qINSPIRE:HEP$$qForCDS
002710810 035__ $$9http://inspirehep.net/oai2d$$aoai:inspirehep.net:1781389$$d2020-02-21T16:24:04Z$$h2020-02-22T05:00:07Z$$mmarcxml
002710810 035__ $$9Inspire$$a1781389
002710810 041__ $$aeng
002710810 100__ $$aAhmadi, M$$uLiverpool U.
002710810 245__ $$9submitter$$aInvestigation of the fine structure of antihydrogen
002710810 260__ $$c2020
002710810 300__ $$a10 p
002710810 520__ $$9submitter$$aAt the historic Shelter Island Conference on the Foundations of Quantum Mechanics in 1947, Willis Lamb reported an unexpected feature in the fne structure of atomic hydrogen: a separation of the 2S$_{1/2}$ and 2P$_{1/2}$ states1. The observation of this separation, now known as the Lamb shift, marked an important event in the evolution of modern physics, inspiring others to develop the theory of quantum electrodynamics2–5. Quantum electrodynamics also describes antimatter, but it has only recently become possible to synthesize and trap atomic antimatter to probe its structure. Mirroring the historical development of quantum atomic physics in the twentieth century, modern measurements on anti-atoms represent a unique approach for testing quantum electrodynamics and the foundational symmetries of the standard model. Here we report measurements of the fne structure in the $n=$ 2 states of antihydrogen, the antimatter counterpart of the hydrogen atom. Using optical excitation of the 1S–2P Lyman-α transitions in antihydrogen6 , we determine their frequencies in a magnetic feld of 1 tesla to a precision of 16 parts per billion. Assuming the standard Zeeman and hyperfne interactions, we infer the zero-feld fne-structure splitting (2P$_{1/2}$–2P$_{3/2}$) in antihydrogen. The resulting value is consistent with the predictions of quantum electrodynamics to a precision of 2 per cent. Using our previously measured value of the 1S–2S transition frequency6,7, we fnd that the classic Lamb shift in antihydrogen (2S$_{1/2}$–2P$_{1/2}$ splitting at zero feld) is consistent with theory at a level of 11 per cent. Our observations represent an important step towards precision measurements of the fne structure and the Lamb shift in the antihydrogen spectrum as tests of the charge– parity–time symmetry8 and towards the determination of other fundamental quantities, such as the antiproton charge radius9,10, in this antimatter system.
002710810 540__ $$3publication$$aCC-BY-4.0$$uhttp://creativecommons.org/licenses/by/4.0/
002710810 542__ $$3publication$$dThe Authors$$g2020
002710810 595__ $$aFor annual report
002710810 65017 $$2SzGeCERN$$aParticle Physics - Experiment
002710810 690C_ $$aCERN
002710810 693__ $$eCERN ALPHA
002710810 700__ $$aAlves, B X R$$uAarhus U.
002710810 700__ $$aBaker, C J$$uSwansea U.
002710810 700__ $$aBertsche, W$$uManchester U.$$uCockcroft Inst. Accel. Sci. Tech.$$vCockcroft Institute, Warrington, UK.
002710810 700__ $$aCapra, A$$uTRIUMF
002710810 700__ $$aCarruth, C$$uUC, Berkeley
002710810 700__ $$aCesar, C L$$uRio de Janeiro Federal U.
002710810 700__ $$aCharlton, M$$uSwansea U.
002710810 700__ $$aCohen, S$$uBen Gurion U. of Negev
002710810 700__ $$aCollister, R$$uTRIUMF
002710810 700__ $$aEriksson, S$$uSwansea U.
002710810 700__ $$aEvans, A$$uCalgary U.
002710810 700__ $$aEvetts, N$$uBritish Columbia U.
002710810 700__ $$aFajans, J$$uUC, Berkeley
002710810 700__ $$aFriesen, T$$uAarhus U.$$uCalgary U.$$vDepartment of Physics and Astronomy, University of Calgary, Calgary, Alberta,Canada.
002710810 700__ $$aFujiwara, M [email protected]$$uTRIUMF
002710810 700__ $$aGill, D R$$uTRIUMF
002710810 700__ $$aGranum, P$$uAarhus U.
002710810 700__ $$aHangst, J [email protected]$$uAarhus U.
002710810 700__ $$aHardy, W N$$uBritish Columbia U.
002710810 700__ $$aHayden, M E$$uSimon Fraser U.
002710810 700__ $$aHunter, E D$$uUC, Berkeley
002710810 700__ $$aIsaac, C A$$uSwansea U.
002710810 700__ $$aJohnson, M A$$uManchester U.$$uCockcroft Inst. Accel. Sci. Tech.$$vCockcroft Institute, Warrington, UK.
002710810 700__ $$aJones, J M$$uSwansea U.
002710810 700__ $$aJones, S A$$uAarhus U.$$uSwansea U.$$vDepartment of Physics, College of Science, Swansea University, Swansea, UK.
002710810 700__ $$aJonsell, S$$uStockholm U.
002710810 700__ $$aKhramov, A$$uTRIUMF$$uBritish Columbia U.$$vDepartment of Physics and Astronomy, University of British Columbia, Vancouver,British Columbia, Canada.
002710810 700__ $$aKnapp, P$$uSwansea U.
002710810 700__ $$aKurchaninov, L$$uTRIUMF
002710810 700__ $$aMadsen, N$$uSwansea U.
002710810 700__ $$aMaxwell, D$$uSwansea U.
002710810 700__ $$aMcKenna, J T K$$uAarhus U.$$uTRIUMF$$vTRIUMF, Vancouver,British Columbia, Canada.
002710810 700__ $$aMenary, S$$uYork U., Canada
002710810 700__ $$aMichan, J M$$uTRIUMF$$uEPFL-ISIC, Lausanne$$vÉcole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), Lausanne,Switzerland.
002710810 700__ $$aMomose, [email protected]$$uBritish Columbia U.$$uBritish Columbia U.$$vDepartment of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.
002710810 700__ $$aMunich, J J$$uSimon Fraser U.
002710810 700__ $$aOlchanski, K$$uTRIUMF
002710810 700__ $$aOlin, A$$uTRIUMF$$uVictoria U.$$vDepartment of Physics and Astronomy, University of Victoria, Victoria,British Columbia, Canada.
002710810 700__ $$aPusa, P$$uLiverpool U.
002710810 700__ $$aRasmussen, C Ø$$uAarhus U.
002710810 700__ $$aRobicheaux, F$$uPurdue U.
002710810 700__ $$aSacramento, R L$$uRio de Janeiro Federal U.
002710810 700__ $$aSameed, M$$uManchester U.
002710810 700__ $$aSarid, E$$uSoreq Nucl. Res. Ctr.
002710810 700__ $$aSilveira, D M$$uRio de Janeiro Federal U.
002710810 700__ $$aSo, C$$uTRIUMF$$uCalgary U.$$vDepartment of Physics and Astronomy, University of Calgary, Calgary, Alberta,Canada.
002710810 700__ $$aStarko, D M$$uYork U., Canada
002710810 700__ $$aStutter, G$$uAarhus U.
002710810 700__ $$aTharp, T D$$uSoreq Nucl. Res. Ctr.$$uMarquette U.$$vPhysics Department, Marquette University,Milwaukee, WI, USA.
002710810 700__ $$aThompson, R I$$uTRIUMF$$uCalgary U.$$vDepartment of Physics and Astronomy, University of Calgary, Calgary, Alberta,Canada.
002710810 700__ $$avan der Werf, D P$$uSwansea U.$$uIRFU, Saclay$$vIRFU, CEA/Saclay, Gif-sur-Yvette, France.
002710810 700__ $$aWurtele, J S$$uUC, Berkeley
002710810 710__ $$gALPHA Collaboration
002710810 773__ $$c375-380$$pNature$$v578$$y2020
002710810 8564_ $$uhttps://www.interactions.org/press-release/alpha-collaboration-cern-reports-first-measurements-certain$$yINTERACTIONS
002710810 8564_ $$uhttps://www.nature.com/articles/d41586-020-00384-y$$yNature News and Views article
002710810 8564_ $$81601055$$s1988573$$uhttp://cds.cern.ch/record/2710810/files/s41586-020-2006-5.pdf$$yFulltext
002710810 960__ $$a13
002710810 980__ $$aARTICLE
002710810 999C5 $$0942926$$hLamb, W.E.$$mJr & Retherford, R. C / Fine structure of the hydrogen atom by a microwave method$$o1$$sPhys.Rev.,72,241-243$$x1. Lamb, W. E., Jr & Retherford, R. C. Fine structure of the hydrogen atom by a microwave method. Phys. Rev. 72, 241–243 (1947).$$y1947$$z0
002710810 999C5 $$045283$$hTomonaga, S.$$mOn a relativistically invariant formulation of the quantum theory of wave fields$$o2$$sProg.Theor.Phys.,1,27-42$$x2. Tomonaga, S. On a relativistically invariant formulation of the quantum theory of wave fields. Prog. Theor. Phys. 1, 27–42 (1946).$$y1946$$z0
002710810 999C5 $$03363$$hSchwinger, J.$$mOn quantum-electrodynamics and the magnetic moment of the electron$$o3$$sPhys.Rev.,73,416-417$$x3. Schwinger, J. On quantum-electrodynamics and the magnetic moment of the electron. Phys. Rev. 73, 416–417 (1948).$$y1948$$z0
002710810 999C5 $$01115218$$hFeynman, R.P.$$mSpace-time approach to quantum electrodynamics$$o4$$sPhys.Rev.,76,769-789$$x4. Feynman, R. P. Space–time approach to quantum electrodynamics. Phys. Rev. 76, 769–789 (1949).$$y1949$$z0
002710810 999C5 $$hSchweber$$hQed, S.S.$$mand the Men who Made it: Dyson, Feynman, Schwinger, and Tomonaga (Princeton Univ. Press,)$$o5$$x5. Schweber, S. S. QED and the Men who Made it: Dyson, Feynman, Schwinger, and Tomonaga (Princeton Univ. Press, 1994).$$y1994$$z0
002710810 999C5 $$01689438$$hAhmadi, M.$$mObservation of the 1S-2P Lyman-α transition in antihydrogen$$o6$$sNature,561,211-215$$x6. Ahmadi, M. et al. Observation of the 1S–2P Lyman-α transition in antihydrogen. Nature 561, 211–215 (2018).$$y2018$$z0
002710810 999C5 $$01665808$$hAhmadi, M.$$mCharacterization of the 1S-2S transition in antihydrogen$$o7$$sNature,557,71-75$$x7. Ahmadi, M. et al. Characterization of the 1S–2S transition in antihydrogen. Nature 557, 71–75 (2018).$$y2018$$z0
002710810 999C5 $$01374633$$hKosteleck, V.A.$$hVargas, A.J.$$mLorentz and CPT tests with hydrogen, antihydrogen, and related systems$$o8$$sPhys.Rev.,D92,056002$$x8. Kostelecký, V. A. & Vargas, A. J. Lorentz and CPT tests with hydrogen, antihydrogen, and related systems. Phys. Rev. D 92, 056002 (2015).$$y2015$$z0
002710810 999C5 $$01471282$$hCrivelli, P.$$hCooke, D.$$hHeiss, M.W.$$mAntiproton charge radius$$o9$$sPhys.Rev.,D94,052008$$x9. Crivelli, P., Cooke, D. & Heiss, M. W. Antiproton charge radius. Phys. Rev. D 94, 052008 (2016).$$y2016$$z0
002710810 999C5 $$hEriksson, S.$$mPrecision measurements on trapped antihydrogen in the ALPHA experiment. Philos. Trans. Royal Soc. A / 376 20170268$$o10$$x10. Eriksson, S. Precision measurements on trapped antihydrogen in the ALPHA experiment. Philos. Trans. Royal Soc. A 376 20170268 (2018).$$y2018$$z0
002710810 999C5 $$hDirac, P.A.M.$$mThe quantum theory of the electron$$o11$$sProc.Roy.Soc.Lond.,117,610-624$$x11. Dirac, P. A. M. The quantum theory of the electron. Proc. R. Soc. A 117, 610–624 (1928).$$y1928$$z0
002710810 999C5 $$hKinoshita, T.$$o12$$pWorld Scientific$$tQuantum electrodynamics$$x12. Kinoshita, T. Quantum Electrodynamics (World Scientific, 1990).$$y1990$$z0
002710810 999C5 $$0691220$$hKarshenboim, S.G.$$mPrecision physics of simple atoms: QED tests, nuclear structure and fundamental constants$$o13$$sPhys.Rept.,422,1-63$$x13. Karshenboim, S. G. Precision physics of simple atoms: QED tests, nuclear structure and fundamental constants. Phys. Rep. 422, 1–63 (2005).$$y2005$$z0
002710810 999C5 $$051021$$hBrodsky, S.J.$$hParsons, R.G.$$mPrecise theory of the Zeeman spectrum for atomic hydrogen and deuterium and the Lamb shift$$o14$$sPhys.Rev.,163,134-146$$x14. Brodsky, S. J. & Parsons, R. G. Precise theory of the Zeeman spectrum for atomic hydrogen and deuterium and the Lamb shift. Phys. Rev. 163, 134–146 (1967).$$y1967$$z0
002710810 999C5 $$01631712$$hAhmadi, M.$$mAntihydrogen accumulation for fundamental symmetry tests$$o15$$sNature Commun.,8,681$$x15. Ahmadi, M. et al. Antihydrogen accumulation for fundamental symmetry tests. Nat. Commun. 8, 681 (2017).$$y2017$$z0
002710810 999C5 $$01712949$$hCapra, A.$$m& ALPHA Collaboration. Lifetime of magnetically trapped antihydrogen in ALPHA$$o16$$sHyperfine Interact.,240,9$$x16. Capra, A. & ALPHA Collaboration. Lifetime of magnetically trapped antihydrogen in ALPHA. Hyperfine Interact. 240, 9 (2019).$$y2019$$z0
002710810 999C5 $$01618211$$hAhmadi, M.$$mObservation of the hyperfine spectrum of antihydrogen$$o17$$sNature,548,66-69$$x17. Ahmadi, M. et al. Observation of the hyperfine spectrum of antihydrogen. Nature 548, 66–69 (2017); erratum 553, 530 (2018).$$y2017$$z0
002710810 999C5 $$merratum 553, 530$$o17$$x17. Ahmadi, M. et al. Observation of the hyperfine spectrum of antihydrogen. Nature 548, 66–69 (2017); erratum 553, 530 (2018).$$y2018$$z0
002710810 999C5 $$01419831$$hMichan, J.M.$$hPolovy, G.$$hMadison, K.W.$$hFujiwara, M.C.$$hMomose, T.$$mNarrowband solid state VUV coherent source for laser cooling of antihydrogen$$o18$$sHyperfine Interact.,235,29-36$$x18. Michan, J. M., Polovy, G., Madison, K. W., Fujiwara, M. C. & Momose, T. Narrowband solid state VUV coherent source for laser cooling of antihydrogen. Hyperfine Interact. 235, 29–36 (2015).$$y2015$$z0
002710810 999C5 $$0878490$$hAndresen, G.B.$$mTrapped antihydrogen$$o19$$sNature,468,673-676$$x19. Andresen, G. B. et al. Trapped antihydrogen. Nature 468, 673–676 (2010).$$y2010$$z0
002710810 999C5 $$0897149$$hAndresen, G.B.$$mConfinement of antihydrogen for 1,000 seconds$$o20$$sNature Phys.,7,558-564$$x20. Andresen, G. B. et al. Confinement of antihydrogen for 1,000 seconds. Nat. Phys. 7, 558–564 (2011).$$y2011$$z0
002710810 999C5 $$01504862$$hAhmadi, M.$$mObservation of the 1S-2S transition in trapped antihydrogen$$o21$$sNature,541,506-510$$x21. Ahmadi, M. et al. Observation of the 1S–2S transition in trapped antihydrogen. Nature 541, 506–510 (2017).$$y2017$$z0
002710810 999C5 $$01647452$$hAhmadi, M.$$mEnhanced control and reproducibility of non-neutral plasmas$$o22$$sPhys.Rev.Lett.,120,025001$$x22. Ahmadi, M. et al. Enhanced control and reproducibility of non-neutral plasmas. Phys. Rev. Lett. 120, 025001 (2018).$$y2018$$z0
002710810 999C5 $$01610522$$hMaury, S.$$mThe antiproton decelerator: AD$$o23$$sHyperfine Interact.,109,43-52$$x23. Maury, S. The antiproton decelerator: AD. Hyperfine Interact. 109, 43–52 (1997).$$y1997$$z0
002710810 999C5 $$hMurphy, T.J.$$hSurko, C.M.$$mPositron trapping in an electrostatic well by inelastic collisions with nitrogen molecules$$o24$$sPhys.Rev.,A46,5696-5705$$x24. Murphy, T. J. & Surko, C. M. Positron trapping in an electrostatic well by inelastic collisions with nitrogen molecules. Phys. Rev. A 46, 5696–5705 (1992).$$y1992$$z0
002710810 999C5 $$01610530$$hSurko, C.M.$$hGreaves, R.G.$$hCharlton, M.$$mStored positrons for antihydrogen production$$o25$$sHyperfine Interact.,109,181-188$$x25. Surko, C. M., Greaves, R. G. & Charlton, M. Stored positrons for antihydrogen production. Hyperfine Interact. 109, 181–188 (1997).$$y1997$$z0
002710810 999C5 $$hLuiten, O.J.$$mLyman-α spectroscopy of magnetically trapped atomic hydrogen$$o26$$sPhys.Rev.Lett.,70,544-547$$x26. Luiten, O. J. et al. Lyman-α spectroscopy of magnetically trapped atomic hydrogen. Phys. Rev. Lett. 70, 544–547 (1993).$$y1993$$z0
002710810 999C5 $$0581138$$hEikema, K.S.E.$$hWalz, J.$$hHänsch, T.W.$$mContinuous coherent Lyman-α excitation of atomic hydrogen$$o27$$sPhys.Rev.Lett.,86,5679-5682$$x27. Eikema, K. S. E., Walz, J. & Hänsch, T. W. Continuous coherent Lyman-α excitation of atomic hydrogen. Phys. Rev. Lett. 86, 5679–5682 (2001).$$y2001$$z0
002710810 999C5 $$hGabrielse, G.$$mLyman-α source for laser cooling antihydrogen$$o28$$sOpt.Lett.,43,2905-2908$$x28. Gabrielse, G. et al. Lyman-α source for laser cooling antihydrogen. Opt. Lett. 43, 2905–2908 (2018).$$y2018$$z0
002710810 999C5 $$01294360$$hStracka, S.$$mReal-time detection of antihydrogen annihilations and applications to spectroscopy$$o29$$sEPJ Web Conf.,71,00126$$x29. Stracka, S. Real-time detection of antihydrogen annihilations and applications to spectroscopy. EPJ Web Conf. 71, 00126 (2014).$$y2014$$z0
002710810 999C5 $$01192917$$hDonnan, P.H.$$hFujiwara, M.C.$$hRobicheaux, F.A$$mproposal for laser cooling antihydrogen atoms$$o30$$sJ.Phys.,B46,025302$$x30. Donnan, P. H., Fujiwara, M. C. & Robicheaux, F. A proposal for laser cooling antihydrogen atoms. J. Phys. B 46, 025302 (2013).$$y2013$$z0
002710810 999C5 $$0860749$$hPohl, R.$$mThe size of the proton$$o31$$sNature,466,213-216$$x31. Pohl, R. et al. The size of the proton. Nature 466, 213–216 (2010).$$y2010$$z0
002710810 999C5 $$01757487$$hBeyer, A.$$mThe Rydberg constant and proton size from atomic hydrogen$$o32$$sScience,358,79-85$$x32. Beyer, A. et al. The Rydberg constant and proton size from atomic hydrogen. Science 358, 79–85 (2017).$$y2017$$z0
002710810 999C5 $$01672269$$hFleurbaey, H.$$mNew measurement of the transition frequency of hydrogen: contribution to the proton charge radius puzzle$$o33$$sPhys.Rev.Lett.,120,183001$$x33. Fleurbaey, H. et al. New measurement of the transition frequency of hydrogen: contribution to the proton charge radius puzzle. Phys. Rev. Lett. 120, 183001 (2018).$$y2018$$z0
002710810 999C5 $$01231990$$hCharman, A.E.$$mThe ALPHA Collaboration & / Description and first application of a new technique to measure the gravitational mass of antihydrogen$$o34$$sNature Commun.,4,1785$$x34. The ALPHA Collaboration & Charman, A. E. Description and first application of a new technique to measure the gravitational mass of antihydrogen. Nat. Commun. 4, 1785 (2013).$$y2013$$z0
002710810 999C5 $$01294213$$hAmole, C.$$mIn situ electromagnetic field diagnostics with an electron plasma in a Penning-Malmberg trap$$o35$$sNew J.Phys.,16,013037$$x35. Amole, C. et al. In situ electromagnetic field diagnostics with an electron plasma in a Penning–Malmberg trap. New J. Phys. 16, 013037 (2014).$$y2014$$z0
002710810 999C5 $$01667007$$hRasmussen$$hØ., C.$$hMadsen, N.$$hRobicheaux, F.$$mAspects of 1S-2S spectroscopy of trapped antihydrogen atoms$$o36$$sJ.Phys.,B50,184002$$x36. Rasmussen, C. Ø., Madsen, N. & Robicheaux, F. Aspects of 1S–2S spectroscopy of trapped antihydrogen atoms. J. Phys. B 50, 184002 (2017); corrigendum 51 099501 (2018).$$y2017$$z0
002710810 999C5 $$9CURATOR$$mcorrigendum 51 099501$$o36$$sJ.Phys.,B51,099501$$x36. Rasmussen, C. Ø., Madsen, N. & Robicheaux, F. Aspects of 1S–2S spectroscopy of trapped antihydrogen atoms. J. Phys. B 50, 184002 (2017); corrigendum 51 099501 (2018).$$y2018$$z0
002710810 999C5 $$hMelezhik, V.S.$$hSchmelcher, P.$$mQuantum energy flow in atomic ions moving in magnetic fields$$o37$$sPhys.Rev.Lett.,84,1870-1873$$x37. Melezhik, V. S. & Schmelcher, P. Quantum energy flow in atomic ions moving in magnetic fields. Phys. Rev. Lett. 84, 1870–1873 (2000).$$y2000$$z0
002710810 999C5 $$01616369$$hKramida, A.E.A$$mcritical compilation of experimental data on spectral lines and energy levels of hydrogen, deuterium, and tritium$$o38$$sAtom.Data Nucl.Data Tabl.,96,586-644$$x38. Kramida, A. E. A critical compilation of experimental data on spectral lines and energy levels of hydrogen, deuterium, and tritium. At. Data Nucl. Data Tables 96, 586–644 (2010); erratum 126, 295–298 (2019).$$y2010$$z0
002710810 999C5 $$9CURATOR$$o38$$sAtom.Data Nucl.Data Tabl.,126,295-298$$x38. Kramida, A. E. A critical compilation of experimental data on spectral lines and energy levels of hydrogen, deuterium, and tritium. At. Data Nucl. Data Tables 96, 586–644 (2010); erratum 126, 295–298 (2019).$$y2019$$z0
002710810 999C5 $$01414868$$hMohr, P.J.$$hNewell, D.B.$$hTaylor, B.N.$$mCODATA recommended values of the fundamental physical constants: 2014$$o39$$sRev.Mod.Phys.,88,035009$$x39. Mohr, P. J., Newell, D. B. & Taylor, B. N. CODATA recommended values of the fundamental physical constants: 2014. Rev. Mod. Phys. 88, 035009 (2016).$$y2016$$z0
002710810 999C5 $$01225053$$hParthey, C.G.$$mImproved measurement of the hydrogen 1S-2S transition frequency$$o40$$sPhys.Rev.Lett.,107,203001$$x40. Parthey, C. G. et al. Improved measurement of the hydrogen 1S–2S transition frequency. Phys. Rev. Lett. 107, 203001 (2011).$$y2011$$z0
002710810 999C5 $$0176229$$hLundeen, S.R.$$hPipkin, F.M.$$mMeasurement of the Lamb shift in hydrogen n = 2$$o41$$sPhys.Rev.Lett.,46,232-235$$x41. Lundeen, S. R. & Pipkin, F. M. Measurement of the Lamb shift in hydrogen n = 2. Phys. Rev. Lett. 46, 232–235 (1981).$$y1981$$z0
002710810 999C5 $$0391783$$hHagley, E.W.$$hPipkin, F.M.$$mSeparated oscillatory field measurement of hydrogen 2S1/2-2P3/2 fine structure interval$$o42$$sPhys.Rev.Lett.,72,1172-1175$$x42. Hagley, E. W. & Pipkin, F. M. Separated oscillatory field measurement of hydrogen 2S1/2–2P3/2 fine structure interval. Phys. Rev. Lett. 72, 1172–1175 (1994).$$y1994$$z0