
 

ATLAS Event Store and I/O developments in 
support for Production and Analysis in Run 3  

Marcin Nowak1,*, †, Peter van Gemmeren2, and Jack Cranshaw2 

1Brookhaven National Laboratory, Upton, New York 11973, USA 
2Argonne National Laboratory, Argonne, Illinois 60439, USA 

Abstract. During the long LHC shutdown, ATLAS experiment is 
preparing several fundamental changes to its offline event processing 
framework and analysis model. These include moving to multi-threaded 
reconstruction and simulation and reducing data duplication during 
derivation analysis by producing a combined mini-xAOD stream. These 
changes will allow ATLAS to take advantage of the higher luminosity at 
Run 3 without overstraining processing and storage capabilities. They also 
require significant improvements to the underlying event store and the I/O 
framework to support them. These improvements include: 1) an overhaul 
of the Run 2 I/O framework to be thread-safe and minimize serial 
bottlenecks, 2) introduction of new immutable references for object 
navigation, which don’t rely on storage container entry number so data can 
be merged in-memory, 3) using filter decisions to annotate combined 
output stream to allow for fast event selection on input and 4) selecting 
optimized compression algorithms and settings to allow efficient reading 
of event selections. 

1 Introduction  

The ATLAS[1] experiment is one of the 4 experiments collecting data from the LHC at 
CERN. The LHC operation schedule consists of periods of activity (Runs) interspaced with 
breaks intended for hardware maintenance and upgrades (Long Shutdowns). Each 
consecutive Run generates an increasing amount of ever more complex physics data that 
needs to be processed. In order to keep up with the increasing processing needs, the 
experiments modify their software frameworks to utilize the available CPU resources in the 
most efficient way. The current systems, with large amounts for CPU cores but limited per-
core memory, compel migration to multi-threaded applications. In consequence, the I/O 
components have to evolve as well - to handle the resulting higher data rates and to 
function effectively in the multi-threaded environment. 

                                                
* Corresponding author: mnowak@bnl.gov 
† Copyright 2020 CERN for the benefit of the ATLAS Collaboration. Reproduction of this article or 
parts of it is allowed as specified in the CC-BY-4.0 license. 

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 02031 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024502031



The upcoming LHC Run 3 and especially Run 4 will require significant software 
performance improvements. In this paper we describe the developments in the ATLAS 
Event Store and the I/O framework that were done to meet the new requirements. 

2 Major software improvements  
Taking advantage of the currently on-going Long Shutdown 2, the software team is 
implementing 4 major improvements to the ATLAS offline event processing framework 
Athena[2] and analysis mode.  

2.1 Thread safety and concurrency in the I/O framework 

One of the biggest changes in the Athena framework for Run 3 is the introduction of 
parallel Event processing using multi-threading (AthenaMT)[3]. In AthenaMT multiple 
Events are processed at the same time, each in a dedicated Event Store, and then written out 
(Figure 1). The I/O framework had to be adapted to accept overlapping write requests 
coming from the Stores, providing thread safety and allowing as much concurrency as 
possible in order to ensure good performance. Thread safety was achieved by identifying 
and protecting, with thread locking mechanisms, the critical sections of the components that 
have only once instance in the application. Examples are the central Conversion Service 
and accompanying POOL Service, which are responsible, respectively, for data object 
schema conversion between their transient and persistent representations and for organizing 
objects inside ROOT files in the POOL/APR file format[5]. It was also necessary to 
eliminate state information stored in these components. Concurrent execution was achieved 
by creating multiple copies of components that can operate independently and by allowing 
subcomponents, already existing in multiple instances (e.g. converters specialized by 
converted object type), to work in parallel. 

Certain natural restrictions to concurrency come from the employed storage technology 
– in Athena writing to a given output file is done one Event at a time, to preserve integrity. 
Concurrent writing can still be performed on different files. 

Figure 1. I/O Framework evolution from Single-Process (blue) to Multi-Threaded (all). 

Reading Events from input is done sequentially in AthenaMT. However, certain data 
elements are read on-demand during processing and such requests can happen concurrently.  
If the requests demand access to the same file, they are serialized. 

2

EPJ Web of Conferences 245, 02031 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024502031



2.2 Object indexing in the storage layer 

Athena persistent storage technology (POOL/APR) is based on the concept that every data 
object (in the C++ sense), when it is stored, it is assigned an immutable reference that can 
be used to retrieve it later. Internally, these references are broken into 2 parts: the object ID 
in its storage container and all information about that container, which is the same for all 
objects in a given container. Because of the repetitiveness and the size of container 
descriptions, they are stored in a helper “Links” table as a means to reduce space usage. 
Object references can then be represented just as a pair of two numbers – an object ID and 
an index into the Links table – called a POOL/APR Token [Figure 2]. 

There are two production use cases where having direct object references is a 
disadvantage – file merging and concurrent writing to the same file. When merging files, 
the objects change their position and thus their object ID. During concurrent writing, the 
final object position is not known (due to buffering and delayed writing).  To address both 
issues, we added an additional level of indirection for the Tokens in the form of in-file 
index (TTreeIndex). The index can be automatically updated by ROOT[4] during file 
merging, while the original Tokens stay unchanged. For concurrent writing, having an 
indirection layer allows to pre-assign logical object IDs that are later redirected to the real 
object IDs. 

2.3 Combined output stream with Event tagging 

The ATLAS Run 3 production model assumes using a single combined derivation output 
stream in order to avoid event data duplication, observed among Run 2 separate streams, 
and save disk space. Events in the common stream are marked as belonging to any of the 
derivation streams. For every Event additional values relevant to stream assignment 
decision can be stored. The most essential Event identification information in the form of a 
mini-EventInfo is also present (Figure 3). 

 Figure 2. Indirect object access with indexing. An object reference (Token) is represented as a pair 
of identifiers (oid1, oid2). Oid1 points to an entry in the Links table describing containers, Oid2 
enumerates an object in that container. 

Token	
Oid1,	Oid2	

##Links	

Link	1	

Link	2	

Index	
Z	1	
Z	2	
Z	3	
.	
.	
.	
	

Index	
Y	1	
Y	2	

Oid1	=	Y1	

Obj	#1 		

Obj	#2 		

Obj	#3	

Obj	#4 		

Collec=on	2	

Obj	#1 		

Obj	#2 		

Obj	#3	

Obj	#4 		

Collec=on	1	

Oid2	=	Z3	

Old	direct	object	reference	

New	indirect	object	reference	

3

EPJ Web of Conferences 245, 02031 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024502031



 
Keeping this information outside the main Event body in a simple, easily readable 

ROOT format, permits the Main Event Loop to efficiently read only events belonging to the 
desired derivation stream, with additional possibilities for selection using the stored 
attributes. The selectivity of typical ATLAS derivation jobs varies between 5% and 0.1%. 

2.4 Compression optimization for efficient selective reading 

The decision to combine all derivation streams together in the same file (described in the 
previous section) introduces a change in the reading pattern. Previously, reading from files 
containing already preselected events (skimmed files) was mostly sequential. Reading from 
a combined file containing both interesting and uninteresting events - for a particular 
analysis - becomes sparse reading, with an expected filtering of 0.1 – 5%. Such selective 
reading of objects from ROOT files can be less efficient than sequential access, due to 
reading and decompressing entire buffers, which contains multiple events, even when only 
a fraction of that data had been requested by the application. 

During Run 1 and Run 2, ATLAS was using the standard ROOT compression algorithm 
ZLIB for their derivation stream data. For Run 3, we evaluated another algorithm - LZ4 – 
supported by the recent ROOT releases and the default in the new releases. We found that 
LZ4, thanks to it’s very fast decompression (Figure 4), makes it possible to read data at 
40%-100% of the rate of pre-selected samples (Figure 5), much faster than with ZLIB, 
while retaining most of the size reduction advantages of ZLIB compression. 

Compression  
time 

Decompression  
time 

LZ4 

ZLIB 

Size 

ZLIB LZ4 
ZLIB 

LZ4 

Figure 4. Relative performance comparison between LZ4 and ZLIB compression algorithms (in 
arbitrary units) for ATLAS Event data files  

Stream1  1 
Stream2  1 
Stream3  0 
… 

{Streaming Decisions} 

EventID (run,event,lumiblock) 
EventType(sim/calib/testbeam) 
McChannel 
ConditionsRun 
EventTime (sec/nanosec) 
BunchId 
EventWeight  

{mini-EventInfo} 

Decision 1  val1 
Decision 2  val2 
… 

{Derivation Decisions} 

Event Data 
EventInfo 

Jets 
CaloCells 

… 

Meta-
data 

At
tri

bu
te

Li
st

 

POOL ROOT File 

Figure 3. Out-of-band Event-level metadata in a data file for fast Event selection on input. 

4

EPJ Web of Conferences 245, 02031 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024502031



 

3 Conclusions 
ATLAS Computing is undergoing important changes to meet the challenges of LHC Run 3 
data handling and processing. The offline software framework Athena, and in particular its 
I/O components, are evolving to support these changes. The framework foundations have 
gained capacity to work in a multi-threaded environment, which in turn provides the 
grounds for adaptation and testing of physics algorithms and other framework components. 
Object referencing was made more robust, in particular with respect to file merging. Data 
storage format and organization was modified with the intent to achieve better balance 
between disk space and performance. The work on the I/O layer continues to increase 
concurrency on writing and to gain performance by introducing more fine-grained locking 
in the Athena central I/O services and concurrency for compression 

Acknowledgements 
The work is funded in part by the U.S. Department of Energy, Office of Science and High 
Energy Physics contracts.  

References 

1. ATLAS Collaboration (2008) “The ATLAS Experiment at the CERN Large Hadron 
Collider”, J. Inst. 3, S08003 
https://iopscience.iop.org/article/10.1088/1748-0221/3/08/S08003 

2. ATLAS Collaboration (2019) Athena (Version 22.0.1) 
Zenodo http://doi.org/10.5281/zenodo.2641997 

Figure 5. Effects of different compression algorithms on selective reading performance compared to 
100% read (skim).	The read time per event is constant for skimmed data file as it contains only 
preselected events. Read time per event goes up as selectivity increases for both ZLIB and LZ4 
because there are less and less relevant events in every decompressed block. 
 

0.00	

2.00	

4.00	

6.00	

8.00	

10.00	

12.00	

14.00	

16.00	

0.005	 0.050	 0.500	

ZLIB	 LZ4	 SKIM	 Log.	(ZLIB)	 Log.	(LZ4)	 Log.	(SKIM)	

ZLIB	

LZ4	

skim	

~6x	

~2x	

Frac.on	of	events	read	from	file	

Eff
ec
.v
e	
re
ad
	sp

ee
d	
in
	m

s/
ev
en

t	r
ea
d	

5

EPJ Web of Conferences 245, 02031 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024502031



3. G. A. Stewart et al (2016) “Multi-threaded software framework development for the 
ATLAS experiment” J. Phys.: Conf. Ser.762 012024 
https://iopscience.iop.org/article/10.1088/1742-6596/762/1/012024 

4. R. Brun, F. Rademakers (1996) “ROOT: An Object Oriented Data Analysis 
Framework” AIHENP’96 Workshop Nucl. Inst. & Meth. In Phys. Res. A 389 81-86. 
http://root.cern.ch 

5. D. Duellmann at al (2003) “The POOL data storage, cache and conversion 
mechanism” eConf C0303241 MOKT008 
https://inspirehep.net/literature/620943 

6. D. Riley, C. Jones (2019) “Multi-threaded Output in CMS using ROOT” EPJ Web 
Conf., 214 02016 
https://www.epj-
conferences.org/articles/epjconf/abs/2019/19/epjconf_chep2018_02016/epjconf_chep2
018_02016.html 

7. C. Bozzi et al (2017) “The LHCb software and computing upgrade forRun 3: 
opportunities and challenges” J. Phys.: Conf. Ser.898 11200 
https://iopscience.iop.org/article/10.1088/1742-6596/898/11/112002 

8. J. Elmsheuser et al (2020) “Evolution of the ATLAS analysis model for Run-3 and 
prospects for HL-LHC” CHEP 2019 Proceedings 

6

EPJ Web of Conferences 245, 02031 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024502031


