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Abstract. The ATLAS EventIndex was designed in 2012-2013 to provide 
a global event catalogue and limited event-level metadata for ATLAS 
analysis groups and users during the LHC Run 2 (2015-2018). It provides a 
good and reliable service for the initial use cases (mainly event picking) 
and several additional ones, such as production consistency checks, 
duplicate event detection and measurements of the overlaps of trigger 
chains and derivation datasets. The LHC Run 3, starting in 2021, will see 
increased data-taking and simulation production rates, with which the 
current infrastructure would still cope but may be stretched to its limits by 
the end of Run 3. This proceeding describes the implementation of a new 
core storage service that will be able to provide at least the same 
functionality as the current one for increased data ingestion and search 
rates, and with increasing volumes of stored data. It is based on a set of 
HBase tables, with schemas derived from the current Oracle 
implementation, coupled to Apache Phoenix for data access; in this way 
we will add to the advantages of a BigData based storage system the 
possibility of SQL as well as NoSQL data access, allowing to re-use most 
of the existing code for metadata integration.  

1 Introduction  
The ATLAS experiment [1] at the LHC accelerator at CERN collected during the so-called 
“Run 2” (2015-2018) several billion physics events each year, plus a large amount of test 
and calibration data. In addition, about three times as many fully simulated events were 
produced, stored and analysed together with the real collision data. A global catalogue is 
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needed to classify, search and retrieve events from this vast amount of data: the 
EventIndex. Its design started in 2012-2013 [2] by exploring the new technologies that 
became available at that time in the open-source software community, then called “NoSQL 
databases”. The most promising solution was based on the Hadoop eco-system [3], with 
data stored in HDFS MapFiles and an internal catalogue in HBase. This system was pre-
loaded with all Run 1 real data (2009-2013) and started operation in the Spring of 2015 at 
the start of Run 2 [4]. It was the first high-energy physics computing system based from the 
start on open-source structured storage technologies. 

2 The EventIndex for LHC Run 2 

2.1 Use Cases 

The main use case for the EventIndex is event picking. Collaboration members analysing 
particular datasets have the need from time to time to extract one particular event in an 
upstream data format to check if the reconstruction algorithms worked correctly, or to 
produce an event display to be used in a presentation or publication. Given the minimal 
unique information on the event, i.e. the run and event numbers, and the data format and 
version to be retrieved, the EventIndex has to provide the pointer to the file containing this 
event and the associated tools must be able to extract it from this file and return it to the 
requestor. 

Additional use cases are related to production completeness and correctness checks. At 
every processing step, the output files must contain the same number of events as the 
inputs, and there must be no duplicated event numbers. The ability to count events in files 
or datasets depending on some internal information, like triggers that are fired, is also an 
important use case. 

As the data actually became available in the EventIndex, two more use cases joined the 
list during Run 2: studying trigger overlaps, and studying the overlaps between offline 
analysis derivation streams, with the aim of optimising the event selections both online and 
offline. 

All the above use cases are satisfied by indexing all produced data, as soon as each 
dataset is completed, and storing the event information in the EventIndex data store. A side-
effect of this operation mode is the global check for corruption of all produced data, as in 
this way each file is read back by an independent process soon after being produced, and 
before being used for further processing or analysis. 

2.2 Data Contents 

ATLAS event data are organised into datasets, which are collections of files that contain 
similar numbers of events from the same run or period, or simulated events created with the 
same generator settings, which have been processed with the same software algorithms and 
calibrations as the real data.  

Each dataset is indexed as soon as it is produced, therefore the EventIndex contains 
event data organised by dataset. Only immutable technical data (“metadata”), as opposed to 
physics information that can change at each processing stage, are saved in the EventIndex: 
• Event identification data: run and event number, luminosity block number, bunch 

crossing identifier; 
• Trigger decisions; 
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• References to the events at each processing stage in all permanent files generated by 
central productions: globally unique identifiers (GUIDs) of the files containing the 
event at the current processing stage and previous ones if available. 

The last block of information is needed for event picking. The GUID retrieved by the query 
to the EventIndex catalogue is used to find the relevant file in the Grid data store and 
extract the requested event. 

2.3 System Architecture 

Since the start of the project, it was clear that a partitioned architecture, following the data 
flow across the system, would have been the best solution, and indeed this was the case. A 
schematic illustration of the system architecture is shown in Figure 1.  
 

 
Fig. 1: System architecture of the EventIndex, showing the main components and the data flow. 
 

The Data Production sub-system automatically runs jobs on the Tier-0 farm or on the 
Grid on each dataset as soon as it is produced and extracts the metadata to be stored in the 
EventIndex. 

The Data Collection component [5] takes care of transferring the EventIndex metadata 
from the production sites to CERN, merging it for all files of each dataset, validating it and 
storing the result in temporary files on the Hadoop cluster.  

The Data Storage and Query system was initially implemented purely in Hadoop, with 
the data in the internally indexed MapFile representation and a dataset catalogue 
implemented in HBase [6]. The data flow in the Hadoop cluster includes reading the 
temporary files produced by the Data Collection step, expanding the compressed trigger 
information [7], storing the data in MapFiles and updating the HBase catalogue. However, 
it was soon realised that the overhead that is intrinsic in the start of MapReduce jobs in the 
Hadoop cluster was too large for simple operations such as finding an event record for the 
event picking use case, therefore an additional data store implemented in HBase was added. 
It contains all data except the trigger information, which constitutes the majority of the data 
volume; only queries needing this information fire up MapReduce jobs. 

As the performance in retrieving information from the Hadoop system was still sub-
optimal at the end of 2015, it was decided to add an alternative store, based on an Oracle 
database, to support a well-defined set of queries [8]. All real events now have their 
metadata also stored in an Oracle database, albeit without trigger information. This data 
store turned out to be faster and more reliable for event-picking related queries and is also 
useful for the integration between event-level metadata and other metadata that are also 
stored in Oracle databases. 

At the end of 2019 the EventIndex used 24 TB to store 2009-2019 real data and 11 TB 
for 2015-2019 simulated data in Hadoop, and 3.4 TB of table space plus 3.1 TB of auxiliary 
index in Oracle (only 2015-2019 real data without trigger information). 
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Finally, the Monitoring System [9] provides real-time information on the status of the 
servers and services that compose the EventIndex systems and sends alarms to the experts 
in case of suspected problems. 

3 The EventIndex for LHC Run 3 
The current EventIndex storage implementation reflects the state of the art for BigData 
storage in 2012-2013 when the project started, but many different options have appeared 
since then, even within the Hadoop eco-system. The current system works well for the 
current injection and query rates, but with the increase of data-taking and simulation 
production rates foreseen for Run 3 (2021-2024) and even more for Run 4 (High-
Luminosity LHC, 2027 onwards) it is clear that a re-design of the core systems is needed. 
In order to be safe, a new system should be able to absorb a factor 10 more event rate than 
the current one, i.e. 100 billion real events and 300 billion simulated events each year. 

3.1 New Requirements 

Nowadays the same event is physically completely stored in different Hadoop MapFiles 
for each data format and processing version. In the future we would like to have one and 
only one logical record per event, independently of the format the events are stored in. The 
base record for each event should contain only the event identifiers and the immutable 
information (trigger, luminosity block and bunch crossing number), and then for each 
processing step an additional record would contain the link to the algorithm that produced it 
(processing task configuration), the pointer(s) (GUIDs or equivalent) to the output(s), and 
any useful flags for offline selections (derivations). 

A few additional use cases became important in the last few years: 
• Massive event picking: this is a selection of many events, touching a large fraction (or 

perhaps all) of the files in a dataset. It will need a dedicated service, especially if the 
input files are on tape (which is normally the case for raw data); 

• Adding “offline trigger” information: it entails storing the results of selections that can 
be used to form derived datasets. Related to this, there is the need for the ability to add 
information to parts of the event records, to have the possibility to select events using 
online and offline trigger information to build “virtual datasets”; 

• Support for virtual datasets: they are logical collection of events created either 
explicitly (giving a collection of event identifiers) or implicitly (their selection is based 
on some other collection or event attributes). 

• Labelling individual events with attributes such as “key:value” pairs. 

3.2 System Design Evolution 

The global architecture supports the independent evolution of the system components, and 
indeed some of them have already been substantially improved or replaced by new 
implementations. 

The Data Collection system was progressively restructured with the replacement of the 
messaging system ActiveMQ [10] with the CEPH Object Store [11] as the main data 
transfer mechanism between Grid jobs and the CERN central servers [12]. An EventIndex 
Supervisor was introduced at the same time to keep track of the data transfers, the 
validation procedures and the storage in Hadoop. 
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The Monitoring System was improved [13] with the replacement of the displays based 
on Kibana [14] with Grafana [15], following the trend set for other distributed computing 
applications supported by CERN for the ATLAS experiment [16]. 

Investigations on several structured storage formats for the main EventIndex data to 
replace the Hadoop MapFiles started a few years ago [17]. Initially it looked like Apache 
Kudu [18] would be a good solution, joining BigData storage performance with SQL query 
capabilities [19]. Unfortunately Kudu did not get a large support in the open-source 
community and CERN decided not to invest hardware and manpower resources in this 
technology.  

HBase was evaluated as the main data store at the beginning of the project, but 
discarded at that time because of performance restrictions. Nowadays it is able to hold the 
large amounts of data to be recorded, with a much-improved data ingestion and query 
performance thanks to the increased parallelisation of all operations. Additional 
components like Apache Phoenix can provide SQL access to HBase tables, if the tables are 
designed appropriately upfront, which can be done in our case.  

3.3 Data Store in HBase+Phoenix 

Data in HBase can be organised in large tables, with one row per event and one column per 
event property. Each row has to be identified by a unique key (RowKey), basically 
something like RunNumber-EventNumber in our case. Columns are grouped in column 
families, which can match easily our requirement of having groups of values that are added 
to each record at each processing stage.  

Phoenix is used as the SQL layer on top of HBase. It provides structured schemas for 
the tables instead of the native HBase schema-less tables, the mapping of columns to HBase 
cells, and the serialisation of data types to bytes. It also contains a SQL planner and 
optimiser with built-in HBase related optimisations, server-side optimised executions and 
access via JDBC (Java DataBase Connectivity). Phoenix takes SQL queries, transforms 
them into HBase commands using directly the HBase API, along with coprocessors and 
custom filters, and finally produces regular JDBC result sets. 

The HBase RowKey design must be adapted to Phoenix’s types and sizes, losing some 
performance but gaining functionality. Figure 2 shows a schema of the current RowKey 
design. 

 

 
Fig. 2: RowKey schema for the HBase”Phoenix version of the EventIndex data store. 

 

A number of tests have been performed, loading ATLAS EventIndex data to HBase via 
Phoenix and then running Phoenix queries on the loaded data. The results are encouraging: 
single event picking works in 30 ms and full dataset queries run in 6-10 seconds. More tests 
and optimisation work are in progress. Some basic functions are ready and further work on 
performance and user interfaces is ongoing. 
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4 Conclusions and Outlook 

The significant increase in the data rates expected in LHC Run 3 and the subsequent HL-
LHC runs demanded the transition now to a new technology for the main EventIndex data 
store. A new prototype based on HBase event tables and queries through Apache Phoenix 
has been tested and shows encouraging results. There is a good table schema candidate and 
the basic functionality is ready. We are now working towards improved performance and 
better interfaces; of course, we need to keep testing the new system with more data and get 
performance metrics to compare with the current implementation. 

The plan is to have the new system operational by the middle of 2020 in parallel with 
the current one and phase out the old system well in advance of the start of the LHC Run 3. 
According to our expectations, this system will be able to withstand the data production 
rates expected for LHC Run 4 and beyond. 
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