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1. Introdﬁction

The nuclear matter is an useful subject to study strongly interacting many-body sys-
tem in the quantum hadrodymamics. In the last five years, twa loop and ring-correlation
corrections have been calculated in terms of the renormalizable ¢ — w model. Compu-
tational results!)~%) showed that the one loop diagram was not the leading term in the
loop expansion since these two corrections contributed much to the energy density, both
in a vacuum fluctuation part and in a finite density part, respectively. Furthermore, the
vacuum polarization in w-meson propagator generated ghost poles in the high momen-
tum transfer region( > a few GeV) and this instability was present at all densities. This
means that the mean field is inevitably unstable®).

The enormously large loop corrections in a vacuum part were reduced to moderate
ones by introducing form factors at all vertices in the loop diagram5)'6), and the ghost
poles were removed by vertex corrections to vacuum polarization”. Though the inserted
form factors were ad hoc ones and vertex corrections were restricted to the on-shell vertex,
these procedures for reducing short-distance contributions are qualitatively acceptable
at present to consider the subnucleon structure. Anyway, it is an important prospect
that contributions from vacuum polarization loops and from vertex modifications will

cancel out each other in the high momentum transfer region.

To a density part of nuclear matter, as well as to finite nuclei®), we applied the
Schwinger-Dyson equations with bare vertex approximation{the BNSD method)®) and
showd that medium effects on meson played an important role in the saturation prop-
erty of nuclear matter'®*)). In the BNSD approximation we do not consider vacuum
corrections from the above discussed prospect. Large meson self-energies in meson prop-
agators brought about attractive contributions in the SD terms, an abbreviation for the
quantum corrections fluctuating around the mean field, in enetgy density and self-energy
of nucleon. On the other hand, the strong ¢ — w mixing through the polarization process
gave repulsive contributions to the SD terms. The saturation property was explained
by the drastic cancelation between the o-meson and the w -meson contributions both in
the classical mean field and in the SD quantum field. In the quantum field the ¢ — w
mixing made this cancellation more drastic, and the quantum corrections were small in
comparison with the mean field contribution. In the saturated state of nuclear matter,
medium effects on meson made coupling parameters small and as a result an unstable
region, which appeared at low density and has been interpreted as a liquid-vapor phase
transition, was shifted above the normal density. There were shown some recipes to

remove this instability.

In this paper we evaluate an optical potential for nucleon traveling in the neighbor-
hood of the Fermi surface, according to the BNSD method and making use of results of
nuclear matter. This is the first step to apply the Schwinger-Dyson equation to scat-
tering problem. In particular, we note an imaginary potential since this potential is
drawn out only from the SD quantum term of nucleon self-energy. Then, the imaginary
potential is sensitive to the SD terms. We clarify contributions of each meson and the
mixing of meson both in the real potential and in the imaginary potential. To make sure
that the BNSD method is valid even in phenomena explained well by non-relativistic

calculations!?), we compare our results with the same empirical information!®19).

The outline of the paper is as follows. In sect.2, we derive optical potential and
explain our approximations adopted there. In sect.3 we show a calculation on nuclear
matter removing the instability under a new recipe. In sect.4, we show calculation results

and discussions, and sect.5 is devoted to remarks and summary.

2. Derivation of optical potential

We adopt the Walecka model'® which consists of three fields, the nucleon ¥, the

scalar o-meson ¢ and the vector w -meson V,,. The lagrangian density is given by

L= Py + M) = (8,90, + mlg")

1 1 - -
_(ZF[HIFMV + §m3VuVy) + ;Y9 + 19u¢7u¢vu) (1)

where F,, = 8,V, — 8,V, and M, m,, m,, g, and g, are nucleon mass, o-meson mass,

w-meson mass, o-nucleon and w-nucleon coupling-constants respectively.

The nuclear Schwinger-Dyson equations are shown diagrammatically in Fig.1. The
doubly wavy lines show propagators of mesons carrying a non- vanishing momentum,
while mesons with zero four-momentum are condensed into the ground state and con-
tribute to mean field energies of the ground state, and appear as the Hartree fields in
the Dyson equation of nucleon propagator. In the BNSD approximation vertex functions
are same with the bare vertex in the lagrangian Eq.(1), i.e., [y = 1 for o-meson and

Ty = v, for w-meson.




The nucleon propagator G(k) has a standard form D{q) = ReD(q) +iImD(q)

G(k) = Gr(k) + G () ¢+ m+ Relly(g) ImIL (g)

= (T T R @) & U@ (¥ M+ Rell(g))? + UmiL(a))?

(7

) , where II,(q) denotes the meson self-energy. The self-energy of nucleon propagating nearly

= T T M —ie + (—tiypky + M;)gé(ks — E})0(kp — |KI), (2) above the Fermi surface consists of three terms, the Hartree term T g, the SD density
ivukl + Mj — € E;

term Sgpp and the SD Feynman term YSDF,

S(k) = Sg(k) + Espr(k) + Sspn(k)
Ef =k + M, (3)
2 4 4
—ir( 9 g 2 [ 49 -
—ir(2) [ gotr(6t@) +isk [ GCrtk— 9Pl
M} = M+ Z,(k), 4)
d'q
ig? | —Gplk—q)D
sigh [ GaGolk = 0Dla) ®
ks = (k(l 4 5y(k)), ks + E4(k))) — (k(l + To(k)), i(ko + Eg(k))), (5) where 7 denotes the degeneracy, v=2 for nuclear matter and T=1 for neutron matter.
The Hartree term Zg(k) is real and is evaluated by using only the density part of
propagator Gp(k — ¢) in the BNSD approximation. The SD density term Lspp(k) is
where the self-energy insertion is assumed as follows finite and has a real part and a imaginary part corresponding with the real part and the
imaginary part of meson propagator D(q) respectively. The SD Feynman texm Lspr(k)
has a infinite real part and a finite imaginary part. To separate the real part and the
T(k) = Bo(k) + i7aSa(k) + % - kS (k) imaginary part, we execute a Wick rotation gp — igo in the go integral in Lsprik)
100
Sspr(k) = ¢ d—sq—i/d Gr(k - )D(q)
SDF\R) = Ys (2”)3 o7 QoL F q)U\q
= 5,(k) — wTolk) + i - KiZ(k). ©) o
. soogr . . 3 . . . 4 . i
To explain derivation of imaginary part of self_ energy under our approximations, we -—1g3 / G ‘;4 (—ivulk — q); + M;_q) 7 5((k — g — Ez_q)o(ko _ Ek_q)ReD(q)
consider only the o-meson in the following discussion. The o-meson propagator is given 4 k—q

by SD equation



wig? [ b=k = )+ M D Sl(k =)= EL_Jolka — B )itmD() (9

The first term is real and infinite. The second term is also real but finite. We, however, do
not pick up this term since these two real terms are derived by considering the Feynman
part of propagator Gp(k — ¢) and the real part of Zgpr(k) should be originally infinite
without a procedure of renomalization. The third texm is purely imaginary and finite.
Adding contribitions from g (k) and Zgpp(k), the real and the imaginary parts of
self-energy are given by

2 4
ReX(k) = zr—% (;%tr(GD(q))

4 Tt
+z'gf/(:7:;4(—iw(k—q)2+Mi_q)——EI §((k—q)o—Ei_p)8(kr—|k — ql)ReD(g) (10)
c—~q

- d4q . * *® 7ri * ¥
ImS(k) = ig? / sl — 0+ ME) 0k~ )~ Fi)

x[—0(ko — Ei_g) + 0(kr — |k — q|)]iImD(q) (11)

In Fig.2 we show Feynman diagrams taken into account in our calculation of nucleon
self-energy Z(k).
Fig?

For calculations of real self-energy we take a hole state on shell as an intermediate state
of nucleon. On the other hand, in the derivation of imaginary part of self-cnergy a
particle state on shell is needed as an intermediate state . This is a reasonable result
because the imaginary self- energy in a scattering state means a real 2p-1h process
that the nucleon traveling above the Fermi surface loses its energy partialy to cause a
particle-hole excitation through the decay of meson.

We also derive w-meson contribution in the imaginary self-energy in the same proce-
dure explained above. By taking an important role of the o — w mixing into account!?),
we use a 5x5 unified expression Dg(g) for the o- and the w-meson propagators and we
provide a general expression for meson self-energy II;;(¢) to calculate the nucleon sell-
energy. The insertion [I,;(q) and the meson propagator D,;(g) in the general expression
are given in Ref.10).

Under the same approximations with those assumed in derivation of Eqs.(10) and

(11), the self-energy of a nucleon propagating above the Fermi surface are given by

ReX, (k) = -%mzpﬂu / Eq dq/dzReD,(R

92 i Mq k thl
i o/ g / da(4ReDI(R) + (3 + 2)(ReDA(R) - ReDi(R)

-1

kr 1
+ 2/ 2dq/d:z:ReDm(R) (13q)
0
1
ImE (k) = i 2/ Eq dq/dmImD,(R)

-1

k
_89_32/ qdq/dm{Ule(R)+(3+ ~°)(Ith( )~ ImDi(R))}

kr

RZ

9sJv deImDm(R) =,

4r?

g*dq

\.a-

(13b)
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(14b)

(15a)

9 Fid |
ImZ, (k) = —81r2k/ B dq/d:z: zImD,(R)
kF -1
2 k : * Rz
gs q"kz
- /qqu/dz 5 (@AmD((R) + (2 - ) (ImD(R) = ImDR)}, (159
kr -1

where R = k — g, and p, and pp denote the scalar and the baryon densities respectively.
We can have ImE(k) of a hole under the Fermi surface when the upper limit k is
smaller then the Fermi momentum kp in Egs.(13)~(15). We note that we obtain the
lowest order contribution 12),15),16) in the imaginary part of nucleon self-energy when we

rewrite imaginary parts of meson propagators in Egs.(13b),(14b) and (15b) as follows

ImD, = (D°)*Imll, , ImD;=(D})*Imll,,

ImD; = (D22 ImIl; , ImDpm=—D{DyImilm, (16)

where D%(g) and DY%(g) denote the non-interacting propagators of o- and w-mesons
respectively. The subscripts s,1,t and m of D(q) and TI(g) in Eq.(13a)~Eq.(16) denote
the component of g-meson, the longitudinal and the transverse components of w-meson

and the component of mixture of o- and w-mesons respectively.

Optical potentials in the relativistic form are defined from self- energies ¥ as

(£, — ME,) .

Ug= 2 -—= =10, Usy, 17

s DS sr+iUst (17)
_ (—20 + EE,,) _ .

Uy = T Ty Uvr+iUvi, (18)

where E is the energy of objective nucleon propagating through nuclear matter and

relates with the momentum k in the following dispersion relation



E =+/K* + (M + Us)? + Uy, (19)

This equation is rewitten as

2 _ 2
X o viwep-ms M)

2M 2M (20)

with Schradinger equivalent potential form

E — M)? 1
& ) et~ (U2 + Ul — Uk~ Ug), (21)

V= —_—
Usg +Uyvr+ M M

(B - M)

2
1
W = Usi + Uyr+————Uvr+ M(USRUSI— UvrUvi). (22)

3. Saturation and instability of nuclear matter

In calculations of nucleon and meson self-energies we use coupling parameters, g,
and g,, obtained in the study of nuclear matter on basis of the BNSD approximation.
These parameters are determined to get the minimum energy at the normal density
and simultaneously to remove an instability which comes from ¢-meson poles caused by
nuclear medium. There have been shown some recipes to remove this instability. Bedau
and Beck!) removed this by inserting an ad hoc Migdal parameter into the ¢-meson self-
energy. We also made efforts for the removal of instability. The first attempt!®) was very
easy, i.e., to add a small positive constant in the denominator of o-meson propagator.
We expected that the meson self-energy was calculated under many approximations and
so the instabilily might diminish spontaneously by using the exact self-energy. The
second attempt!?) was to change the o-meson mass as a parameter as well as coupling
parameters to get the saturation energy. The small o-meson mass obtained there, 300
MeV ~ 350 MeV, seemed to be the result affected by neglecting vacuum effects and
vertex corrections.

In this paper we consider effects of vacuum polarization in meson self-energy?) to
remove the instability. This seems to be inconsistent with the BNSD approximation.
However, as long as we choice only a hole state as an intermediate state in the integral in
the nucleon self-cnergy £(k), the vacuum polarization is restricted to the one with low
four-momentum transfer. Vertex modifications or form factors are needed to reduce the
vacuum polarization with large four-momentum transfer. In Fig.3 we show an example
of the meson self-energy II(g) as a function of transferd energy go by fixing a transferd
momentum ¢=100 MeV. In this example the II(g) for g0 < 25 MeV is available in the
calculation of (k) under our approximation and in this available region effects of vacuum
polarization are very small except for the effect in o-meson self-energy, which gives a
nearly constant increase. As shown in Fig.3(b), effects of all vacuum polarizations in the
available region are extremely small compared with ones in the GeV region.
ig.

Instability modes at zero energy transfer are obtained from the zeros of the longitudinal

=
w

diclectric function, i.e.,

e(go=0,9) = (¢ + M7 + IL())(¢* + M] + L(9)) + {Tlm(9)}’ (23)

We have never instability modes when the above dielectric function is positive for all
momenta q. The vacuum polarization of o-meson play an important role to have the

dielectric function keep positive by reducing the o-meson self-energy.

The saturation property of binding energy and the dielectric function are shown
in Fig.4 and in Fig.5, respectively.In Fig.5 for reference,we add a result excluding the
vacuum polarization of meson.

Fig4 , Figh

Obtained coupling parameters are summarized in Table together with ones'”) ob-
tained by the Hartree-Fock approximation. The energy density per nucleon is divided
into the nucleon energy eg, the condensed energy ¢¢ and the SD energy ¢sp, and they
are also shown in Table. We note that the coupling parameters obtained in the two
methods are very similar. However,the ratio of the SD contribution to binding energy is
about 5% of the Hartree contribution and firms our conclusion in the previous paper'!).
Also, the nearly constant and positive vacuum correction corresponds effectively with
the small o-meson mass and the small coupling-constant obtained without vacuum po-
larization on meson in Ref.11), and however we can not compare them quantatively since

the coupling parameters searched in each model are very diflerent.

—11—



Table

4. Calculation results and discussions

In this section we calculate the self-energy of nucleon propagating nealy above the
Fermi surface with its energy E and obtain the optical potential in the Schrédinger
equivalent form. We note some comments on procedure of calculation before we show
results and discuss them. The momentum k of nucleon with the energy E is determined
by the following relation

B = /K21 + ReDy(B, B)? + (M + ReD,(E, b)) — ReSo(E, &), (24)

which is the same as the real part of Eq.(19).Only in calculations of meson self-energies
we adopt the averaged self-energy of nucleon. This means that we need calculate all
ReS(E'K') for Ep < E' < E'and kp < k' < k. After all we have to solve iteratively
the dispersion relation similar to Eq.(24) from the Fermi momentum to the momentum

of the objective nucleon.

We start with the real part of meson self-energy. The real part ReZ as a function of
E—M is shown in Fig.6 in comparison with the one by the Hartree-Fock(HF) calculation.
The energy dependence of ReL is produced by the SD term in the BNSD method and
by the Fock term in the HF method respectively since the Hartree term has not an
energy-dependence both in two methods. Though the Schrédinger equivalence potential
is almost same in the two methods because it is given roughly by a difference ReX,—Re%o
as shown in Eq.(21), the effective mass of nucleon, M + ReX,, in the BNSD method
shows a rapid increase in the energy region Er — M < E— M < —Er + M, while the
nucleon mass in the HF method shows a slowly varying energy- dependence.

Figs
In Fig.7, to analyse the energy-dependence we show contributions of o-meson, w-meson
and ¢ — w mixture in the SD terms in ReX, and in Re%q respectively. Values of ReZy
are negligiblely small in comparison with 1 and are not shown in this figure. Signs of
contributions of each meson and o — w mixture are easy undrstood with reference to
the expressions of SD terms in Eqs.(13a), (14a) and (15a) and to the energy-dependence
of propagators, D,(R), Di(R), D:(R) and Dm(R) shown in Fig.8. The contributions of
o-meson and o — w mixture cancel each other both in ReX, and in ReZg, and so the

w-meson contribution is very important in the energy-dependence of ReX. We note that
the term with a difference ReD;(R) — ReDj(R) in the integral in ReXl is the main part of
w-meson contribution. This difference of the transverse and the longitudinal components
of w-meson propagator never appears in the Fock term in the HF method since the two
components of free w-meson propagator are same, DY(R) = DY(R).

Fig7 , Fig8

Next, we discuss the imaginary part of self-energy. We note that this imaginary
part is drawn out only from the SD term in the BNSD method. Calculation results
are shown in Fig.9 together with results in the HF method where an imaginary part
is obtained from a sum of ring diagram calculated by using a nucleon propagator in
the HF approximation. A difference between ImXg and ImZE, in the BNSD method
is neary equal with one in the HF method as well as the difference Re¥y — ReZs,
though the difference is slightly larger in the HF method than in the BNSD method.
An absolute value of ImE, however, shows a large difference between the two methods.
In Fig.10 we show contributions of each meson in JmX. A contribution of w-meson is
prominently large compared with other contributions and a main part of contribution
generates from a term with ImD,(R) — ImD(R) in the integral in /mY as well as in
ReY. This w-meson dominant result in the neighborhood of the Fermi surface agrees with
the discussion!?) stated in the non-relativistic HF approximation. Other contributions
gave little decrease(increase) to ImXig and little increase(decrease) to ImZ; for a particle
state(a hole state), and as a result reduces the difference between ImEg and ImZ,.

Figd , Figi0

Lastly, we calculate Sherddinger equivalent potentials from the above obtained nu-
cleon self-energies and compare them with the empirical information on a particle state!®
and a hole state!®) in fig.11. Our results are not a fairly well agreement with the data
but are not far from the data both in the real part and in the imaginary part. In par-
ticular the real part of potential shows a good result. On the other hand the imaginary
part of potential is slightly smaller than the data. The dashed line in the figure shows
the contribution of one-bubble (lowest order) diagram. We note that the higher order

corrections have a tendency to reduce imaginary potential.

Fig.1
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5. Remarks and summary

We can remove the instability in the vicinity of the normal density by introducing
the vacuum polarization of o-meson at low momentum transfer. Though this vacuum
polarization shows an important role for removal of liquid-vapor instability, this polar-
ization gives a little contribution to energy density. The vacuum polarization shows a
positive and nearly constant value under our approximation and so seems to consistent
with the small o-meson mass without the vacuum polarization of meson. It is still difi-
cult to remove the above instability in the low density and this suggests that a surface

of nucleus can not be approximated as a low density limit of nuclear matter.

In the calculation of optical potential the objective nucleon enters into nuclear
medium with low incident energy and interacts strongly with nucleons in nuclear matter,
and so in this paper we assume that the incident nucleon occupies a particle state formed
already in nuclear matter. The higher an incident energy is, the more different the dis-
persion relation of incident nucleon is with the one of constituent nucleon of nuclear

matter.

The w-meson contribution to the quantum part of nucleon self-energy is prominently
large in comparison with other contributions. In ReXL the other contributions cancel out
each other, and in ImX the o-meson contribution is very small and the contribution of
o —w mixing reduces the differnce between ImE; and ImX,. This w-meson dominance is
generated from the term having the difference of two components of w-meson propagator
in the integral in nucleon self-energy. We note that the difference of two components
vanishes without nuclear medium effect on w-meson. The w-meson dominance has the
effective mass of nucleon increase rapidly in the incident energy region |E — M| <
—B.E.(=15.TMeV).

This w-meson dominance in the nucleon self-energy does not leave marks in the en-
ergy density per nucleon.We note that the relative values and signs of differences, ReZ.g
-ReX?, ReTy -ReX?, and ReZ{ ™ -ReL{™" correspond to €5p g,€5pw and €sp um re-
spectively.

The imaginary optical potential was reduced by adding ring diagrams in higher order,
and is slightly smaller than the recent experimentally extracted data?®). There are other
processes to cause a imaginary potential, and as an example we have a process by which
a particle state decays into 3p-2h states. This process is evaluated by introducing the
lowest vertex correction in the nuclear Schwinger-Dyson formalism.

—14—

The difference of £g and ¥, is nearly same in the BNSD method and the HF method,
but the sum of them is different between the two methods i.e., in the energy-dependence
near the Fermi surface in the real part and in the absolute value in the imaginary
part. A spin-orbit potential is related to the sum of ¥y and £;. Then, we want to
evaluate the spin-orbit potential in the two methods. However, the spin-orbit potential
includes a radial differentiation. Unfortunately, we can not use results of nuclear matter
to obtain the spin-orbit potential in the space expression by adopting the local density
approximation since the BNSD method dose not assure stability of nuclear matter at
low density.
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Table and Figure captions

Table Couplings searched in the BNSD method and in the HF method, and internal
terms in energy density per nucleon (¢ = E /pp, in MeV) at the normal
density (kp=1.42 fm™! ).

Fig.1 Diagrammatic representation of nuclear Schwinger-Dyson equations. Double solid
(wavy) lines represent exact nucleon(meson) propagators, while single solid(wavy)
lines represent free ones. ', denotes a vertex function.

Fig.2 Feynman diagrams taken into account in the calculation of nucleon self-energy,
(a) diagrams for real self-energy and (b) diagram for imaginary self-energy.
Upward and Downward lines denote particle and hole states respectively.

Fig.3 Meson self-energies as a function of transferd energy go by fixing a transferd
momentum ¢=100 MeV, (a) and (b) for real parts and (c) for imaginary parts.
In figs.(a) and (b) solid(dotted) lines denote self-energies including(excluding)
meson polarization.

Fig.4 Saturation curve in binding energy.

Fig.5 Dielectric function at zero energy transfer as a function of momentum g¢.

The dotted line denotes the result without the vacuum polarization.

Fig.6 Real part of nucleon self-energies calculated by the BNSD method (solid lines)
and by the HF method(dotted lines).

Fig.7 Contributions of -meson, w-meson and ¢ — w mixing in real part of
nucleon self-energy.

Fig.8 Meson propagators as a function of transfer energy Ro by fixing a transferd
momentum R=100 MeV, (a) for real parts and (b) for imaginary parts.

Fig.9 Imaginary part of nucleon self-energies calculated by the BNSD method(solid lines)
and by the HF method(dotted lines).

Fig.10 Coniributions of g-meson, w-meson and o — w mixing in imaginary part of

nucleon self-energy.



Fig.11 Energy-dependence of Schrédinger equivalent potential (a) in a real part
and (b) in a imaginary part in comparison with the empirical information'®)
In Fig.11(b) the dotted line denotes the result contributed only

from the one-bubble diagram.
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