
A
TL

-S
O

FT
-P

R
O

C
-2

02
0-

01
0

13
Fe

br
ua

ry
20

20

Design principles of the Metadata Querying
Language (MQL) implemented in the ATLAS
Metadata Interface (AMI) ecosystem

Jérôme Fulachier1, Jérôme Odier1, Fabian Lambert1 on behalf of the ATLAS Collaboration.

1Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS / IN2P3,
53 rue des Martyrs, 38026, Grenoble Cedex, FRANCE

Abstract. This document describes the design principles of the Metadata
Querying Language (MQL) implemented in ATLAS Metadata Interface
(AMI), a metadata-oriented domain-specific language allowing to query
databases without knowing the relation between tables. With this
simplified yet generic grammar, MQL permits writing complex queries
much more simply than with Structured Query Language (SQL)Copyright
2020 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license. - Copyright
2020 LPSC.

Copyright 2020 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license.
Copyright 2020 LPSC.

1 Introduction

1.1 AMI and MQL

ATLAS Metadata Interface (AMI) is a generic ecosystem for metadata aggregation,
transformation and cataloguing which benefits from about 20 years of feedback in the Large
Hadron Collider (LHC) context. It is the official metadata repository for datasets and
production parameters of the ATLAS [1] experiment. It implements Metadata Query
Language (MQL), a metadata-oriented Domain-Specific Language (DSL) allowing to query
databases without specifying all the relation between tables. With its simplified yet generic
grammar, MQL permits writing complex queries much more simply than with SQL. This
document describes how AMI compiles MQL into SQL queries using the underlying table
relations graph automatically extracted through a reflexion mechanism. A detailed
description of the AMI framework design principles is available in earlier CHEP
proceedings [2, 3, 4, 5, 6].

2 MQL Language

MQL is a domain specific language for executing queries on a Relational DataBase
Management System (RDBMS) closely to spoken language. It is one of the main added-
value features of AMI. Initially proposed by gLite [7], a middleware project for grid
computing at LHC experiments, the specification was extended by the AMI team. MQL

Copyright 2018 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

only deals with metadata entity names while SQL uses a catalog / table / field paradigm. It
provides a way to produce optimal SQL queries with a simplified syntax less prone to error.
The MQL implementation in AMI is based on the reflection sub-system. The language
permits including or excluding path fragments in the relationship graph and is able to deal
with table cycle dependencies. A detailed specification of MQL implementation will be
soon available online at http://ami.web.cern.ch/ami/.

2.1 Concepts and benefits

MQL queries are similar to SQL queries but easier to write, they are more user oriented
than expert oriented. Even if the MQL syntax is simpler than the SQL one, it permits to
execute the same kind of queries, with full control on the generated SQL. In particular, it
will always be possible to write an MQL query reproducing the result of a given SQL
query.

For example, a physicist wants to list the names of the datasets that have files with size > 0.

In MQL, table relations are hidden:

SELECT dataset.name WHERE file.size > 0

In SQL, it depends on the database schema (SQL joins):

SELECT dataset.name FROM dataset, file WHERE dataset.id =
file.datasetForeignKey AND file.size > 0

The MQL language does not contain any FROM clause nor join (on foreign keys).
Nevertheless, even if joins are not necessary in MQL queries, the end-user can provide
constraints on the relation paths. If no constraint is provided, the MQL to SQL algorithm
follows all the possible paths of the relation graph. As a result, for complex database
structures, it could generate slow or irrelevant SQL query. The way of specifying path
constraints is described Section 2.3.

2.2 Relational model

In the following, the relational model of a concrete use case is described (see Figure 1), in
order to expose various aspects of the MQL language and the resulting consequences on the
generated SQL.

Figure 1. Sample database structure.

In this schema, each table contains a unique auto-incremented identifier called “id”. The
“PROJECT” table contains projects information. This table doesn’t have any foreign key
(relation). The “DATASET” table contains entities representing a set of data. “DATASET”
is linked to “PROJECT” with the foreign key constraint (DATASET.PROJECTFK =
PROJECT.ID). The “DATASET_PARAM” table contains metadata parameters linked to
the records of “DATASET”. Those parameters have a name and a typed value. The “FILE”
table is linked to “DATASET” thought the bridge to the “DATASET_FILE_BRIDGE”
table. This table has two foreign key dependencies on both “DATASET” and “FILE”. The
“DATASET_TYPE” and “FILE_TYPE” tables introduce cycles in the relational
dependency graph. Each of them have a foreign key dependency to the “PROJECT” table
and to their related entity.

2.3 MQL specification

The MQL specification provides an interface to interact with any relational data source. It
allows to perform generic selection, insertion, modification and deletion operations,
keeping benefits of the underlying relational model, but with a syntax less verbose than
SQL.

 MQL introduces the notion of basic Qualified Identifier (QId) for representing either an
entity (aka a table), or a field. Its syntax is [database.]entity to a table and
[database.entity.]field or [entity.]field for a field.

As previously explained, there is neither a FROM clause nor join expression in MQL. In
most cases, it means that if there is no cycle in the relation graph, MQL is able to
autogenerate both the FROM clause and join expressions. If there are cycles, it is necessary
to indicate the paths to be included or excluded by specifying between braces, at QId level,
a set of constraint QId (tables or fields), see Figure 2.

Rule QId

Rule constraintQId

Figure 2. Grammar of a MQL Qualified Identifier (QId) for representing a table or a field. A
“constraintQId” permits characterizing the path for resolving the table or the field. “!” is used to
exclude a table or a field from the path.

MQL also introduces the isolation mechanism. It permits producing SQL imbricated sub-
queries in order to perform complex relational operations on the data source. This is why in
addition to normal expression groups, delimited with parentheses, MQL introduces isolated
groups delimited with square brackets, see Figure 4. The effect is to isolate the condition
from the main query and thus to restrict the paths used to reach the QIds contained in the
condition to only this condition.

Figure 3. MQL has normal expression groups with parentheses and isolated expression
groups with square brackets in order to produce SQL imbricated sub-queries.

MQL has SQL-like SELECT, INSERT, UPDATE and DELETE statements, see Figure 4.

Rule SelectStatement

Rule InsertStatement

Rule UpdateStatement

Rule DeleteStatement

Figure 4. SQL-like SELECT, INSERT, UPDATE and DELETE statements implemented in
MQL.

According to Figure 1, the query represented in Figure 5 searches for dataset names, having
both “Xsection” > “x” and “Luminosity” < “y” and linked to non-empty files only through
the “DATASET_FILE_BRIDGE” table (the paths reaching PROJECT.id are excluded by
the {!PROJECT.id} constraint). Note that the two isolated conditions point to the same
table.

SELECT DATASET.name

WHERE

[

DATASET_PARAM.name = ‘Xsection’

AND

DATASET_PARAM.floatValue > x

]

AND

[

DATASET_PARAM.name = ‘Luminosity’

AND

DATASET_PARAM.floatValue < y

]
AND

FILE.size{!PROJECT.id} > 0

Figure 5. Example of MQL query based on the database schema Section 2.2. If the
constraint {!PROJECT.id} is not specified, the generated SQL will follow all possible paths
to reach the “FILE” table.

3 SQL generation in AMI

After server-side processing, MQL queries are converted to optimized SQL queries before
being executed on the data source by the adequate JDBC [6] driver. This section describes
the steps for generating SQL from MQL.

3.1 Reflexion and paths resolution

The AMI framework has a JDBC based reflexion sub-system permitting the extraction of
the database structure (tables, fields, foreign keys). It allows to build a graph of relations
which is put in cache inside AMI. On top of this sub-system, AMI provides a mechanism to
automatically resolve all the possible paths linking the QIds in a MQL query.

As an example, from Figure 1 the following relations can be resolved:

- Simple relation: DATASET <- DATASET_PARAM

- Bridge: DATASET <- DATASET_FILE_BRIDGE -> FIL

- Cycle: DATASET -> DATASET_TYPE -> PROJECT and DATASET -> PROJECT

3.2 MQL parsing and QIds resolution

The AMI MQL has its dedicated Java tokenizer and parser, autogenerated from a LL(*)
grammar (top-down parsing) by using the Another Tool for Language Recognition
(ANTLR) framework [8].

 The parsing of an MQL query produces an Abstract Syntax Tree (AST) object containing
all the necessary information to, later, generate a SQL query. During the parsing, all the
QIds in the query are resolved (catalogs, tables, fields, relations) using the AMI reflexion
sub-system taking into account the provided QId path constraints.

3.3 SQL Generation

Using the resolved query AST, AMI is able to build both the FROM clauses and SQL joins
in the WHERE clauses. The isolated expressions are encapsulated into nested sud-SQL
queries.

Figure 6 shows the generated SQL query for the MQL query of Figure 6. It is much more
verbose than the initial MQL, and this length ratio is even higher when the query becomes
more complex.

SELECT DATASET.NAME

FROM DATASET, FILE, DATASET_FILE_BRIDGE

WHERE

DATASET.ID = DATASET_FILE_BRIDGE.DATASETFK

AND

FILE.ID = DATASET_FILE_BRIDGE.FILEFK

AND

DATASET.ID IN

(

SELECT DATASET.ID

FROM DATASET, DATSET_PARAM

WHERE

DATASET.ID = DATASET_PARAM.DATASETFK

AND

DATASET_PARAM.NAME = ’Xsection‘

AND

DATASET_PARAM.FLOATVALUE > x

)

AND

DATASET.ID IN

(

SELECT DATASET.ID

FROM DATSET, DATASET_PARAM

WHERE

DATASET.ID = DATASET_PARAM.PARAM.FILEFK

AND

DATASET_PARAM.NAME = ‘Luminosity‘

AND

DATASET_PARAM.FLOATVALUE < y

)

AND

FILE.size > 0

Figure 6. SQL query generated form the MQL query of Figure 5.

Note that for performance reason AMI has an AST optimizer, transforming isolated
expressions to non-isolated expressions if there is no ambiguity.

In a simple case: SELECT * FROM A WHERE name=’test’,is used instead of: SELECT *
FROM A WHERE A.id IN (SELECT id FROM A WHERE name=’test’).

4 Conclusion

Both database experts and end-users can take advantage of the AMI MQL language. It
provides the same features than SQL but with a very lightweight syntax. For non-expert
users, it can totally mask the database relations and gives the possibility to easily perform
complex queries. The AMI Core Framework takes full benefit of MQL with almost no
overhead compared to SQL, especially thanks to cache usage.
 The new version of the AMI framework is in production in ATLAS and has already been
chosen by other experiments for their metadata workflow.

5 Acknowledgments

Over the years, we have been helped and supported by many people at CC-IN2P3 and more
recently by the Rosetta/Philae collaboration, in particular: Osman Aidel, Philippe Cheynet,
Benoît Delaunay, Pierre-Etienne Macchi, Emil Obreshkov, Mattieu Puel, Yves Rogez,
Mélodie Roudaud and Jean-René Rouet.

References

1. ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron
Collider, JINST 3 S08003 (2008), doi:10.1088/1748-0221/3/08/S08003

2. J. Odier, O. Aidel, S. Albrand, J. Fulachier, F. Lambert, Evolution of the
architecture of the ATLAS Metadata Interface (AMI), J. Phys.: Conf. Ser. 664
042040 (2015), doi:10.1088/1742-6596/664/4/042040

3. J. Odier, O. Aidel, S. Albrand, J. Fulachier, F. Lambert, Migration of the ATLAS
Metadata Interface (AMI) to Web 2.0 and cloud, J. Phys.: Conf. Ser. 664 062044
(2015), doi:10.1088/1742-6596/664/6/062044

4. J. Fulachier, O. Aidel, S. Albrand, F. Lambert, Looking back on 10 years of the
ATLAS Metadata Interface, J. Phys.: Conf. Ser. 513 042019 (2013),
doi:10.1088/1742-6596/513/4/042019

5. F. Lambert, J. Odier, J. Fulachier, “Broadcasting dynamic metadata content to
external web pages using AMI (ATLAS Metadata Interface) embeddable
components”, EPJ Web Conf. 214 05046 (2019),
doi:10.1051/epjconf/201921405046

6. “JDBC” [software]: https://www.oracle.com/database/technologies/
appdev/jdbc.html [accessed 2020-01-10]

7. “gLite” [software]: http://grid-deployment.web.cern.ch/grid-deployment/glite-
web/ [accessed 2020-01-23]

8. “ANTLR” [software]: http://www.antlr.org [accessed 2020-01-23]

http://grid-deployment.web.cern.ch/grid-deployment/glite-web/
http://grid-deployment.web.cern.ch/grid-deployment/glite-web/
http://grid-deployment.web.cern.ch/grid-deployment/glite-web/
https://www.oracle.com/database/technologies/%20appdev/jdbc.html
https://www.oracle.com/database/technologies/

