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Abstract

It is shown that the Berry phase § appears for any nonstationary state of a quantum
system. For time-independent H there may exist stationary state, for which g vanishes.
For time-dependent H there exists no exactly stationary state (even in adiabatic case)
and the Berry phase always appears. The Berry phase by exact calculation is different

from the adiabatic one.

PACS numbers: 03.65.B2

The concept of Berry adiabatic phase (1) has been a subject of considerable interest dur-
ing the last ten years in different areas of modern physics [2-6]. Simon (7] gave a geometric
interpretation of Berry phase. Aharonov and Anandan {8 generalized Berry's results by
giving up the assumption of adiabaticity. The key step in this work is their identification of
the integral of the expectation value of the Hamiltonian as the “dynamical” phase. For any
cyclic evolution of a quantum system once this dynamical phase is removed, the evolution of
the phase recovers to the Berry phase. Samuel and Bhandari [9] made a further generaliza-
tion that the evolution of the system need be neither unitary (norm conserving) nor cyclic.
However, it seems that most of these generalization are from mathematical points of view
with emphasis on the geometric aspect of Berry phase. In this letter, it will be shown that
both the Berry phase and “dynamical” phase observed in nature are of dynamical origin in
the final analysis, and the Berry phase is intimately connected with the nonstationarity of
a quantum state.

Firstly let us consider a quantum system with time-independent Hamiltonian, which
may be considered as a limiting case of adiabatic variation. In this case the energy of the
system is conserved and there may exist exactly stationary states. Let |¥m) be an eigenstate

of a complete set of observables including H,

HNV".) = Eml'pm), ('pml‘pn) = bmn. (1)
Assuming the initial state of the system [$(0)) = |¥n), it is easily to verify that
[()) = e B My} = e E R p(0)) (2

satisfies the Schrédinger dynamical equation

in 21w = A, (3)

and —Ent/h in (2) is usually called the dynamical phase. The general solution of the

Schradinger equation can be expressed as

WD) = T_ame = gm), (4)



where a,, is time-independent and determined by the initial state am = (Ym|¥(0)).

‘Now we consider the system with time-dependent Hamiltonian H(t), e.g- the Hamilto-
nian H(R(t)) involving some time-dependent parameters R(t). In this case the energy of
the system is not conserved and there ezists no exactly stationary state. However, we may

consider the instaneous eigenstate |¥m (R(t)))

HR()[¥m(R(2))) = En(RE)$a(RED),

(b (BRI = S ©)
Let us assume
19(0) = (RO, ©
it seems naive that the state of the system at time ¢ may be expressed as
[0(0) = e ¥ Jo WEREN |y (R(). ™

However, this is totally wrong, because the |$(t)) in (7) does not satisfy the Schrodinger

equation,

g = Hip)+ e HREBEDR T RO

# Hig(t) 8)

The reason is that in (7) only the time-dependence of the instaneous eigenenergy is consid-

ered. In general, the state of the system at time ¢t can be formally expressed as

() = 3 am()e ¥ o RNy (R(1)), )
where .
am(t) = (m(R()W(E))eR Jo #EEED (10)

is time-dependent. For the initial condition (6), am(0) = 6mn, but this does not imply
am(t) & 8mn, which holds only in the adiabatic approximation [1}. Even in the adiabatic

approximation, am(t) # Omn, because such a solution does not satisfy the Schrddinger

equation, as shown in (8). To satisly the Schrodinger dynamical equation, the correct

adiabatic solution (norm conserving) should be expressed as

19(E)) = an(e)e FJo € E-RENy, (R()), (1)
laa(®)l = 1.
Let _
anlt) = €70 (B, real), (12)

substituting (11) and (12) into the Schrédinger equation and integrating, we get

u) =i [ 2 (a0 | ] RN (13)

which is just the Berry adiabatic phase and may be transformed into an integral in the
parameter space [1]. Particularly, after a cycle t = 1, R(t) changes by moving along a
circuit C in parameter space returning to their original values R(r) = R(0), the Berry
phase acquired on such a cirenit f{r) ~ B(0) = B(C) is independent of deformations of C,
thus is often called a geometric or topological phase. However, it is clearly seen that the
appearance of Berry phase in (11) and (12) is the result of the requirement that the evolution
of & quantum system must follow the Schradinger dynamical equation.

In general, if the evolution with time of [¢(t)) does not satisfy the Schrodinger equation,

we may perform a (norm conserving) time-dependent phase transformation

v () = €7Os()) ' (14)
and require |i(t)) satisfying the Schrédinger equation, then we find

.2 _H(E)
A

1= [ & (60)]iz

#®), (15)

which is reminiscent of the Lewis phase for treating the time-dependent invariant (10].
Particularly, let |$(t)} be an instaneous cigenstate |¥n(R(t))), the second term on the
right-hand side of (15) turns out to be — J§ dt' Eo(R(t")}/A (“dynamical” phase) and the
first term becomes [j dt'(‘ﬁn(R(t'))li;‘—’pM,.(R(t'))) (Berry adiabatic phase).
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In tef. [8], Ahatonov and Anandan considered the cyclic evolution of quantum sys-
temns, for which no adiabatic variation was made. They assumed that |(t)) satisfies the

Schrédinger equation and after a cyclic evolution ¢[0, 7|,
[¥(r)) = €*|w(0)), ' (16)
$ is the total phase change. They performed a time-dependent phase transformation
(1)) = /OI9(0)), - k”)

requiring f(r) — f(0) = ¢, i.e. no phase change occurs for {¢(t)) during a cyclic evolution,

INZ(T)) = l\Z(O)); then they found

o= [t (30|20 gt0) + [ @ (B0 ] 10) (18

and the first term was identified as the “dynamical” phase

() - al0) = [ & (40| 5|, | (19)

and the second term was called the Berry phase

pir) - 80) = [ @t (30

2130 = ¢ - (alr) - =) (20)

To clarify the pl;ysical meaning of “dynamical® and Berry phases thus defined, firstly we
may consider some examples, for which both the adiabatic and exact solutions have been
found, and then give some general discussions.

Example 1, magnetic resonance. Consider a system with magnetic moment in the

time-dependent magnetic field
B(t) = (B, cos 2wet, By sin 2wet, Bo), wo = pBo/h. (21)
In Pauli representation

—-uB, —uB eziuot
H() = i THR : (22)
—pByeHuet nBo

H(r) = H(O), r=x/ws.

The instaneous eigenenergies and orthonormal eigenstates are

Ey = ﬂ:#\/Bg'i'Bg,

cosd in8/2
- = w2\ =l T @
—sin 0/2:'2'”“‘ cos 0/2e'1“""‘
‘pi(r) = ‘pt(o)l
tan8 = B)_/Bo =U1/Uo, wl=}lBl/fl.

Assuming the initial state [(0)) = |-} and substituting the adiabatic solution |$(t)}adi =
a-(l)e'{fu‘ d"E-(")l‘I[J-(l)) into the Schrodinger equation and integrating, one finds that
a-(t) = ctiwotsin’8/2 e the Berry adiabati;: phase is g(t) = ot sin® 8/2, and after a
cyclic evolution,

B(r) — B(0) = (1 — cos ax = Q(C)/2, (24)
0(C) = 2x(1 — cos §) being the solid angle subtended in a space by the magnetic field.
The exact solution of the Schrddinger equation for the Hamiltonian (22) can be easily

found. Assuming
a
l¥(0)) = Rk (25)

the result is

[$()) = (acoswyt + 1) sinu‘g)cmnt ' w

(iasinwyt + bcos wyt)e et

Particularly, for the initial condition {w(0)) = |¢-(0)},

{cosd/2coswyt — isin 8/2sin wyt)eod

I

fe(e)

(i cos8/2sinwyt —sin 8/2 coswyt)e~ "t

= (coswit —fsinfsin wyt)eot|y_ (t)) + i cosdsin wrteoty (1)), (27)

Therefore, the probabilities of the system at time t found in the instaneous eigenstates

|1 (t)) are (see Fig. 1(2))

Pi(t) = cos? @sin®unt, P-()= cos® wyt + sin? 8 sin’ wit. (28)
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When wyt = nx (n=0,1,2,:-+), 'p,,(c) =0, and |$(t)) e |¥-(t)). However, only for
wyfwp = By/Bg=tand =n, n=0,12,--", (29)
[$(r)) returns to the initial state apart from a phase chan'ge,
p(r)) = ¢ ITw(o), (30)

i.e., the total phase change ¢ = (n + 1)r. Using (27), (19) and (20), the “dynamical” and
Berry phases are .
x
— al0) = ——
a(r) - al0) = =,

o) - 80 = (1- R

cosd

(31)

which are different from the adiabatic ones {eq. (24)). Only when (1 — sin 0)/ cos8 = cos ¥,
ie., sind =0(B, =0, H time-independent) and sin8 =1 (8 = x/2,ie., tand =n>> 1,
adiabatic limit), the exact Berry phase recovers to the adiabatic one (see Fig. 1(b)).
Example 2, harmonic oscillator. The Hamiltonian H = pt/2m + ;mw’::2 is time-
independent, and its eigenstate is denoted by |¥n) with eigenvalue En=(n+ kv, n=

0, 1,2 - Assume. the initial state
j¢(0)) = cos 0/2|4o) + sin 8/2|¥y), (32)

which is a pure stationary state for § =0 (1#(0)) = |o}) and 8 = 7 (l¢(0)) = |¥1)), but for
8 = x/2, it is completely nonstationary (having equal probability to be in |ta) and |¥o))-

The state at time ¢ is
|$(8)) = cos8/2e™"*/* o) + sin 2673 2 |gy). (33)

After a cyclic evolution (period 7 = o fw), [(r)) = —|¢(0)), so the total phase change
¢ = w. From (19), (20), and (33), the “dynamical” and Berry phases are

a(r) - af0) = ~x(1 + 2sin?9/2), B(r) - B(0) = x(1 - cos 6). (34)

Particularly, for # = 0 or m (stationary state), a(r) — «(0) = =, B(r) - (0} = O, and
for § = x/2 (completely nonstationary), a(r) - «(0) =0, B(r) — B0) = x. It is clearly
seen that the “dynamical” phase characterizes the stationarity of a quantum system and
would be better to be referred to as stationary phase, and the Berry phase describes the
nonstationarity and would be referred to as nonstationary phase.

Another interesting case is the initial state being the coherent state

n

(£19(0)) = ol = 20) = T Yo Tala), (35)

n=0 \/'ﬁ

§=120/IV2, 1=1[Ajmw.

It is easily found that after a cyclic evolution (r = 2r/w) ¢ =, a(r)-a(0) = —2x(62+1/2),
B(r)-p(0) = 9562, Therefore, for § =0 (|(0)) = |%o), pure stationary state), A(r)-8{(0) =
0, and for §* = 1/2 (zo = |, characteristic length of harmonic oscillator) the Berry phase
achieves its maximum value A(r) = 8(0) = =, which implies that in this case the coherent
state is completely non-stationary.

The discussion given above may be extended to any two-state system. The two station-

ary states with E = +|E| are labelled by |+). Assume the initial state

19(0)) = cos 8/2-) +sin8/219+), (36)

which is stationary for § =0 or 7, and completely nonstationary for 8 = x/2. The state at
time ¢ is

() = cos 8/2¢1E¥/My_) + sin 8/2~ V1 Mg ). (37)

After a cyclic evolution (r = =h/\E}), () = ~|(0)), the total phase change $ =
—x. From (19), (20) and (37), a(r) — a(0) = —wcosd, B(r) - B(0) = —=(l - cos ).
Therefore, A(r) — (0) = 0 for stationary state (§ = 0, or x) and achieves its maximum
value §(r) — B(0) = = for completely nonstationary state (@ =~x/2).

In fact, one of the fundamental assumptions of quantum mechanics is that the state of

a quantum system in the nature evolves with time according to the Schrodinger dynamical
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equation, and the state at time ¢ can be formally expressed as
W) = &5 L H Oy 0)). (38)

Assuming after a cyclic evolution ¢ [0, 7], [¢(r)) = ¢'#|(0)}, the total phase change can be

formally expressed as
¢ = (p(O)e kI M Wyy(0)), (39)

which is obviously of dynamical origin. According to Aharonov and Anandan, $ is divided
into two parts, ¢ = [a(r) ~ «(0)] + [8(r) — (0)] (see (19) and (20)). From the discussions
above, it is seen that only the static;nary part of the total phase change is involved in
a, and the remaining part 8 characterizes the nonstationarity of a quantum state. For
time-independent H, there exists exactly stationary state. If the initial state is stationary,
{$(0)) = |¥n), we have ¢ = —E,r/h = cx(r) - «(0), and [B(r) — #(0)} = 0. But if the initial

state is nonstationary,

[$(0)) = D amltm), (40)
then i
() = T ame™ B~/ ). (41)
From (19) and (39) - "
a(r) = «(0) = = 5 |am|* Emr/h, (42)
& = fla,,.l’e“s-'/". (43)

Obviously, ¢ # a(r) — &(0), A(r) — A(0) # 0, and only for am = Smn (stationary state),
¢ = afr) - a(0) = ~Enr/h, B(r) - B(0) = 0. For time-dependent H, there exist no exact
stationary state (even in the adiabatic case) and the Berry phase always appears. Moreover,

calculation shows that the Berry phase obtained in the adiabatic approximation is different

from the exact one.
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Figure caption

Fig. 1 (a) Probabilities of the magnetic resonance system found in the instaneous eigen-
states |4) for the initial condition |9(0)) = |$-) (see (28)). n=tand =2 and 4. (b)

Variation with n = tan 8 = Bj/Bg of the exact and adiabatic Berry phases for each
cycle (see (24) and (31)).
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