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Abstract. ATLAS Computing Management has identified the migration 
of all computing resources to Harvester, PanDA’s new workload 
submission engine, as a critical milestone for LHC Run 3 and 4. This 
contribution will focus on the Grid migration to Harvester. We have built a 
redundant architecture based on CERN IT’s common offerings (e.g. 
Openstack Virtual Machines and Database on Demand) to run the 
necessary Harvester and HTCondor services, capable of sustaining the load 
of O(1M) workers on the grid per day. We have reviewed the ATLAS Grid 
region by region and moved as much possible away from blind worker 
submission, where multiple queues (e.g. single core, multi core, high 
memory) compete for resources on a site. Instead we have migrated 
towards more intelligent models that use information and priorities from 
the central PanDA workload management system and stream the right 
number of workers of each category to a unified queue while keeping late 
binding to the jobs. We will also describe our enhanced monitoring and 
analytics framework. Worker and job information is synchronized with 
minimal delays to a CERN IT provided ElasticSearch repository, where we 
can interact with dashboards to follow submission progress, discover site 
issues (e.g. broken Compute Elements) or spot empty workers. The result 
is a much more efficient usage of the Grid resources with smart, built-in 
monitoring of resources. 
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1 Introduction  
The Worldwide LHC Computing Grid (WLCG) [1] is a highly heterogeneous federation of 
computing sites with different middleware and increasingly special resources, such as 
Cloud or High Performance Computing (HPC) resources. PanDA [2] is the Workload 
Management System (WMS) for the ATLAS experiment [3] at the Large Hadron Collider 
(LHC), managing all production and user jobs across the WLCG centers associated with the 
experiment. In order to exploit resources, PanDA is based on the Pilot paradigm [4], where 
Pilot jobs are submitted to the batch systems at sites. The Pilots retrieve the real payload 
from PanDA server and execute it.  

Over the years numerous Pilot submission systems have been developed, frequently 
specializing on a certain subset of resources and having independent code bases. The 
Harvester project was born as an attempt to provide a universal Pilot submission system. At 
the same time, in the case of Grid resources, some improvements were needed to increase 
the stability and usage efficiency through a tighter integration with the PanDA Workload 
Management System allowing a more informed decision taking. 

This contribution will focus on core Harvester design decisions and other significant 
aspects like new submission modes and monitoring. We will also show the process and 
results of migrating all Grid resources to Harvester. 

2 Harvester design decisions  

2.1 Lightweight vs High Performance execution modes 

In order to be a universal service for any type of resource, Harvester needs to provide 
certain flexibility in terms of resource consumption and dependencies. In the case of HPCs, 
Harvester frequently needs to run on edge nodes with strict restrictions on installation and 
memory/CPU footprint of the application. In this case Harvester provides a lightweight 
mode, using a SQLite database and limiting the number of internally managed threads. 

On the contrary for the Grid, central Harvester instances manage very large, costly 
infrastructures that need to be kept fully utilized. There are no important installation 
restrictions and it is preferable to host high performance services. In this case, Harvester 
typically uses a MySQL/MariaDB database and multiple Harvester processes can be started 
through frameworks like uWSGI [5]. 

2.2 Fast integration of new resources 

To reduce the lead time until a new resource is exploited successfully, the Harvester code 
follows a plug-in approach: the code is split into a common core and a set of specific plug-
ins that can be configured for each resource. Typically, new resources only require the 
implementation of resource-specific libraries for submission, monitoring and cleaning up 
workers that have finished. For most of the cases, these are python modules with lengths of 
a few hundred lines of code.  

Up to date, plug-ins have been developed for HTCondor [6], ARC CE [7], Google 
Compute Engine [8], Kubernetes [9], SAGA [10], PBS [11], Cobalt [12] and Slurm [13]. 

Data management plugins can be also developed to handle input and output files. This 
is often required for HPCs, where the worker nodes have no external connectivity. However 
this is generally not required for the Grid, since the Pilot handles the data management. 

 
 



 

 

2.3 Queue unification 

ATLAS submits Pilots specifying the number of cores and memory for the jobs. In 
the past, sites provided multiple separate queues per job type: 
• Analysis: usually single core payloads running with a non-production proxy security 

role 
• Production: several different payloads summarized in Table 1. 

Table 1.  Requirements for the various production workloads 

 CPUs Memory 

Single core 1 2 GB 

Multi core Depends on site, usually 8 2 GB/core 

Single core, high memory 1 Depends on site, >2 GB 

Multi core, high memory Depends on site, usually 8 Depends on site, >2 GB/core 

 
An average site for ATLAS would have an Analysis queue, a single core and a multi-core 
production queue. Larger sites would also provide high memory queues. Pilots would be 
submitted to these queues independently, causing random competition for the slots and 
making it impossible to establish any control over the ratios. 

In order to follow the Global Shares [14] priorities of ATLAS, it is more desirable to 
unify all queues at a site into one single queue that can accept Pilots with different sizes. 
These unified queues can be managed using either the Pull mode or the new Pull UPS mode 
(see next subsection).  

2.4 Submission modes supported by Harvester 

Harvester supports the classical push and pull workflows, and has extended the pull 
workflow for unified queues as follows: 
• Push (early binding): the worker submitted to the batch queue is already assigned to a 

particular job and requests the CPU, memory, and potentially other requirements, of 
the specific job. The push workflow works natively with unified queues. The 
disadvantage is the early binding: once the worker is submitted, you can’t control the 
queue time. If the queue time is long, a high priority job is stuck in the queue. Also, 
during the queueing time, a more important job might have appeared and needs to wait 
until the queue of previously submitted jobs has cleared. 

• Pull (late binding): To circumvent the drawbacks of the push workflow, the pull 
workflow submits workers without any pre-assigned job. The advantage is that the 
WMS can choose the most important job right at the time the worker starts running. 
However, all workers submitted to the queue are the same and thus this mode does not 
support natively on unified queues. A dumb pilot submitter and multiple queues with 
different requirements on the same site causes competition between them and ATLAS 
can’t control the ratio of workers across the queues. 

• Pull UPS (Unified Pilot Streaming): This mode is an extension of the traditional pull 
mode to support unified queues. All types of jobs are queued together in the same 
queue and it’s the WMS system deciding the fraction of workers of each type to 
submit, depending on the global priorities. The WMS decision is published to 
Harvester as a command. 



 

 

3 Harvester monitoring 

3.1 Worker monitoring 

Harvester reports the worker information up to the WMS, in our case PanDA. PanDA 
stores the worker information from the different Harvesters in one combined central Oracle 
table and also mirrors it to an ElasticSearch repository managed by CERN IT [15]. Our 
monitoring of choice follows the general trend to build dashboards on top of ElasticSearch, 
because of its speed and flexibility. We have built dashboards in Kibana [16] for expert 
users and more user-friendly dashboards in Grafana [17] for widespread use by site admins 
and shifters.  

The dashboards allow the user to interact with the Harvester data at a detailed worker 
level and at high level overviews:  
• The dashboards show a table with detailed worker information, which provide links to 

the logs and to the job submission file, to provide easy debugging of worker failures. 
• The dashboards also provide several plots to see the submission evolution broken down 

by different criteria (Harvester instance, resource type, state, etc.). There are also plots 
to see the worker distribution across the Computing Elements of a site. 

3.2 Service monitoring 

Our service monitoring collects important information about the Harvester instances: 
• Disk, CPU and memory usage 
• Worker submission, update and completion rates 
These metrics allow to easily identify when an instance is in trouble or misbehaving. 

We have an alerting system in place that sends a mail to the central Harvester team in case 
a metric has exceeded a threshold. The alerting system has proven very useful and warns us 
quickly about issues. These alerting systems are critical in times of low operational 
manpower and shifters in ATLAS. 

3.2 Site monitoring 

We are also implementing monitoring to identify broken sites. There are views in place 
grouping broken sites and broken Computing Elements, based on high ratios of workers in 
bad states (failed or cancelled submission). We show also the error messages happening on 
those sites. 

We are working on a monitoring to identify inactive sites, where the submission rate 
is lower than what would be expected. There can be different reasons for this, including 
misbehavior of Harvester submission rate calculation for the site. In the future we would 
like to automate actions, like issuing a reset of the worker submission calculation or 
submitting tickets to the site. 

4 Migration of the Grid to Harvester 

4.1 Central infrastructure 

We have setup a central high-performance Harvester infrastructure for the whole Grid 
migration as summarized in Figure 1. It is based on CERN IT provided services. The 



 

 

databases are hosted by the DB on Demand [18] project, while the servers are virtual 
machines from the OpenStack service. 
We have distributed the Grid sites across three Harvester instances: 

• Harvester A: US, CERN Tier 0, France, Russia, Canada, Netherlands 
• Harvester B: CERN, Germany, UK, Taiwan, Italy, Spain 
• Harvester ACTA: ARC CE sites 
Each instance consists of two active machines and one shared database for each 

instance. The two machines provide redundancy and are in different zones of the CERN 
computing center. If one machine is unavailable, the other machine can take over the full 
load. 
Non-ARC computing elements rely on HTCondor as interface. There are five load-
balanced HTCondor machines for the whole grid. 

 

Fig. 1. Harvester infrastructure overview 

4.2 Migration process 

The whole grid was migrated June 2018 to March 2019 (see Figure 2). During the 
migration process we watched stability and scaling of the services, improved the efficiency 
of the HTCondor interfaces, simplified the configuration of queues through the ATLAS 
Grid Information System (AGIS) [19] and improved some interactions with the database.  

During the first period we migrated production queues to Harvester. Although 
production jobs occupy the better part of the grid slots, they are rather easy to handle from a 
Harvester load point of view: they run for multiple hours and typically occupy multiple 
cores. During the migration a major effort was devoted to unify production queues to the 
pull UPS mode explained in section 2.4. 

Once the infrastructure was proven to be scalable and stable, we also migrated 
analysis queues to Harvester. Analysis jobs represent less than 20% of the grid slots, but 
they are short and run on a single core. From a Harvester load point of view, they are 
heavier and require a much higher worker submission rate. 



 

 

 

Fig. 2. Overview of the Grid migration progress to Harvester, in number of workers. This histogram 
is extracted from our Harvester worker monitoring. 

5 Results 

Harvester is a project that took 2 years from initial discussion to full roll out. It is 
contributing to a better usage of the ATLAS Grid. During the roll out of Harvester, we 
observed a significant increase of job slots (see Figure 3). While there are multiple potential 
contributions happening in parallel (e.g. 3-4% of pledge increase or increased usage of the 
ATLAS Tier 0), we believe that Harvester has made a significant contribution to the 
increase for two reasons: 

• Harvester is more aggressive than previous Pilot factories in worker submission 
and competes better on shared sites across multiple experiments. 

• Through the queue unification and the pull UPS submission, the worker 
submission is also more intelligent. It avoids uninformed competition between 
ATLAS queues at the same site and follows better the ATLAS job priorities.  

 

Fig. 3. Running job slots on Grid resources before and after the migration to Harvester 



 

 

Unified queues for production are working very well and we are currently working on 
further unifying production and analysis queues, so that a standard Grid site only needs to 
provide one queue for all job types.  
 Lastly, we want to enhance automation of issues on the Grid to reduce the need of 
human operational effort. 
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