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Abstract

Recent estimations of the Hubble parameter H0 based on gravitational waves (GW) observations

can be used to shed some light on the discrepancy between the value of the Hubble parameter HP
0

obtained from large scale observations such as the Planck mission, and the small scale value HR
0 ,

obtained from low redshift supernovae (SNe).

In order to investigate the origin of this discrepancy we perform a combined analysis of the luminosity

distance of SNe and GW sources, using different methods, finding that the impact of the GW data is

very limited, due to the small number of data points, and their large errors. We analyze separately

data from the Pantheon and the Union 2.1 catalogues, finding that a model with HP
0 and a small local

void can fit the data as well as a homogeneous model with HR
0 , resolving the apparent H0 tension. We

find that there is a significant difference between the size and depth of the inhomogeneity obtained

using the two datasets, which could be due to the different sky coverage of the two catalogues. For

Pantheon we obtain evidence of a local inhomogeneity with a density contrast δv = −0.155 ± 0.026,

extending up to a redshift of zv = 0.056± 0.0002, while for Union 2.1 we obtain δv = −0.461± 0.032

and zv = 0.081± 0.008. We also perform some analysis using redshift shell averaged data, and obtain

approximately the same results, hinting to the fact that the effects of the monopole component of the

local inhomogeneity are the dominant ones.
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I. INTRODUCTION

Recent gravitational wave observations [1] have provided a new estimation of the Hubble

constant H0, and could be used to shed some light on the tension between the large scale

estimations based on the cosmic microwave background (CMB) radiation [2], and the value

obtained analyzing low redshift SNe [3]. The latter analysis is based on the assumption that

the Universe is well described by a spatially homogeneous solution of the Einstein’s equations,

but only an unbiased analysis of observations can actually confirm this hypothesis. As an

alternative to dark energy it was proposed the existence of a very large local void [4–6], but large

void models were incompatible with other observations, such as CMB. It was then investigated

the effect of inhomogeneities in presence of dark energy [7], showing how they could lead to

a correction of the apparent value of the cosmological constant, or affect [8, 9] the Hubble

diagram. Other studies estimate the variance of H0 using different analytical and numerical

methods [10–12], but they do not perform an actual analysis of the observational data, so are

not directly comparable to our results. We fit data without any homogeneity assumption. Our

analysis is partially confirming the existence of a local underdensity surrounding us in different

directions [13, 14].

There have been different approaches to the explanation of the H0 tension [15–17], and

it has been recently [18] claimed that there is no evidence of a local inhomogeneity, but in

that analysis a fixed value of the absolute magnitude M was used, ignoring how it should

change if H0 is different, and instead of fitting directly the apparent magnitude, the intercept

ab was used, whose mathematical definition relies implicitly on some homogeneity assump-

tions. Here we will not propose any modification of the standard cosmological model, but

only perform an unbiased analysis of SNe and GW sources luminosity distance data, in search

of a possible evidence of peculiar velocity fields normally ignored when assuming a Fried-

mann–Lemâıtre–Robertson–Walker (FLRW) metric.

While number count observations only allow to measure directly the baryonic matter distri-

bution, other effects such as gravitational lensing, allow to measure the total matter density,

including the dark matter component, since gravitationally baryonic and dark matter produce

the same gravitational effects. One possibility to overcome the difficulty of deducing the total

density field from number counts, due for example to selection effects, is to reconstruct the total

matter density distribution from the effects it imprints on the luminosity distance of standard

candles [14], and standard sirens [19]. At low redshift the main effects of inhomogeneities on
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the luminosity distance of the sources of electromagnetic waves, such as standard candles, is

the Doppler effect [8, 20] due to the peculiar velocities of the sources and the observer, and a

similar theoretical result holds also for the luminosity distance of GW sources [21]. It is conse-

quently possible to apply the same reconstruction methods derived for standard candles [8, 14]

to standard sirens, and perform a combined analysis of the luminosity distance of the sources of

both gravitational and electromagnetic waves. At low redshift and in the perturbative regime

the monopole of the effects on the luminosity distance is proportional to the volume average

of the density contrast [8], and for an underdensity it corresponds to an outwardly directed

peculiar velocity field pointing towards the outer denser region, implying a local increase of the

Hubble parameter, which could account for the apparent difference between its large and small

scale estimation.

Motivated by this apparent discrepancy we adopt an unbiased approach, i.e. we do not as-

sume homogeneity, and let the data reveal whether the local Universe is in fact homogeneous or

not. We analyze the luminosity distance data of supernovae (SNe) Ia from different catalogues

combined with the luminosity distance of 9 GW sources identified by the Laser Interferometer

Gravitational-Wave Observatory (LIGO) [1], and use this combined set of data to reconstruct

the peculiar velocity field of the sources. The redshift of GW events not having an electromag-

netic transient counterpart was obtained [1] by the LIGO collaboration by applying Bayesian

analysis to the combined dataset of GW events and galaxy catalogues along the line of sight of

the event.

We perform a combined analysis of the luminosity distance of SNe and GW sources, and

we obtain different results using different SNe catalogues. We check if the peculiar velocity

redshift correction applied to the Pantheon data could explain this difference, since Union 2.1

data is not redshift corrected, but we find that non redshift corrected Pantheon data lead to

the same results. We also perform some analyses using redshift shell averaged data, and obtain

approximately the same results, hinting to the fact that the effects of the monopole component

of the local inhomogeneity are the dominant ones. The implications of the existence of a

local underdensity are profound, since not taking it into proper account can produce a mis-

estimation of all background cosmological parameters obtained under the assumption of large

scale homogeneity, and can explain for example the apparent discrepancy between different

measurements of the Hubble constant [8].

3



II. DATASETS

We analyze two different supernovae datasets, the Union 2.1 catalogue from the Supernova

Cosmology Project (SCP) [22], and the Pantheon catalogue [23], while for GW sources we use

data from the LIGO collaboration [1]. The two different supernovae datasets lead surprisingly

to very different conclusions in regards to the presence of a local underdensity.

The formulae we use are including relativistic effects, as shown by comparison with exact

numerical calculations in [8], but if the peculiar velocity redshift correction is computed using

an inaccurate formula often used to infer peculiar velocity from observations [24], the entire

dataset can be affected. We used the second dataset published by the Pantheon collaboration

[25], which removed some errors in the redshift correction at redshifts higher than the catalog

depth. As explained in [8], the 2M++ catalogue used to estimate the peculiar velocity redshift

correction, is not deep enough to eliminate the effects of an inhomogeneity extending beyond its

depth z = 0.067. Note that the redshift edge of the inhomogeneity we obtain in our analysis is

in fact around the depth of 2M++. It should also be noted that the effects of the homogeneity

extend slighly beyond the edge, as shown in one example in fig.(1).

Using eq.(12), taking DL(z) = Dobs
L (z) and DL(z) as the luminosity distance of a ΛCDM

model with the parameters estimated by the Planck mission, we can obtain for each object the

radial component of its peculiar velocity in a system of coordinates centered at our position.

This procedure does not require to assume any spherical symmetry, since the general formula

depends on the radial component of the peculiar velocity, and it only assumes that the dominant

effect of the inhomogeneity is the Doppler effect, which is well justified at low redshift [8, 20],

z < 0.7. Even using a cutoff of zsup = 0.5 we get the edge of the inhomogeneity to be zv < 0.09,

so the formula can be used safely in this range.

The radial velocity field is not necessarily spherically symmetric with respect to the observer

position, since there can be anisotropies in the local structure, but here we will focus on the

monopole component. There is evidence that local structure is not isotropic [26], implying that

extending the analysis to higher multipoles could also be important, but as a first step towards

investigating the effects of local structure imprinted on the luminosity distance we will focus on

the monopole. This can be done following two different approaches: computing shell averages

of redshift and velocity data before analyzing them, which are by construction isotropic, or

analyzing data without any averaging, assuming a model which includes the radial dependence,

but ignores the possible angular dependence. The averaging procedures consists in dividing
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the datasets in spherical shells of constant width δz = 0.004, and averaging the data inside

each shell using inverse-variance weighting. We analyze data following both methods, finding a

small difference between the results, hinting to the fact that the effects of anisotropies are not

strong. In the formulae defining the χ2 in the following sections, the variables zi and vi will

represent the single data point or the shell average, depending on the fit.

III. FITTING THE APPARENT MAGNITUDE DATA

The observed quantity is the apparent magnitude m, and analyzing it directly is preferable

for the Pantheon dataset, since m is the quantity found in the publicly available data, not DL,

which is a derived quantity, and is model dependent, in the sense that it depends implicitly

on M , which is a parameter of the model. In fact, from the definition of distance modulus

µ = m−M , we get

DL(z) = 10
µ
5

+1 = 10
m−M

5
+1 , (1)

showing that in order to get Dobs
L from mobs an assumption for M has to be made. There are

two main advantages in using m :

• It is not necessary to derive DL from m and propagate the errors, as shown above.

• It is not necessary to use different datasets for different values of {H0,M}, since these

are just parameters of the model, while for DL they have to be assumed in order to

obtain Dobs
L from mobs. This allows to plot and compare directly the results of the fits

corresponding to different values of {H0,M}.

Using m it is clear the distinction between observed data and parameters of the model, while

using DL the parameter M is affecting both the model and Dobs
L , making the analysis less

transparent. Theoretical predictions are normally made in terms of DL(z), but observational

data analysis in models with varying {H0,M} should be preferably performed in terms of m.

I¡

The theoretical model for mth is related to the theoretical luminosity distance Dth
L by

mth = 5 logDth
L − 5 +M , (2)

and we compute the monopole effects of an hypothetical local inhomogeneity on DL using the

fomula [8]

Dth
L (z) = Dth

L (z)

[
1 +

1

3
fδth(z)

]
, (3)
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where δ(z) is the volume averaged density contrast and Dth
L (z) is the background luminosity

distance of a ΛCDM model.

The dependency of the models on different parameters is given explicitly in the following

equations

DL(Ωi, H0, Ii) = DL(Ωi, H0)

[
1 +

1

3
fδ(Ii)

]
, (4)

m(Ωi, H0,M, Ii) = 5 logDL(Ωi, H0, Ii)− 5 +M , (5)

where Ii are the parameters modelling the inhomogeneity. A homogeneous model is a special

case of the general model given above, with Ii = 0. We do not make any assumption about

the homogeneity of the local Universe, we just analyze data including the effects of a possible

inhomogeneity. If the Universe were homogeneous our analysis should confirm it.

Note that as shown in [8, 14], a local inhomogeneity should only change the luminosity

distance locally, since far from the inhomogeneity the volume averaged density contrast of a

finite size homogeneity tends to zero.

IV. MODELING THE LOCAL INHOMOGENEITY

We model the local underdensity with a density profile of the type

δth(χ) = δv[1− θ(χ− χv)] , (6)

where χv is the comoving distance of the edge of the inhomogeneity, δv the density contrast in-

side the inhomogeneity, and θ(x) is the Heaviside function. The corresponding volume averaged

density contrast is

δth(z) =

 δv z < zv

δv

[
zv(1+zv)
z(1+z)

]3

z > zv

 , (7)

where δv is the density contrast inside the inhomogeneity and zv is the inhomogeneity edge

redshift. The derivation of this formula is given in the appendix C. Using eq.(13) we get the

following formula for the radial velocity profile

vr(z)

c
=

1

3
f

 δv z for z < zv

d /z2 for z > zv
, (8)

where the matching condition at zv implies d = δv z
3
v . Note that in deriving the last equation

we have neglected the factor (1 + zv)/(1 + z), which is a good approximation, as shown in
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fig.(1). The above formula is in agreement with the general result obtained in [8], confirmed

by exact numerical calculations, according to which for low redshift inhomogeneities the effects

are suppressed at high redshift by the volume in the denominator of the volume average.

We fit the data with this model by minimizing with respect to the two parameters δv, zv the

following χ2(δv, zv)

χ2 =
∑
i

[
mi −mth(zi)

σmi

]2

. (9)

The results of the fit using the covariance matrix are given in the appendix.

The difference between our analysis and the one reported in [18] is presumably due to the

fact therein it was assumed a fixed value of the absolute magnitude M, ignoring how it should

change if H0 is different, and instead of fitting directly the apparent magnitude, the intercept

ab was used, whose mathematical definition relies implicitly on some homogeneity assumptions.

The difference between our analysis and [18] cannot be attributed to a difference in the choice

of radial coordinate, since the luminosity distance as function of the redshift is an observational

quantity, and such it is invariant under any coordinate transformation.

The above model is based on the very accurate low redshift approximation derived in [8], and

on the assumption of a constant step density contrast profile as given in eq.(6). Note that since

δ(z) is the volume average of the density contrast, outside the inhomogeneity it is inversely

proportional to the volume, and since at low redshift χ ≈ z/aH0, we get the above expression

outside the inhomogeneity, which is proportional to the inverse cube of the redshift. The factor

(1 + z) comes from the scale factor in χ ≈ z/aH0, and at low redshift can be safely neglected.

As shown in [8], by explicit comparison with exact numerical results, these approximations are

quite accurate at low redshift.

It is important to note that the gravitational effects of the inhomogeneity extend slightly

beyond its edge, due to the inverse cube suppression.
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FIG. 1: The step density contrast δ (dashed) defined in eq.(6), its volume average δ (solid) obtained

in eq.(7), and the approximation (dotted) used to derive eq.(8) are plotted as a function of redshift

for zv = 0.08 and δv = −0.4. The effects of the inhomogeneity are proportional to δ, and extend

beyond the edge of the void, but are quickly suppressed beyond the edge, implying that high redshift

observations are not affected by the local inhomogeneity.

V. FITTING CONSISTENTLY DATA WITH MODELS ASSUMING DIFFERENT

VALUE OF H0 AND M

Using only the definition of distance modulus and eq.(1) we derive in Appendix B a general

model independent relation between different values of {H0,M} estimated at low redshift

Ma = Mb + 5 log10

(
Ha

Hb

)
, (10)

which allows, for example, to obtain the implied Planck value of Mp from HP
0 and {HR

0 ,M
R},

which are the values estimated in [3]. In the Appendix B we discuss the limits of validity of this

relation, but when considering models with the same parameters Ωi it can be safely applied, or

more in general but at low red-shift, where {H0,M} are estimated. Note that a similar relation

for M was used in [14] and more recently in [27]. There it was claimed it to be valid only

for ΛCDM models, while our derivation is completely model independent. Using this relation,

and assuming the values obtained in [3] as reference, we obtain MP and fit mobs with different
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homogeneous and inhomogeneous models.

We denote with mHom(HR
0 ) and mInh(HP

0 ) respectively a homogeneous model with

{H0,M} = {HR
0 ,M

R} and an inhomogeneous model with {H0,M} = {HP
0 ,M

P}. We con-

sider flat cosmologies with a Ωm value estimated from the Planck mission data [1].

We fit data across different redshift ranges, to verify the robustness of the results. The

results are summarized in Table I, and shown in fig.(2-3). As can be seen the χ2 of mHom(HR
0 )

is higher than that of mInh(HP
0 ) for zsup = 0.11, i.e. a model with HP

0 can fit better the low

redshift SNe when the effects of a local small inhomogeneity are included in the analysis. For

higher cutoffs the two models have approximately the same χ2.

Note that the density contrast of the best fit underdensity is not large, and the hedge

is located around the depth of the catalog 2M + + used in [3] for the redshift correction,

supporting the argument [8] that the apparent tension between HP
0 and HR

0 is the consequence

of a local inhomogeneity whose effects have not been removed by redshift correction, due to its

size being comparable to the 2M++ depth. As explained in [8] and evident from the plots, the

local inhomogeneity does not affect the luminosity distance at high redshift, since the effect is

proportional to the volume average of the density contrast, which tend to zero at high redshift,

for a finite size inhomogeneity.

This kind of inhomogeneity could have been generated by a peak of primordial curvature per-

turbations [26], which is not a very unlikely event. Independently from the probability of being

located inside of such an inhomogeneity, the unbiased data analysis we have performed is giv-

ing statistical evidence of its presence. This should be considered for its statistical significance

more than for the theoretical estimation of its probability, i.e. the existence of inhomogeneities

should be tested using observational data rather then being excluded a priori from the anal-

ysis, on the basis of theoretical predictions. Most of the GW sources are located outside this

inhomogeneity, explaining why the H0 value estimated from these objects is in agreement with

the estimation based on other large scale observations such as the CMB.
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FIG. 2: Fit of Pantheon dataset with different models, for SNe with z < 0.11. In the lower panel is

plotted for comparison purposes the difference between m and mHom(HR
0 ), ∆m = m −mHom(HR

0 ).

While mHom(HP
0 ) does not provide a good fit of the data, mInh(HP

0 ) is fitting the data better than

mHom(HR
0 ).
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FIG. 3: Fit of Pantheon dataset with different models, for SNe with z < 0.5. In the lower panel is

plotted for comparison purposes the difference between m and mHom(HR
0 ), ∆m = m −mHom(HR

0 ).

While mHom(HP
0 ) does not provide a good fit of the data, the χ2 of mInh(HP

0 ) is approximately the

same of mHom(HR
0 ).
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zsup = 0.11 zsup = 0.5 zsup = 1.5

δv zv χ2 δv zv χ2 χ2

mInh(HP
0 ) −0.155± 0.026 0.056± 1.84× 10−4 223.955 −0.159± 0.025 0.056± 4.6× 10−4 867.409 1036.026

mHom(HP
0 ) - - 259.987 - - 905.148 1073.773

mHom(HR
0 ) - - 236.830 - - 869.515 1040.865

TABLE I: Results of the fits of the Pantheon data with different upper limits zsup of the redshift range.

An inhomogeneous model mInh(HP
0 ) can fit the data better than a homogeneous model mHom(HR

0 )

for zsup = 0.11, while for higher cutoffs the χ2 is approximately the same. This resolves the apparent

H0 tension, since at high redshift the local inhomogeneity does not affect the luminosity distance. The

χ2 for zsup = 1.5 is obtained using the best fit parameters obtained for the zsup = 0.5 fit.

VI. ANOTHER APPROACH TO THE RECONSTRUCTION OF THE PECULIAR

VELOCITY FIELD FROM THE LUMINOSITY DISTANCE

Assuming the effects of the observer velocity have been removed, the dominant effect of

inhomogeneities on the angular diameter distance at low redshift [28] is given by the radial

component of the emitter peculiar velocity ve

DL(z) ≈ DL(z)
[
1 +

ve · n
z c

]
, (11)

where c is the speed of light, the unit vector n is in the direction of propagation from the

emitter to the observer, and DL(z) is the background angular diameter distance. In the above

equation we have assumed that the peculiar velocity of the observer is zero, which is consistent

with analyzing data from which our peculiar velocity with respect to the cosmic microwave

background (CMB) has been subtracted, as is the case for the SNe Ia datasets we consider.

The background angular diameter distance DL(z) is predicted theoretically for each value

of z using the background cosmological parameters measured by large scale observations of the

Universe, in our case the CMB measurements of the Planck [2, 29] mission, while DL(z) is the

observed distance. It is then immediate to determine the radial component vr of the peculiar

velocity from eq.(11)

vr = −ve · n = −z c
(
DL

DL

− 1

)
= −z cδDL , (12)

where we introduced the luminosity distance contrast δDL, a dimensionless quantity which
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accounts for the relative difference between the observed luminosity distance DL and the corre-

sponding background value D̄L. Note that the relation vr = −ve ·n is due the opposite direction

of n with respect to the outwardly directed radial coordinate centered at the observer. Eq.(12)

is the foundation of the reconstruction method we will apply, and allows to find the radial

peculiar velocity field of the sources from the difference between their measured luminosity

distance and the corresponding theoretical prediction obtained assuming a Friedman model

with cosmological parameters obtained from independent large scale observations which are

not sensitive to local inhomogeneities, such as the CMB [2, 8].

The monopole of the effects of local inhomogeneities can be computed by choosing a spherical

coordinate system centered at the observer position, and after integrating the Euler’s equations

we get [30]

vr(z)

c
= −1

3
f δ̄(z)z , (13)

where f = 1
H
Ḋ
D

is the growth factor and the volume averaged density contrast is defined as

δ(χ) =
3

4πχ3

∫ χ

0

4πχ′2δ(χ′) dχ′ . (14)

It has been shown in [8] (see fig.(2) and section 6 therein) that at low redshift the linear

approximation adopted to obtain the above equations is in good agreement with exact numerical

calculations in the redshift range of interest in this paper. Eq.(13) is the basis of our analysis

since it allows to model appropriately the peculiar velocity field in terms of the density contrast.

An underdensity induces an outwardly oriented velocity field, which if not distinguished from

the large scale expansion due to the Hubble flow, can lead to an apparent discrepancy between

the measurement of the Hubble constant obtained from local and large scale observations [8].

An inversion method to determine the density contrast from the luminosity distance contrast

was derived in [8], but it involves derivatives with respect to the redshift, making it difficult to

apply to observational data, while the peculiar velocity obtained using eq.(13) is more suitable

for data analysis since it does not involve any derivative, and for this reason it is more convenient

for data analysis purposes.
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VII. FITTING THE PECULIAR VELOCITY

In applying the reconstruction method we will assume the background cosmological param-

eters obtained by the Planck mission [1]. According to eq.(13) the radial velocity due to the

monopole of the density contrast should be given by vr(z)/c = −1
3
f δ̄(z)z, which inside a region

with constant density contrast δv gives δ̄(z) = δv and v(z) ∝ cz. Motivated by the above

considerations, we will fit the monopole of the low redshift peculiar velocity field inferred from

luminosity distance observation assuming a linear relation of the form v = mz + b, and obtain

the best fit parameters by minimizing the χ2 defined as

χ2 =
N∑
i=1

[
vi − (mzi + b)√

σ2
vi

+ σ2
zi

]2

. (15)

The parameter m is related to the volume averaged density contrast δ̄ by the relation δ̄(z) =

−3m
fc

. The results for the Union data fits are shown in fig.(5) and fig.(4). For both the averaged

and the not averaged data, there is a strong statistical evidence of the presence of a radial

velocity field directed outwardly, which corresponds to a volume averaged density contrast of

about δv = −0.4. The difference between the two fits, one with shell averaged data and the

other with single data points, is a hint to the importance of anisotropies in this redshift range,

i.e. for zsup = 0.0685, but since this difference is not so large, it implies the monopole is

producing the dominant effect.

FIG. 4: Results of the fit of eq.(15) with not shell averaged data for the Union 2.1 data, and maximum

redshift zsup = 0.0685. We can exclude the m = 0 null hypothesis at more than 4σ confidence level.
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FIG. 5: Results of the fit of eq.(15) with shell averaged data for the Union 2.1 data, and maximum

redshift zsup = 0.0685. We can exclude the m = 0 null hypothesis at more than 4σ confidence level.

The shells have width ∆z = 0.004.

VIII. DETERMINING THE SIZE OF THE INHOMOGENEITY

We have shown that low redshift observations support the existence of a local underdensity,

but it is also important to determine its size.

FIG. 6: Results of the fit of eq.(16) with not shell averaged data for the Union 2.1 data, and maximum

redshift zsup = 0.11. We can exclude the δv = zv = 0 null hypothesis at more than 4σ confidence level.

The fitted data is a combination of the GW sources and SNe.
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FIG. 7: Results of the fit of eq.(16) with shell averaged data for the Union 2.1 data, and maximum

redshift zsup = 0.11. We can exclude the δv = zv = 0 null hypothesis at more than 4σ confidence level.

The shells have width ∆z = 0.004, and the averages have been obtained by combining SN and GW

sources data in the same shell. The fitted data is a combination of the GW sources and SNe.

FIG. 8: Results of the fit of eq.(16) with not shell averaged data for the Pantheon data, and maximum

redshift zsup = 0.11. We can exclude the δv = zv = 0 null hypothesis at more than 4σ confidence level.

The fitted data is a combination of the GW sources and SNe.
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FIG. 9: Best fit inhomogeneous model DInh
L (HP

0 ) obtained using the reconstruction method with the

Pantheon data up to a redshift zsup = 0.11. We also show the luminosity distance of the homogeneous

models DHom
L (HP

0 ) and DHom
L (HR

0 ) for comparison purposes. The luminosity distance DInh
L (HP

0 ) at

high redshift tends as expected to DHom
L (HP

0 ), implying that the inhomogeneity does not affect the

large scale estimation of H0, while at low redshift it is close to DHom
L (HR

0 ).
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FIG. 10: Results of the fit of eq.(16) with shell averaged data for the Pantheon data, and maximum

redshift zsup = 0.11. The shells have width ∆z = 0.004, and the averages have been obtained by

combining SNe and GW sources data in the same shell. We can exclude the δv = zv = 0 null

hypothesis at more than 4σ confidence level. The fitted data is a combination of the GW sources and

SNe.

We fit the data with this model by minimizing with respect to the two parameters δv, zv the

following χ2(δv, zv)

χ2 =
∑
z<zv

(
vi − 1

3
fδvzi

σvi

)2

+
∑
z>zv

(
vi − 1

3z2i
fδvz

3
v

σvi

)2

. (16)

We perform two different fits, one without shell averaged data, and another with shell

average, and the results are shown respectively in fig.(6) and fig.(7) for the Union 2.1 data and

in fig.(8-9) and fig.(10) for the Pantheon data. As explained previously, depending on the type

of fit the subindex i corresponds respectively to shell averages or to the single data points. As

can be seen in the figures, the results of the fit using shell averaged data or single data points

are very similar, hinting to the fact that the effects of anisotropies are not very strong.

The confidence contour plots show for both datasets the presence of a radial velocity field

corresponding to a local underdensity, but the best fit parameters are quite different. This could

be due to the different sky coverage of the two datasets, or the difference in the light curve

fitting methods. The results of the Pantheon dataset are similar to the ones obtained fitting

the apparent magnitude, showing that the inversion method is working well. Nevertheless the
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direct fit of the apparent magnitude is preferable since it does not require to perform any error

propagation for DL, which can affect the accuracy of the inversion results.

IX. IMPACT OF THE GRAVITATIONAL WAVES DATA ON THE FIT RESULTS

FIG. 11: Results of the fit of eq.(16) with not shell averaged data for the Pantheon data, for a

maximum redshift of zsup = 0.11, and without including GW data. We can exclude the δv = zv = 0

null hypothesis at more than 4σ confidence level. The best fit value of the χ2 is very close to the one

obtained previously including GW data, implying that the latter is not very important, due to the

limited number of data points, and large errors.

The peculiar velocity fits in the previous sessions were based on combining luminosity dis-

tance observations of GW sources and SNe. In this session we report the results of fitting only

the SNe data, in order to assess the impact that these data have on the results. As shown in

fig.(11), the impact of removing GW data on the parameters estimation is negligible. This can

be explained by the limited number of data points and large errors, which limits the impact on

the χ2. When more GW data will be available we expect the impact to increase.
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X. CONCLUSIONS

We performed a combined analysis of the luminosity distance of SNe and GW sources, using

different SNe catalogues. The results of our analysis show that the impact of the GW data is

negligible, due to the limited number of data points and large errors. In our analysis we do

include the effects of a possible local inhomogeneity, and make different assumptions for the

value of H0. We find that the data can be fitted equally well, and in some cases better, by a

model with a small local inhomogeneity and the value of H0 obtained by the Planck mission.

We have first fitted directly the apparent magnitude of SNe, and then introduced a method

to reconstruct the peculiar velocity field from the luminosity distance, obtaining similar re-

sults with both methods. The results obtained for the direct fit of the apparent magnitude

should nevertheless be preferred, since they do not require any error propagation associated to

obtaining the luminosity distance from the apparent magnitude.

We found a significant difference between the size and depth of the inhomogeneity obtained

analyzing the Pantheon data or the Union 2.1 data, which could be due to a difference in the

sky coverage of the two datasets. The implications of the existence of this local underdensity

could be profound, since not taking it into proper account can produce a mis-estimation of all

background cosmological parameters obtained under the assumption of large scale homogeneity,

and it can explain for example the apparent discrepancy between different measurements of the

Hubble constant [8]. Most of the GW sources are located outside this inhomogeneity, and are

not affected by it. This is in accord with the theoretical prediction of the effects of a local

inhomogeneity, since the leading monopole perturbative effect is proportional to the volume

averaged density contrast. The latter is inversely proportional to the cube of the distance

from the point respect to which the monopole is computed, implying that the high redshift

luminosity distance is not affected, including the distance of the last scattering surface from

which the H0 is estimated with CMB observations.

Our results are robust under different choices of the redshift range of the analyzed data, and

the use of different methods to fit the data. The edge of the inhomogeneity is around the depth

of the 2M++ catalogue used to compute the peculiar velocity redshift correction applied to the

Pantheon data, which can naturally explain why such procedure did not remove the effects of

the inhomogeneity obtained in our analysis.

In the future it will be important to confirm our results using other independent observables

such as number counts[13], to include the effects of possible anisotropies, and investigate further
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the cause of the difference between results obtained analyzing different SNe datasets.

Appendix A: Peculiar velocity redshift correction and SNe calibration

We can only measure the apparent magnitude of SNe, and in order to determine the corre-

sponding luminosity distance, required to fit any cosmological model, a calibration is needed,

since we do not have a direct measurement of the absolute luminosity. For low redshift SNe

this is achieved by using the period-luminosity relation for Cepheids in the same galaxy of the

SNe, which is calibrated using the NGC4258 megamaser angular diameter distance [31]. The

measurement of the NGC4258 megamaser distance is of fundamental importance for the cali-

bration of the Cepheid-SN Ia distance ladder. If the local Universe were not homogeneous the

observed angular diameter distance would be affected, due to the gravitational effects which

can be modeled quite precisely [8] using eq.(11), including that of NGC4258. The angular

diameter distance is modified with respect to the background, due to the peculiar motion of

the source with respect to the cosmic flow. The effects of peculiar velocities can be removed by

applying a redshift correction (RC), which corresponds to eliminate the peculiar contribution

from the observed redshift, to obtain a corrected redshift which should just be representative

of the Hubble flow, and could be used for background cosmological parameters estimation.

Nevertheless, if the local inhomogeneity extends beyond the depth of the galaxy catalogue

used to obtain the peculiar velocity field used for RC, its effects cannot be removed, and

any background cosmological parameter obtained assuming homogeneity, because all inhomo-

geneities effects have supposedly been removed by RC, will be mis-estimated, including the

Hubble parameter. A similar phenomenon can happen for the cosmological constant for ex-

ample, leading to a correction of the parameters estimated assuming homogeneity [7], and a

similar correction to the angular diameter distance of NGC4258 [31], or any other anchor used

for calibration, could explain the discrepancy with the Planck estimation of H0. Note that as

explained in detail in [8], the effects of a local inhomogeneity on the high redshift luminosity

distance are negligible, since the volume average of the density contrast tends to zero at infinity,

making this effects only important for low redshift observations.

This correction can be well approximated as [8]

∆Happ(z)

H true
0

= −1

3
fδ(z) , (1)

where δ is the volume average of the density contrast, and shows that an underdensity increases

21



the local apparent value with respect to the true background value. The implication of the above

considerations is that when analyzing SNe data with models assuming different values of H0,

the absolute magnitude M has to be changed accordingly, as we will discuss in details in the

next appendix.

Appendix B: The relation between H0 and M

In order to clarify the relation between the observed quantity mobs, and the parameters M

and H, let’s consider the relation between the distance modulus and the luminosity distance

log10(DL) = 1 +
µ

5
, (1)

µ = m−M , (2)

and after defining DL = d/H0 we can obtain

mobs = (5 log d− 5) + (M − 5 logH0) = f(Ωi) + g(M,H0)− 5 , (3)

f(Ωi) = 5 log d , (4)

g(M,H0) = M − 5 logH0 , (5)

where the function f depends only on the cosmological parameters Ωi. For example for a flat

Universe we have

h(z) =
[
Ωm(1 + z)3 + Ωλ

]1/2
, (6)

d(z) = (1 + z)

∫ z dz′

h(z′)
, (7)

DL(z) =
1

H0

d(z) . (8)

For other sets of cosmological parameters Ωi numerical integration is required, but the general

structure of eq.(5) would still be valid, i.e. it is always possible to write mobs as the sum of two

independent functions depending respectively on Ωi and {H0,M}. From eq.(5) it is evident that

there is a degeneracy between the parameters H0 and M , since keeping f constant, different

combinations of {H0,M} can explain the same observational data mobs, as long as g = const.

In general the parameters {Ωi, H0,M} are independent, so the same observational data mobs

could be explained by different sets of values, and a joint analysis is required to obtain the best

fit parameters. Nevertheless at low-redshift the function f(Ωi) is only mildly dependent on Ωi,
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since at low-reshift we have that

DL(z) =
1

H0

(
z +

1− q0

2
z2 + ..

)
, (9)

q0 =
3

2
Ωm − 1 , (10)

so that at low redshift we have that d ≈ z is approximately independent of Ωi, which is the

Hubble law. This was indeed the reason for the need of high red-shift observations to obtain

evidence of dark energy, since only higher order terms in the Taylor expansion of DL(z) depend

on Ωi, and also the reason why Einstein considered the cosmological constant its biggest mistake,

since he did not know about the implications of the observation of higher redshift SNe.

Let’s consider now the case of the two models for which the function d is the same, da = db,

where we are denoting with subscripts a, b the values of the parameters for the two models. As

explained above, at low redshit this should always be a good approximation, or it could be just

an assumption, as for some of the fits we perform, with Ωm fixed.

When the assumption that da = db is justified according to the above arguments we get

ga = gb = Ma − 5 log10Ha = Mb − 5 log10Hb , (11)

from which we finally obtain the following useful relations

Da
L = Db

L

Ha

Hb

, (12)

µa = µb + 5 log10

(
Hb

Ha

)
, (13)

Ma = Mb + 5 log10

(
Ha

Hb

)
, (14)

where the subscripts a and b correspond to different values of the parameters, i.e. {Da
L, Ha,Ma}

and {Db
L, Hb,Mb}. These formulae are related to the well known degeneracy [32] between H0

and M . Note that a similar relation for M was derived in [27], but claimed to be valid only for

ΛCDM models, while our derivation is completely model independent, and as explained above,

we also observe that it is is valid only if ga = gb, which at high redshift cannot be assumed

unless the Ωi are fixed for different models. In any case even at high redshift the parameters

Ωi should not be too different among different models, so it can be considered approximately

valid also at high redshift.

For the Pantheon dataset we have taken as reference the set of parameters {H0 = 73.24 ±

1.59,M = −19.25 ± 0.71} from [3], for Union 2.1 we use M = −19.32, and for Planck [2]
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H0 = 67.4 ± 0.5 . The values for the different parameters obtained using the formulae above

are given in the Tables III and II.

Dataset H0(kms−1Mpc−1) M

Riess 73.24± 1.59 −19.25± 0.71

Planck 67.4± 0.5 −19.4± 0.65

TABLE II: Values of the parameters used in the analysis of the Pantheon data, obtained using the

values in [3] as reference. The first row shows the values estimated by [3], and the second line the

value of H0 estimated by [2] and the corresponding value of M obtained from eq.(13). The underlined

values are the publicly available ones and the not underlined are the values inferred using eq.(13).

Dataset H0(kms−1Mpc−1) M

Union 2.1 70 −19.32

Riess 73.24± 1.59 −19.2± 0.11

Planck 67.4± 0.5 −19.4± 0.04

TABLE III: Values of the parameters used in the analysis of the Union 2.1 data, obtained using the

latter as reference. The underlined values are the publicly available ones and the not underlined are

the values inferred using eq.(13).

When fitting data with models with different values of H0 we changed the data according to

the above equations. In the case of Pantheon the publicly available data gives m, from which

µ is obtained using the corresponding M , while for Union 2.1 the distance modulus µ is given,

which can be calibrated according to the above equations as well. For example, we can use the

Pantheon dataset and fit the data assuming a value of H0 equal to the Planck estimation, or use

the Union data, and assume a value of H0 equal to the one obtained in [3]. Note that this kind

of calibration is not always correctly performed in the literature, leading to a an implicit bias in

the data analysis. For example analyzing data allowing for a varying H0, without consistently

changing M is an inconsistent approach [18]. The above relations are based on the assumption

that da = db, so they can be applied to homogeneous models using the same parameters Ωi, or

to the homogeneous regions of a locally inhomogeneous models, as long as in the homogeneous

regions the condition da = db is satisfied, as in the case of a locally inhomogeneous model we
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consider. Inside the inhomogeneous region d can be different, even at low redshift and if the

parameters Ωi are the same, so a full fit of M could be required, but if most SNe are located

outside the inhomogeneity, the formulae above should still give a good approximation.

It should be noted that the Pantheon dataset has been updated to correct an error in the

calculation of the redshift correction [33, 34], which was applied to objects far beyond the depth

of the galaxy catalogue used to obtain the peculiar velocities, and we use the second corrected

version.

Appendix C: Derivation of the formula for δ(z)

In the case of a step density contrast profile of the type given in eq.(6), using the low redshift

approximation χ ≈ z/(aH0) = z(1 + z)/H0, the volume average of the density contrast outside

the inhomogeneity at a comoving distance χ(z), can be computed as

δ(χ) =
3

4πχ3

∫ χ

0

4πχ′2δ(χ′)dχ′ =
H3

0

[z(1 + z)]3
δvχ

3
v = δv

[
zv(1 + zv)

z(1 + z)

]3

. (1)

At low redshift, which is the regime of validity of the approximation, the factor (1 + zv)/(1 + z)

can be safely neglected as shown in fig.(1).

Appendix D: Results of the fits of m using the covariance matrix

The results of the fit of the apparent magnitude using the covariance matrix to compute the

χ2 are given in the table below, showing that the results are approximately the same as the

ones obtained ignoring the covariance, not affecting significantly the final conclusions.

zsup = 0.11 zsup = 0.5 zsup = 1.5

δv zv χ2 δv zv χ2 χ2

mInh(HP
0 ) −0.142± 0.043 0.056± 0.0002 222.724 −0.173± 0.040 0.056± 0.0004 860.382 1031.940

mHom(HP
0 ) - - 233.139 - - 878.889 1058.510

mHom(HR
0 ) - - 227.943 - - 857.919 1027.149

TABLE IV: Results of the fit of the Pantheon data including the covariance matrix for m.
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Appendix E: Fits of Pantheon data without peculiar velocity redshift correction

A peculiar velocity redshift correction is applied to the Pantheon data, consisting in sub-

tracting the peculiar velocities inferred from the 2M++ galaxy catalog, while the Union 2.1

is not redshift corrected. In order to determine if this could be the cause of the difference in

the results obtained for the two datasets, we remove the redshift correction using the publicly

available data of the peculiar velocity [35].

The table below shows that the results for non redshift corrected data are approximately

the same as those for redshift corrected data, excluding that redshift correction could be the

cause of the above mentioned data fit results difference.

zsup = 0.11 zsup = 0.5 zsup = 1.5

δv zv χ2 δv zv χ2 χ2

mInh(HP
0 ) −0.156± 0.026 0.056± 1.5× 10−4 223.968 −0.159± 0.026 0.056± 8.22× 10−4 867.421 1036.039

mHom(HP
0 ) - - 260.025 - - 905.185 1073.810

mHom(HR
0 ) - - 236.855 - - 869.541 1040.891

TABLE V: Results of the analysis of the Pantheon data for non redshift corrected data.

Appendix F: Results of fits varying Ωm

We report below the results of the fit of the apparent magnitude varying also the parameter

Ωm.
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FIG. 12: Contour plot of Ωm and δv for the Pantheon dataset, corresponding to the model mInh(HP
0 ),

with zsup = 0.11.

Ωm δv zv χ2

mInh(HP
0 ) 0.123± 0.119 -0.182±0.033 0.065±0.001 222.694

mHom(HP
0 ) 0.123 - - 276.195

mHom(HR
0 ) 1.45× 10−5 ± 0.944 - - 247.288

TABLE VI: Results of the fit of the apparent magnitude of the Pantheon dataset with zsup = 0.11,

without fixing the parameter Ωm.

Comparing with Table I we can conclude that including Ωm in the set of fitted parameters

does not affect substantially the main results obtained fixing it, it just gives some slightly

different estimation of the parameters of the inhomogeneity. Note that low redshift data is

expected not to constrain strongly ΩM , as we have obtained, since the main evidence of dark

energy, and the consequent effect on the value of Ωm = 1− ΩΛ, comes from high redshift SNe.
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