

The ATLAS EventIndex for LHC Run 3

Dario Barberis1,*, Igor Aleksandrov2, Evgeny Alexandrov2, Zbigniew Baranowski3,
Gancho Dimitrov3, Álvaro Fernández Casaní4, Elizabeth J. Gallas5, Carlos García
Montoro4, Santiago González de la Hoz4, Julius Hrivnac6, Andrei Kazymov2,
Mikhail Mineev2, Fedor Prokoshin2, Grigori Rybkin6, Javier Sánchez4, José Salt Cairols4,
and Miguel Villaplana Perez7

1Physics Department of the University of Genoa and INFN Sezione di Genova, Via Dodecaneso 33,
I-16146 Genova, Italy
2Joint Institute for Nuclear Research, 6 Joliot-Curie St., Dubna, Moscow Region, 141980, Russia
3CERN, 1211 Geneva 23, Switzerland
4Instituto de Fisica Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Valencia,
Spain
5Department of Physics, Oxford University, Oxford, United Kingdom
6Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France
7Department of Physics, University of Alberta, Edmonton AB, Canada

Abstract. The ATLAS EventIndex was designed in 2012-2013 to provide
a global event catalogue and limited event-level metadata for ATLAS
analysis groups and users during the LHC Run 2 (2015-2018). It provides a
good and reliable service for the initial use cases (mainly event picking)
and several additional ones, such as production consistency checks,
duplicate event detection and measurements of the overlaps of trigger
chains and derivation datasets. The LHC Run 3, starting in 2021, will see
increased data-taking and simulation production rates, with which the
current infrastructure would still cope but may be stretched to its limits by
the end of Run 3. This proceeding describes the implementation of a new
core storage service that will be able to provide at least the same
functionality as the current one for increased data ingestion and search
rates, and with increasing volumes of stored data. It is based on a set of
HBase tables, with schemas derived from the current Oracle
implementation, coupled to Apache Phoenix for data access; in this way
we will add to the advantages of a BigData based storage system the
possibility of SQL as well as NoSQL data access, allowing to re-use most
of the existing code for metadata integration.

1 Introduction
The ATLAS experiment [1] at the LHC accelerator at CERN collected during the so-called
“Run 2” (2015-2018) several billion physics events each year, plus a large amount of test
and calibration data. In addition, about three times as many fully simulated events were
produced, stored and analysed together with the real collision data. A global catalogue is

* Corresponding author: Dario.Barberis@cern.ch
© 2020 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license.

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 04017 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024504017

needed to classify, search and retrieve events from this vast amount of data: the
EventIndex. Its design started in 2012-2013 [2] by exploring the new technologies that
became available at that time in the open-source software community, then called “NoSQL
databases”. The most promising solution was based on the Hadoop eco-system [3], with
data stored in HDFS MapFiles and an internal catalogue in HBase. This system was pre-
loaded with all Run 1 real data (2009-2013) and started operation in the Spring of 2015 at
the start of Run 2 [4]. It was the first high-energy physics computing system based from the
start on open-source structured storage technologies.

2 The EventIndex for LHC Run 2

2.1 Use Cases

The main use case for the EventIndex is event picking. Collaboration members analysing
particular datasets have the need from time to time to extract one particular event in an
upstream data format to check if the reconstruction algorithms worked correctly, or to
produce an event display to be used in a presentation or publication. Given the minimal
unique information on the event, i.e. the run and event numbers, and the data format and
version to be retrieved, the EventIndex has to provide the pointer to the file containing this
event and the associated tools must be able to extract it from this file and return it to the
requestor.

Additional use cases are related to production completeness and correctness checks. At
every processing step, the output files must contain the same number of events as the
inputs, and there must be no duplicated event numbers. The ability to count events in files
or datasets depending on some internal information, like triggers that are fired, is also an
important use case.

As the data actually became available in the EventIndex, two more use cases joined the
list during Run 2: studying trigger overlaps, and studying the overlaps between offline
analysis derivation streams, with the aim of optimising the event selections both online and
offline.

All the above use cases are satisfied by indexing all produced data, as soon as each
dataset is completed, and storing the event information in the EventIndex data store. A side-
effect of this operation mode is the global check for corruption of all produced data, as in
this way each file is read back by an independent process soon after being produced, and
before being used for further processing or analysis.

2.2 Data Contents

ATLAS event data are organised into datasets, which are collections of files that contain
similar numbers of events from the same run or period, or simulated events created with the
same generator settings, which have been processed with the same software algorithms and
calibrations as the real data.

Each dataset is indexed as soon as it is produced, therefore the EventIndex contains
event data organised by dataset. Only immutable technical data (“metadata”), as opposed to
physics information that can change at each processing stage, are saved in the EventIndex:
• Event identification data: run and event number, luminosity block number, bunch

crossing identifier;
• Trigger decisions;

2

EPJ Web of Conferences 245, 04017 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024504017

• References to the events at each processing stage in all permanent files generated by
central productions: globally unique identifiers (GUIDs) of the files containing the
event at the current processing stage and previous ones if available.

The last block of information is needed for event picking. The GUID retrieved by the query
to the EventIndex catalogue is used to find the relevant file in the Grid data store and
extract the requested event.

2.3 System Architecture

Since the start of the project, it was clear that a partitioned architecture, following the data
flow across the system, would have been the best solution, and indeed this was the case. A
schematic illustration of the system architecture is shown in Figure 1.

Fig. 1: System architecture of the EventIndex, showing the main components and the data flow.

The Data Production sub-system automatically runs jobs on the Tier-0 farm or on the
Grid on each dataset as soon as it is produced and extracts the metadata to be stored in the
EventIndex.

The Data Collection component [5] takes care of transferring the EventIndex metadata
from the production sites to CERN, merging it for all files of each dataset, validating it and
storing the result in temporary files on the Hadoop cluster.

The Data Storage and Query system was initially implemented purely in Hadoop, with
the data in the internally indexed MapFile representation and a dataset catalogue
implemented in HBase [6]. The data flow in the Hadoop cluster includes reading the
temporary files produced by the Data Collection step, expanding the compressed trigger
information [7], storing the data in MapFiles and updating the HBase catalogue. However,
it was soon realised that the overhead that is intrinsic in the start of MapReduce jobs in the
Hadoop cluster was too large for simple operations such as finding an event record for the
event picking use case, therefore an additional data store implemented in HBase was added.
It contains all data except the trigger information, which constitutes the majority of the data
volume; only queries needing this information fire up MapReduce jobs.

As the performance in retrieving information from the Hadoop system was still sub-
optimal at the end of 2015, it was decided to add an alternative store, based on an Oracle
database, to support a well-defined set of queries [8]. All real events now have their
metadata also stored in an Oracle database, albeit without trigger information. This data
store turned out to be faster and more reliable for event-picking related queries and is also
useful for the integration between event-level metadata and other metadata that are also
stored in Oracle databases.

At the end of 2019 the EventIndex used 24 TB to store 2009-2019 real data and 11 TB
for 2015-2019 simulated data in Hadoop, and 3.4 TB of table space plus 3.1 TB of auxiliary
index in Oracle (only 2015-2019 real data without trigger information).

3

EPJ Web of Conferences 245, 04017 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024504017

Finally, the Monitoring System [9] provides real-time information on the status of the
servers and services that compose the EventIndex systems and sends alarms to the experts
in case of suspected problems.

3 The EventIndex for LHC Run 3
The current EventIndex storage implementation reflects the state of the art for BigData
storage in 2012-2013 when the project started, but many different options have appeared
since then, even within the Hadoop eco-system. The current system works well for the
current injection and query rates, but with the increase of data-taking and simulation
production rates foreseen for Run 3 (2021-2024) and even more for Run 4 (High-
Luminosity LHC, 2027 onwards) it is clear that a re-design of the core systems is needed.
In order to be safe, a new system should be able to absorb a factor 10 more event rate than
the current one, i.e. 100 billion real events and 300 billion simulated events each year.

3.1 New Requirements

Nowadays the same event is physically completely stored in different Hadoop MapFiles
for each data format and processing version. In the future we would like to have one and
only one logical record per event, independently of the format the events are stored in. The
base record for each event should contain only the event identifiers and the immutable
information (trigger, luminosity block and bunch crossing number), and then for each
processing step an additional record would contain the link to the algorithm that produced it
(processing task configuration), the pointer(s) (GUIDs or equivalent) to the output(s), and
any useful flags for offline selections (derivations).

A few additional use cases became important in the last few years:
• Massive event picking: this is a selection of many events, touching a large fraction (or

perhaps all) of the files in a dataset. It will need a dedicated service, especially if the
input files are on tape (which is normally the case for raw data);

• Adding “offline trigger” information: it entails storing the results of selections that can
be used to form derived datasets. Related to this, there is the need for the ability to add
information to parts of the event records, to have the possibility to select events using
online and offline trigger information to build “virtual datasets”;

• Support for virtual datasets: they are logical collection of events created either
explicitly (giving a collection of event identifiers) or implicitly (their selection is based
on some other collection or event attributes).

• Labelling individual events with attributes such as “key:value” pairs.

3.2 System Design Evolution

The global architecture supports the independent evolution of the system components, and
indeed some of them have already been substantially improved or replaced by new
implementations.

The Data Collection system was progressively restructured with the replacement of the
messaging system ActiveMQ [10] with the CEPH Object Store [11] as the main data
transfer mechanism between Grid jobs and the CERN central servers [12]. An EventIndex
Supervisor was introduced at the same time to keep track of the data transfers, the
validation procedures and the storage in Hadoop.

4

EPJ Web of Conferences 245, 04017 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024504017

The Monitoring System was improved [13] with the replacement of the displays based
on Kibana [14] with Grafana [15], following the trend set for other distributed computing
applications supported by CERN for the ATLAS experiment [16].

Investigations on several structured storage formats for the main EventIndex data to
replace the Hadoop MapFiles started a few years ago [17]. Initially it looked like Apache
Kudu [18] would be a good solution, joining BigData storage performance with SQL query
capabilities [19]. Unfortunately Kudu did not get a large support in the open-source
community and CERN decided not to invest hardware and manpower resources in this
technology.

HBase was evaluated as the main data store at the beginning of the project, but
discarded at that time because of performance restrictions. Nowadays it is able to hold the
large amounts of data to be recorded, with a much-improved data ingestion and query
performance thanks to the increased parallelisation of all operations. Additional
components like Apache Phoenix can provide SQL access to HBase tables, if the tables are
designed appropriately upfront, which can be done in our case.

3.3 Data Store in HBase+Phoenix

Data in HBase can be organised in large tables, with one row per event and one column per
event property. Each row has to be identified by a unique key (RowKey), basically
something like RunNumber-EventNumber in our case. Columns are grouped in column
families, which can match easily our requirement of having groups of values that are added
to each record at each processing stage.

Phoenix is used as the SQL layer on top of HBase. It provides structured schemas for
the tables instead of the native HBase schema-less tables, the mapping of columns to HBase
cells, and the serialisation of data types to bytes. It also contains a SQL planner and
optimiser with built-in HBase related optimisations, server-side optimised executions and
access via JDBC (Java DataBase Connectivity). Phoenix takes SQL queries, transforms
them into HBase commands using directly the HBase API, along with coprocessors and
custom filters, and finally produces regular JDBC result sets.

The HBase RowKey design must be adapted to Phoenix’s types and sizes, losing some
performance but gaining functionality. Figure 2 shows a schema of the current RowKey
design.

Fig. 2: RowKey schema for the HBase”Phoenix version of the EventIndex data store.

A number of tests have been performed, loading ATLAS EventIndex data to HBase via
Phoenix and then running Phoenix queries on the loaded data. The results are encouraging:
single event picking works in 30 ms and full dataset queries run in 6-10 seconds. More tests
and optimisation work are in progress. Some basic functions are ready and further work on
performance and user interfaces is ongoing.

5

EPJ Web of Conferences 245, 04017 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024504017

4 Conclusions and Outlook

The significant increase in the data rates expected in LHC Run 3 and the subsequent HL-
LHC runs demanded the transition now to a new technology for the main EventIndex data
store. A new prototype based on HBase event tables and queries through Apache Phoenix
has been tested and shows encouraging results. There is a good table schema candidate and
the basic functionality is ready. We are now working towards improved performance and
better interfaces; of course, we need to keep testing the new system with more data and get
performance metrics to compare with the current implementation.

The plan is to have the new system operational by the middle of 2020 in parallel with
the current one and phase out the old system well in advance of the start of the LHC Run 3.
According to our expectations, this system will be able to withstand the data production
rates expected for LHC Run 4 and beyond.

References
[1] ATLAS Collaboration, JINST, 3, S08003 (2008)

DOI: 10.1088/1748-0221/3/08/S08003.
[2] D. Barberis et al., J. Phys. Conf. Ser. 513 042002 (2014)

DOI: 10.1088/1742-6596/513/4/042002.
[3] Hadoop, HBase and related tools: https://hadoop.apache.org.
[4] D. Barberis et al., J. Phys. Conf. Ser. 664 no. 4 042003 (2015)

DOI: 10.1088/1742-6596/664/4/042003.
[5] J. Sánchez et al., J. Phys. Conf. Ser. 664 no. 4 042046 (2015)

DOI: 10.1088/1742-6596/664/4/042046.
[6] A. Favareto et al., Phys. Part. Nucl. Lett. 13 no. 5 621-624 (2016)

DOI: 10.1134/S1547477116050198.
[7] M. Mineev et al., CEUR Workshop Proceedings 2267 104-107 (2018)

urn:nbn:de:0074-2267-5 http://ceur-ws.org/Vol-2267/104-107-paper-18.pdf.
[8] E.J. Gallas et al., J. Phys. Conf. Ser. 898 no. 4 042033 (2017)

DOI: 10.1088/1742-6596/898/4/042033.
[9] D. Barberis et al., J. Phys. Conf. Ser. 762 no. 1 012004 (2016)

DOI: 10.1088/1742-6596/762/1/012004.
[10] ActiveMQ: https://activemq.apache.org.
[11] CEPH: https://ceph.io.
[12] Á. Fernández Casaní et al., EPJ Web Conf. 214 04010 (2019)

DOI: 10.1051/epjconf/201921404010.
[13] E. Alexandrov et al., CEUR Workshop Proceedings 2267 91-94 (2018)

urn:nbn:de:0074-2267-5 http://ceur-ws.org/Vol-2267/91-94-paper-15.pdf.
[14] Kibana: https://www.elastic.co/products/kibana.
[15] Grafana: https://grafana.com.
[16] D. Barberis et al., CEUR Workshop Proceedings 2507 23-29 (2019)

urn:nbn:de:0074-2507-4 http://ceur-ws.org/Vol-2507/23-29-paper-4.pdf.
[17] Z. Baranowski et al., J. Phys. Conf. Ser. 898 no. 6 062020 (2017)

DOI: 10.1088/1742-6596/898/6/062020.
[18] Apache Kudu: https://kudu.apache.org.
[19] Z. Baranowski et al., EPJ Web Conf. 214 04057 (2019)

DOI: 10.1051/epjconf/201921404057.

6

EPJ Web of Conferences 245, 04017 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024504017

