EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Status Report to the ISOLDE and Neutron Time-of-Flight Committee (Following HIE-ISOLDE Letter of Intent I-CERN-INTC-2010-032, INTC-I-100 and the endorsed proposals CERN-INTC-2011-002, INTC-P-290 and CERN-INTC-2012-051 / INTC-P-352)

Status Report on IS556 Spectroscopy of low-lying single-particle states in ⁸¹Zn populated in the ⁸⁰Zn(d,p) reaction

8 January 2020

R. Orlandi¹, R.Raabe², T.Kroell³, P. Van Duppen², H. de Witte², O. Poleshchuk², A. Arokia Raj², A. Mentana², A.Youssef², S. Fracassetti², M. Renaud², L. Mouftahou², H. Makii¹, K. Nishio¹, K. Hirose¹, M. von Schmid³, R. Gernehäuser⁴, D. Mücher⁵, J. Konki⁶, T. Stora⁶, F.K. Wenander⁶, A. Blazhev⁷, P. Reiter⁷, N. Warr⁷, S.D. Pain⁸, A. Jungclaus⁹, M.J.G. Borge⁹, K. Wimmer⁹, E. Nacher⁹, O. Tengblad⁹, R. Chapman¹⁰, J.F.Smith¹⁰, K. Spohr¹⁰, J. J. Valiente-Dobon¹¹, A. Gottardo¹¹, G. de Angelis¹¹, D. Napoli¹¹, D. Mengoni¹², S. M. Lenzi¹², S. Lunardi¹², H.O.U. Fynbo¹³, J. Johansen¹³, L. Gaffney¹⁴, P. Butler¹⁴, G. O'Neill¹⁴, B.S.Nara Singh¹⁴, J.T.Smallcombe¹⁴, F. Flavigny¹⁵, T. Roger¹⁶, E. Sahin¹⁷, R. Grzywacz¹⁸, S.J. Freeman¹⁹, L.M. Fraile²⁰, B.P.Kay²¹, S. Padgett²², E. Rapisarda²³, T. Grahn²⁴, P. T. Greenlees²⁴, A. Illana²⁴, J. Pakarinen²⁴, P. Rahkila²⁴, A.N.Andreyev²⁵, D.G. Jenkins²⁵

- ¹ Advanced Science Research Center, Japan Atomic Energy Agency, Japan
- ² IKS, Catholic University of Leuven, Belgium
- ³ T.U. Darmstadt, Germany
- ⁴ T.U. Munich, Germany
- ⁵ University of Guelph, Canada
- ⁶ CERN, Geneva, Switzerland
- ⁷ University of Cologne, Germany
- ⁸ Oak Ridge National Laboratory, TN USA
- ⁹ IEM, CSIC, Madrid Spain
- ¹⁰ University of the West of Scotland, Paisley, U.K.
- ¹¹ Legnaro National Laboratories, Italy
- ¹² University of Padua, Italy
- ¹³ University of Aahrus, Denmark
- ¹⁴ University of Liverpool, U.K.
- ¹⁵ IPN Orsay, France
- ¹⁶ GANIL, Caen, France
- ¹⁷ University of Oslo, Norway
- ¹⁸ UTK, Knoxville, TN USA
- ¹⁹ University of Manchester, U.K.
- ²⁰ Universidad Complutense, Madrid, Spain
- ²¹ Argonne National Laboratory, IL USA
- ²² Lawrence Livermore National Laboratory, CA USA
- ²³ PSI, Switzerland
- ²⁴ University of Jyvaskyla and Helsinki IoP, Finland
- ²⁵ University of York, U.K.

Spokesperson(s): Riccardo Orlandi, Riccardo Raabe (orlandi.riccardo@jaea.go.jp, riccardo.raabe@kuleuven.be)

Local contact: Joonas Konki (Joonas.Konki@cern.ch)

Abstract

Despite important progress in the study of the ⁷⁸Ni region, including the measurement of the first excited 2⁺ state in ⁷⁸Ni, the energies of single-particle orbits near Z=28 and N=50 are still largely unknown. We have proposed to study neutron single-particle states in ⁸¹Zn populated via the ⁸⁰Zn(d,p)⁸¹Zn reaction in inverse kinematics, using a laser-ionized, 5.5 MeV/u HIE-Isolde ⁸⁰Zn beam impinging on a deuterated-polyethylene target. In this report, we would like to reinstate the importance of this measurement, which can only be carried out at Isolde. This experiment will constitute the first spectroscopic study of low-lying neutron states in ⁸¹Zn. Their observation will elucidate the energy and ordering of neutron single-particle orbits above the N=50 gap, and the properties of neutron-rich nuclei in the ⁷⁸Ni region. The experiment was approved by INTC but has not yet been scheduled.

Requested shifts: 36 shifts, (split into 1 run over 1 year) **Beamline:** MINIBALL + T-REX

Introduction

Experiment IS556 (proposals INTC-P-290 and INTC-P-352) was approved by the INTC but has not yet been performed. The physics case is linked to the study of neutron single-particle energies above the N=50 shell gap above doubly magic ⁷⁸Ni, and we believe that it is still valid and timely. Recent experiments on the one hand confirmed the magicity of ⁷⁸Ni [Taniuchi], but also highlighted the complexity of the region, where low-lying deformed configurations seem to coexist with spherical states [Taniuchi, Yang, Gottardo, Nowacki]. Due to the difficulty of producing ⁷⁸Ni, however, the energies of the neutron orbits above N=50 are still unknown, and different theoretical models show significant discrepancies. We proposed to determine the effective single-particle energies of neutron orbits above the N=50 gap by carrying out the single-neutron transfer reaction ⁸⁰Zn(d,p)⁸¹Zn, i.e. two protons above ⁷⁸Ni, since the ⁷⁸Ni(d,p)⁷⁹Ni reaction is still unfeasible at any facility.

Isolde is the only laboratory in the world where such measurement can be carried out, and we would like to retain the approved shifts. The reason why this experiment has not yet been performed was the expected increase in intensity of the ⁸⁰Zn beam which could be achieved by using a new type of neutron converter, and the recent test of the new converter suggests that it is indeed the case. This report will briefly review the physics case and comment on the status of the beam development.

Physics Case and recent related measurements

In recent years, a vast amount of experimental evidence revealed that the shell structure of nucleon orbits can undergo large modifications away from the line of β stability, sometimes leading to the erosion of familiar magic numbers. The monopole central force and the monopole component of the tensor interaction have been proposed as the main agents inducing this evolution of nuclear structure [Otsuka2005, Otsuka2010]. Furthermore, the lowering of intruder configurations due to shell evolution was linked to the phenomenon of shape coexistence [Tsunoda].

Neutron-rich doubly magic nuclei and nuclei in their vicinity can be used to benchmark different models as well as provide key inputs for theoretical predictions, and in particular for shell model calculations. Reliable theoretical calculations for nuclei far from stability are also paramount to the study of stellar nucleosynthesis, and particularly the rapid neutron capture process [Mumpower, Surman]. In this context, the study of the properties of doubly magic ⁷⁸Ni, at the crossing of the Z=28 and N=50 shell gaps, and its neighbors, constitutes one of the main aims of both existing and planned large scale facilities worldwide.

In recent years, the first experimental γ -ray spectroscopy of ⁷⁸Ni [Taniuchi] and its nearest neighbor ⁷⁹Cu (Z=29) [Olivier] were successfully carried out at RIBF, RIKEN, using one- and two-proton knock-out reactions. The ⁷⁸Ni experiment confirmed the magicity of ⁷⁸Ni but also revealed the presence of a second excited 2⁺ state that conforms with the notion of a coexisting low-lying deformed configuration. The ⁷⁹Cu experiment provides some indication on the energy of the f_{5/2} and p_{3/2} proton orbits above the Z=28 gap, but no spectroscopic factors were measured. At the same facility, the first γ -ray spectroscopy of ^{81,82,83,84}Zn was also carried out [Shand]; due to the proton knock-out reaction mechanism, however, these experiments informed only on the role of proton orbits on low-lying excitations of these nuclei. In ⁸¹Zn, produced from the ⁸²Ga(p,2p) reaction, two γ -ray transitions were observed with energies 938(13) and 1235(17) keV, and tentatively assigned to two different excited states with a ($\pi f_{5/2}$)²(2⁺) + $\nu d_{5/2}$ configuration. In our experiment, we intend to advance significantly the knowledge of neutron states in ⁸¹Zn since ISOLDE offers the unique possibility of populating excited states in ⁸¹Zn using the low-energy single-nucleon transfer reaction ⁸⁰Zn(d,p)⁸¹Zn in inverse kinematics.

Some years ago, our collaboration successfully carried out at Isolde the first γ -ray spectroscopy of ⁷⁹Zn [Orlandi]. This experiment identified the lowest lying excited $5/2^+$ at 983(3) and the intruder $1/2^+$ state at 1100(150) keV. The latter was revealed to be a long-lived isomer, observed in a following experiment using laser spectroscopy ($t_{1/2} \ge 200$ ms). The large quadrupole deformation (β_2 =0.22) of the isomer, compared to the smaller deformation of the ground state (β_2 =0.14), was interpreted to be a manifestation of shape-coexistence [Yang]. To study ⁸¹Zn, we intend to employ the same experimental setup (T-REX + Miniball) which led to the successful spectroscopy of ⁷⁹Zn.

Using single-neutron transfer, we expect to directly populate primarily the $d_{5/2}$, $s_{1/2}$ and $d_{3/2}$ neutron orbits above the N=50 shell, as well as states where these configurations are coupled to excitations of the ⁸⁰Zn core, possibly leading also to the observation and placement in the level scheme of those transitions recently observed in RIKEN. As the ⁷⁹Zn experiment showed, negative parity states could also be indirectly populated. By coupling γ -ray and particle spectroscopy, we aim to measure not only γ -ray transitions but, by determining the amount of orbital angular momentum transfer, to discriminate between the population of *s* and *d* states, and measure relative spectroscopic factors.

The new neutron converter and ⁸⁰Zn beam

Our proposal was endorsed by the INTC committee, but the scheduling was delayed until a newly designed neutron-converter was tested. The simulations for the new converter in fact predicted a 5-fold increase of the ⁸⁰Zn released from the ISOL target. A new neutron converter geometry was developed and tested in November 2018. The offline development part has been published [Ramos20], while the analysis of the online results is currently ongoing. From the measurement of the Rb and Cs yields the converter behaved as expected, leading to approximately 5 times larger yields [Ramos]. The measurement of Zn, In and Ga yields, however, were affected by premature ageing of the target (the target container started to fail). The ageing issues are being addressed and another test is required with proton beam. If the issues are solved, the predicted yield increase of ⁸⁰Zn seems achievable.

If the new converter indeed provides the expected 5-fold increase, the expected yield for ⁸⁰Zn will be $\sim 1.5 \ 10^5 \ at/\mu Ci$ at the target, i.e. similar to that available in the ⁷⁸Zn(d,p) experiment. The beam

purity is not expected to improve using the new converter, with a significant amount of ⁸⁰Ga (50-70%) in the beam, more or less the same as with the old converter. The contribution of the ⁸⁰Ga can be removed alternating laser on/laser off ionization. Since our beam request was made assuming the 5-fold increase in yield from the new converter, we ask to retain all the approved shifts. Finally, even if the new converter geometry were not to provide the expected increase in yields, we still would like to run using a thick target and focusing mainly on γ -ray spectroscopy, using the identified protons as a gate, as already discussed in our proposal.

Summary of requested shifts:

In summary, we request to retain all approved 36 shifts.

References:

[Gottardo] A. Gottardo *et al.*, Phys. Rev. Lett. 116, 182501 (2016).
[Mumpower] M.R.Mumpower *et al.*, Prog. Part. Nucl. Phys. 86, 86-126 (2016).
[Nowacki] F. Nowacki *et al.*, Phys. Rev. Lett. 117, 272501 (2016).
[Orlandi] R. Orlandi *et al.*, Phys. Lett. B 740, 298 (2015).
[Olivier] L. Olivier *et al.*, Phys. Rev. Lett. 119, 192501 (2017).
[Otsuka05] T. Otsuka *et al.*, Phys. Rev. Lett. 95,232502 (2005).
[Otsuka10] T. Otsuka *et al.*, Phys. Rev. Lett. 104, 012501 (2010).
[Ramos] J. P. Ramos, Private Communication.
[Ramos20] J.P. Ramos *et al.*, Nuclear Inst. and Methods in Phys. Res. B 463, 357 (2020).
[Shand] C.M. Shand *et al.*, Phys. Lett. B 773, 492–497 (2017).
[Surman] R. Surman *et al.*, AIP Advances 4, 041008 (2014).
[Taniuchi] R. Taniuchi *et al.*, Phys. Rev. C 89, 031301(R) (2014).
[Yang] X. F. Yang et al., Phys. Rev. Lett. 116, 182502 (2016).

Appendix

DESCRIPTION OF THE PROPOSED EXPERIMENT

The experimental setup comprises: T-REX+Miniball (fixed installation)

Part of the Choose an item.	Availability	Design and manufacturing
MINIBALL + T-REX	Existing	To be used without any modification
[Part 1 of experiment/ equipment]	Existing	To be used without any modification
	New	 Standard equipment supplied by a manufacturer CERN/collaboration responsible for the design and/or manufacturing
[Part 2 experiment/ equipment]	Existing	To be used without any modification To be modified
	New	Standard equipment supplied by a manufacturer CERN/collaboration responsible for the design and/or manufacturing
[insert lines if needed]		

HAZARDS GENERATED BY THE EXPERIMENT

Hazards named in the document relevant for the fixed MINIBALL + T-REX installation. Additional hazards:

Hazards	[Part 1 of the experiment/equipment]	[Part 2 of the experiment/equipment]	[Part 3 of the experiment/equipment]		
Thermodynamic and fluid	Thermodynamic and fluidic				
Pressure	[pressure][Bar], [volume][l]				
Vacuum					
Temperature	[temperature] [K]				
Heat transfer					
Thermal properties of materials					
Cryogenic fluid	[fluid], [pressure][Bar], [volume][l]				
Electrical and electromagnetic					
Electricity	[voltage] [V], [current][A]				
Static electricity					
Magnetic field	[magnetic field] [T]				
Batteries					
Capacitors					
Ionizing radiation					
Target material	[material]				
Beam particle type (e, p, ions, etc)					
Beam intensity					
Beam energy					
Cooling liquids	[liquid]				

Gases	[gas]		
Calibration sources:			
Open source			
Sealed source	ISO standard]		
Activity Use of activated material:			
 Description Dose rate on contact 	[dose][mSV]		
 Dose rate on contact and in 10 cm distance 			
Activity			
Non-ionizing radiation	1		
Laser			
UV light			
Microwaves (300MHz-30 GHz)			
Radiofrequency (1-300MHz)			
Chemical			
Тохіс	[chemical agent], [quantity]		
Harmful	[chemical agent], [quantity]		
CMR (carcinogens, mutagens	[chemical agent], [quantity]		
and substances toxic to			
reproduction)			
Corrosive	[chemical agent], [quantity]		
Irritant	[chemical agent], [quantity]		
Flammable	[chemical agent], [quantity]		
Oxidizing	[chemical agent], [quantity]		
Explosiveness	[chemical agent], [quantity]		
Asphyxiant	[chemical agent], [quantity]		
Dangerous for the	[chemical agent], [quantity]		
environment		L	
Mechanical			
Physical impact or	[location]		
mechanical energy (moving			
parts)		<u> </u>	
Mechanical properties	[location]	1	
(Sharp, rough, slippery)			
Vibration	[location]		
Vehicles and Means of	[location]		
Transport Noise			
Frequency	[frequency],[Hz]		
Intensity	[inequency]][in2]		
Physical	<u> </u>		<u> </u>
	[location]		
Confined spaces	[location]		
High workplaces	[location]		
Access to high workplaces	[location]		
Obstructions in passageways	[location]		
Manual handling	[location]		
Poor ergonomics	[location]		

0.1 Hazard identification

3.2 Average electrical power requirements (excluding fixed ISOLDE-installation mentioned above): (make a rough estimate of the total power consumption of the additional equipment used in the experiment)

... kW