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Abstract

Dirac wave functions for high energy electrons channeled in crystals are obtained
for crystal string potentials. Specifically, we study partial cylindrical wave expan-
sions for cylindrical constant and 1/p potentials. The periodicity along the crystal

axis is taken into account as a perturbation to the cylindrical wave functions. We
also find a Sommerfeld - Maue like solution for the 1/p potential.

1 INTRODUCTION

The phenomenon of the channeling states of charged particles in a crystal was introduced
by J.Lindhard in his classical paper [1] in 1965. The existence of bound states of channeled
electrons was pointed out [2] by Vorobiev’s group as early as in 1973. In fact, energies
and angular distributions were calculated and compared for bound states of channeling
electrons of energies of a few MeV. In fact, they were the first to use a string potential
V(p) ~ 1/p , showing that this potential is closely similar to the Lindhard potential [1].
More recent work involves crystal inhanced bremstrahlung and pair production , also for
much higher energies , which is reviewed in recent books and articles [3].

In the present paper we derive Dirac channeling wave functions including relativis-
tic effects and spin effects, for use in calculations of channeling problems in crystals for
very high electron or positron energies. The solutions are given as cylindrical waves for a
transverse potential V(p) , with (p, ¢, z) cylindrical coordinates. To obtain specific solu-

tions we consider the 1/p dependent potential where Dirac solution including the order
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\/E—/E is obtained , with € the transerve energy and E the total energy of the relativistic
electron or positron. Both continuous and bound states are considered. We also include
the effect of the lattice periodicity , the dependence of the potential on z . Since the
main effect of the crystal in this high energy region comes from the transverse degree of
freedom , in particular for bound electron states , the effects of the longitudinal potential
variation is included as a perturbation . We also give the Dirac wave functions for (step
- wise) constant transverse potential which can be of use for channeling conditions where
strong screening effect are important. Perhaps the most convenient wave functions for
high energy applications are Sommerfeld - Maue like wave functions. These are obtained
in Chaper 6 for a 1/p potential.

2 THE DIRAC EQUATION IN CYLINDRICAL
COORDINATES
The Dirac equation
(17V + 7(E - V(p)) = m)y(7) =0, (2.1)

for a static, cylindrically symmetric potential V(p) is in the standard representation

i= ( o ‘;) , 70=(; _2) , ¢(ﬂ=N(z§zjg)e"’=’, (22)
given by
(16.VL —oup)x +(E-V(p) -m)p =10,
(6LVL —ap)p+(E-V(p) +m)x =0, (2.3)
where 5 -
Vs =0y + 0ot (2.4)

e? 0 1e'® 0

—-1¢ 0 Y
with o, = ( 0 e ) and o4 = ( e ) , satisfying the usual SU(2)
characteristic equation

[a,-,aj] = 2i5ijk¢7k ,

with indices (p, ¢, 2) = (1,2,3).



From Eq.(2.3) follows
X = (E -V+ m)_l(azpz - lglv.l-)‘P ’

and the Dirac wave function is given by

1

Y(r) =N ( (E-V +m)Yo,p. —16. V)

) p(p, $)er=* (2.5)
where the two component spinor ¢(p, ¢) satisfies the second order equation

2 10 10

+ v -2 . 2 __ 2
_(9p2+p3p+p23¢2+(E V) - E+

. 1 dv .

O ) dp P VLl 9) = 0 (2.6)

where we have introduced the ”longitudinal energy” E, by

E? =p; +m’. (2.7)
The presence of 0,6,V in thelast term of Eq.(2.6) shows that ¢(p, ¢) is not an eigenstate

of the z - component of the angular monentum

a
L, =—i’.
15 ,
The spinor ¢(p, ¢) is a superposition of states of L, = p and L, = g + 1 as is easily seen

since 0,0, = 10, essentially interchanges the p - dependent wave function u(p) and v(p)

in p(p, 9) :
U ei“¢ v e’.}’d’
w(p,¢) = ( v(p()f;z(mw ) y 104p(p, ) = ( _u(;’; L‘(ww ) : (2.8)

In fact p(p, ¢) is an eigenstate of the z component of the total angular momentum

‘ 1
Jz:Lz+Sz:;L+§.

The two differential equations of second order are from (2.6)



9 10 2
N (p+1)

(5;; 08 2T (E V)~ E})v(p)+
1 av.. 0 p+1 _
(T—_Iw—m)ﬁ[’(a_p = Ju(p) + pou(p)] = 0 . (2.9)

Equations (2.5),(2.8) and (2.9) are the basis of our further discussion. These equa-
tions are exact. Related to channeling we shall discuss the case of very high longitudinal
energies as compared to transverse and potential energies. We shall however first discuss
the case of a free electron, V = 0, described in cylindrical coordinates in order to relate
our solution to the plane wave solution of a free electrton. At the same time we include

the case of a constant potential

V(p) =Vo for p < po; V(p) =0 for p> py (2.10)

which we shall use as a strong screening potential for channeling process. It is to be
noted that in this case the solution of the Dirac equation is exact, valid for all energies.
This is a useful check on solutions to the channeling processes for which exact solution

may not be obtained.

3 THE CASE OF A CONSTANT POTENTIAL,
INCLUDING V =0, A FREE PARTICLE

Equation (2.9) for a constant potential, V = V; shows that u(p) and v(p) are Bessel
functions

u(p) = uwodu(mp) ,
v(p) = twodus1(mp) , (3.1)

with 7 , a quantity of dimension momentum
= ((E-V)-E?7, (3.2)

with uy and vy constants.

For a free particle, ¥ = p,, is the transverse momentum. For a bound state, for
V # 0, = is imaginary and the Bessel functions in Eq.(3.1) are replaced by McDonald
Bessel functions [4] K,(7p) and K, (7p) .

With ¢(p, ¢) given by



Wod 1 (mp)e 1)

so(p,¢)=( voJu(mp)e? ), (3.3)

and with the summation of Bessel functions {4]
Eiu‘ly(,’rp)eiué — eiﬂ'pcnsd: ,
one obtaines the plane wave solution for p > pg i.e. for m = p

" 1 u"] (Wp)eiwb ip2z
Z¢p(Pa¢’z) = NZ”‘ ( —igV ) ( - i(u+1)e er =

(E-V+m) wodyy1(mp)e

E4+m 1 Lo g'PLPcosdtip;z , (34)
2m \ @i ) \

giving also the normalization constant. This is the partial cylindrical wave expansion for

a free particle with the momentum p'in the z — z plane. By a rotation ¢, or by different

choice of constants uy and vy, uo exp(—ipd,) and vy exp(—i(p + 1)¢,) in Eq.(3.1)

e(p,$) = ( (3.5)

ivOJp+1(7rp)ei(“+1)(¢‘d)P)

uoJ,(wp)eir(é—9r) ) '

the asymptotic plane wave in an arbitrary direction with respect to the rotational sym-

metry z - axis is obtained , proportional to expi{p, pcos(¢ — ¢,) + p.z].

4 CHANNELING STATES

From exact considerations so far, we now go over to discuss channeling approximations.
For relativistic particles moving in directions close to a crystal axis the energy E. defined
in Eq.(2.7) is much larger than transverse and potential energies for the most important

parts of space. In order to subtract out the longitudinal energy E. we define € by

e=E—E,, (4.1)

which will be used for continuum as well as for transversely bound states. With the

aproximations

e<E. |V(p)| <E.,

Eq.(2.9) may be rewritten in the compact form
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(VY™ +2E.(e - V(p))lu(p) — 22 Z0(p) = 0,

E dp
p.dV
V=V +2E,(e — V(p))lv(p) + i—E—;l;u(P) =0, (42)
where we have introduced
0 p+1 _ 8 p
vVt = +—,V ===
9 p O
- 2 _ 18,6 86 (p+1)
\vaav ko + =l (py T 43
pap(”ap) o pap(pap) 5 (4.3)

Equations (4.2) are dominated by the term 2E,(e — V). Assuming that V(p) is of the
order ¢ for the most importent values of p , we read from the equations that the terms
V*V~ and V-V are of the order p~2 which must be of the order E.e = (E,/e)e? . Thus
the terms which we have neglected €%,V and V? are all of the order ¢ and therefore
negligible. Furthermore , the term (p,/E)(dV/dp) is of the order €/p = /E./e €?
This term may therefore be taken into account perturbatively. We shall show that the
correction from this.term to the wave function indeed is of relative order \/¢/E, .

To highest order in E,/e , the wave functions , which we denote U, and U,,, ,

satisfy

VIV~ +2E.(e - V(p))Uu(p) = 0,
[V=V* +2E.(c — V(p))Usia(p) = 0, (4.4)

where we have used the fact that in Eq.(4.4) v.(p) = U,+1(p)
In Eq.(4.2) we introduce

u(p) = Uu(p) + Bulp) ,

v(p) = Upsa(p) + Bu(p) ,

where A,(p) and A,(p) are small corrections.
Keeping highest order terms in E, /¢, we obtain from Eq.(4.2)

[V*V™ + 2B,(e - V(p))|Au(p) = i%“;‘UuH(P) ,
[V-9* 4 2B.(e = V()IAu(p) = =5 -Uslo) (45)

where we have put p,/E = 1 which is in accordance with our approximation .
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When we operate on the first of Eq.(4.4) by V~ and on the second by V* we find

the nice result

[V-V* 4+ 2E,(c - V(p)]V-Us(p) = 2E%U,,(p) ,

dv
%UMH(P)' (4.6)

Comparing with Eqs.(4.5) we see that A,(p) and A,(p) satisy the same equations as
(3/2E;)V+U,41(p) and (—i/2E,)V~-U,(p) respectively . Therefore

V9~ +2E.(e - V(p))]V* Ui p) = 2E.

Aulp) = "Uus1(p) + const U, (p)

2E

Ay(p) = 2E u(p) + const Uyyi(p) , (4.7)

where the last terms are contributions from the homogenous equations Eq.(4.4) The
constants are determined by the requirements that A,(p) and A,(p) must vanish for

V(p) = 0. This gives

Au(p) 2E (V Uu+l( ) 2E.¢ UH(P)) )

Ay(p) =

The spinor ¢(p, ) then becomes

aza v
w(p 1—1,/ +it = Hp,,(p,as), (4.9)

uub
P> “+1 I‘+l @ b (410)
and where we have used

( VU, (p)es

=55 (T Uulp) + V2BV (p)) (48)

with

V-U,(p)e't#t1)? ) =31Vieu(p, 9),

in Eq.(4.9) . The Dirac channeling wave function is then

a'za:_l.v.L

"ﬁu,pz(":’):N(l_i 2E,

)X

€ .
E + 1y



1
( (E—-V +m)(o.p. —i6, V)
We have here used the fact that 0,6, V| anticomutes with (o,p, — i, V,) , and that

dV(p)/dp gives a negligible term in our aproximation. As seen from Eq.(4.11) the cor-
rection term are indeed of relative order /e/E, as stated above.

) ulp; P)e”* . (4.11)

5 THE 1/p POTENTIAL

The wave equations (4.4) can be written in the compact form

d2+1d— 2+2E( - Vi(p) ) Uc(p)=0 (5.1)
dp? * pdp p? Py IEpI =0 '
with k£ = p, p + 1 for the upper and lower spinor components, respectively in Eq.(4.10) .

We shall in this chapter discuss the solutions for the approximate crystal potential

V()= -=2%e = ~Vaa/p, (52)

with b the interatomic distance in the crystal row, a the screening (e.g. Thomas - Fermi)
lenght and ¢ an empirical constant. The potential has been used in several calculations
[5]. The potential may be considered reliable for p - distances larger than the interatomic

distance along the crystal row. For applications the region of validity should be noted.
With the substitution

Us(p) = VP fa(p) » (5.3)

the wave equation (5.1) becomes of the same form as the equation in a spherical symmetric

potential, namely

2 2d k*-1

R A R LA (OPIADEL (5.4)

compared to the Schrodinger equation for a spherical symmetrical potential V(r)

& 24 1041
dr?  rdr 72

At the same time the normalization for bound states are identical

+2m(e—V(r) ) |Ri(r)=0. (5.5)

en(P)pdp = [ f2.(p)o’dp = [ Ri.(r)rdr = 1. (5.6)
[v / /




This shows that the cylindrical wave functions and energy levels may be obtained directly
from the corresponding sperical wave functions, if these are known. The substitutions

are

l—»n—%,m—)Ez,E—»e,V('r‘)—»V(p), (5.7)

for potentials of identical functional dependencies.
For the potential (5.2) the substitution in the potential is

Zalr - Voalp, Vo =cZalb. (5.8)

The continuum states are then obtained from the Hydrogenlike states [6] as

. 7w VoaFE,
UZ(p) = exp(Fiop + o) 2

) 2 [P(-n+x+3)

—a 2
~ = T D) exp(—ipLp)(2pL) %

1 .
(2p1p) " F(—n+ 5+ 5 2=+ 15 2ipLp) (5.9)

where o = argT'(—n + |x| + 3) , 7 = —iVoeE./p, , pp = \/E2 — E? =~ \/2E,¢ and
F(a;c,z) is the confluent hypergeometric function, the Kummer function. U} (p) and
U; (p) are solutions with asymptotic form plane wave plus outgoing , ingoing cylindrical

waves, respectively, as seen from the asymptotic form

Voa E, T 1
— In(2p. p) — Set3g)—aw) . (5.10)

As usual with a Coulomb potential, in order to obtain pure outgoing or ingoing solutions,

) 2
UZ(p) = exp(Fio|) ;FCOS(PLP +

one has to assume a formal screening at p — oo which removes the logarithmic function

at large distances.

For bound states one obtains from Hydrogenlike atoms [6]

3/2

1 T(n+x+1) \"* /2
Unx(p) = \/EP(2K. ) (r(ﬂ s 1;21’ (2\/—25,,EZ) exp(—y/—2E.e, p)x
2
n—% 1
(2\/—25,11'72 p) F(-n+x+ 3 2k +1; 24/—-2E.e, p), (5.11)

with the energy eigenvalues , for -+ & + % =-n

(Za)’E, a,,
Hnrnr (512

En =

9




which gives a (2n + 1) degeneracy : —n < k < n.
As shown in Appendix 1, continuum and bound states Eq.(5.9) and (5.11) are valid

for positive and negative values of x i.e. g and g + 1 . There are no singularities for

negative values of .

6 TWO DIMENSIONAL SOMMERFELD - MAUE
LIKE WAVE FUNCTIONS

Operating with vo(—#¥V +~9(E — V(p)) + m)7o on Eq.(2.1) one obtains the second order
Dirac equation

(V2 +p° = 2EV(p))%(7) = (=1797VV(p) — V*(p))%(7) , (6.1)

with the usual Sommerfeld - Maue (7] type approximate solution

i

(M) = €7 (1 — 5517V )e P Yu(7) , (6:2)

where 9(7) is the solution of the equation

(V2 + 52 — 2EV(p))o(7) = 0 . (6.3)

The usual Sommerfeld - Maue solution is for the Coulomb potential. For a string

1/p potential the situation is different, still a solution similar to the Coulomb case is
obtained.

With the substitution 1o(7) = exp(ip.z)p(p, ¢) and the coordinates

{=p(1+cosg), n=p(1-cosg),

we find

0? 8 o2 0  p. _
(s g+ g+ ot e+ e e 2BVia) plEn) =0, (64)

with the Sommerfeld - Maue like solution

w(E,n) = NeHEnFaval ;1 ipi (6.5)
4 pL 2

where F(7) is the Kummer function.
The wave function ¥(7) is then

10



. poy ) - R E 1 . —
$(7) = NeP (1 - é'YO'YVJ.)F("’VOG_ i 55 Wpip —PLP) Ju (6.6)
pL 2

The Dirac spinor effect has been taken into account by multiplication with the free particle
Dirac spinor u . The asymptotic wave function is of the form
e—rd/Z )
= Ny/meori—F< P x
]_‘(% _ id) i/ e'ProtidIn(pLp—FLp)
I'(id) \/PLP — PLP)
with d = VoaE/p, . This shows that 9(r) Eq.(6.6) describes a plane wave plus a cylin-

drical outgoing wave. The ingoing cylindrical wave solution is obtained by replacing 1p, p

eiﬁxﬁ—idh\(lup-i"ﬂf) +

u, (6.7)

in Eq.(6.6) by —ip.p . Eq.(6.6) also shows that the normalizations constant N is given
by

1 : ) :
N= —WI‘(% —id)e™/? = % II‘(—;— — id)| e™¥/*+* = (cosh wd) !/ 2™/ 2+ (6.8)

f
with
A= argI‘(% —d) ,
which gives the plane wave part of ¥(r) Eq.(6.7) exp(ipT)u with the normalized free

particle spinor u. It should also be noted that the asymptotic cylindrical wave Eq.(6.7)
has the p dependence 1/,/p as it should.

7 PERIODICITY ALONG THE CRYSTAL AXIS

We take into account the periodic variation of the potential along the crystal axis, V(p, z),

by an expansion in Fourier series

V(p,2) = V(o) + 3 Velp) cos(gnz) - (7.0)

k=1

Here V(p) is the potential used in the previous chapters , which can be written as

zp+az

V= [ Ve, (7.2)

while the z dependence is taken into account by the coefficients Vi(p)

11



z0+az

o) = [ Vie)eoslarn) (7.3)

where g = 27k/a, - are reciprocal lattice vectors, with k an integer, and a, is the atomic
distance along the crystal axis and 2, is arbitrary.

The Dirac equation Eq.(2.1) now becomes

7V +2[E - V(p) = Z(p, 2)] - m)yz(7) = 0, (7.4)

where the index Z indicates the z - dependent potential

Z(p2)= Y Vilp)e™ k#£0,

k=—o00

and 9(7) is given by Eq.(2.5) for Z(p,z) = 0 with the z - dependence ezp(ip,z).

We shall solve the Dirac equation Eq.(7.4) assuming a solution

¥z(7) = (1+ Z(M)(7) , (7.5)
with Z(7) a small perturbation.
Introducing ¥ z(7) into Eq.(7.4) we find

(7Y + 0[E — V(p) = Z(p, 2)] — m)Z(F1(7) = % Z(F)(7) - (7.6)
When we neglect the small terms VZ(7), ZZ(7) and 5.V, Z(7)¢(F) we find

(#1ee +10E = m )Z(FH() = 12,
Expanding Z(7)

A= Y Zp)en (1)
k=-oc
we find
Zi(p) = (0E — 7:(p. + o) — m) ' Vi(p) , (7.8)

and the wave function including the periodicity along the lattice string is given by

Eq.(7.5), with

2= Y spo

o7 (T E — 1:(p: Vi igkz,k 0, 79
= 2Ez(€ — gk)(‘Yo v (P +9k) + m)‘ru k(p)e +£ ( )

12



in our approximations E, > €, E;, > gx.

The wave function for the potential V(p, z) ( Eq.(7.1)) is therefore given by Eq.(7.5)

$z(7) = (L+ Z(OW(F , (7.10)
with Z(7) given by Eq.(7.9) and ¥(7) by Eq.(4.10) and (4.11)

'l’("_") = ¢I-‘|Pz(7_.‘) ) (7'11)

where U,(p) and U, ,1(p) are obtained from Eq.(5.9) and (5.11) for continuum and bound
states ,withk =pors=p+1.

13



APPENDIX 1
The easily proved theorem [4]

1
I'(c)

2"T(a+m+1)

F(a;¢;2) = T(a) Fla+m+1,m+2;z),c=-m, (A.1)

for the Kummer function

X (e + n)T(c) 2"
Fla:c:2) = ul Sl Sl
(a3ci2) ,;, I'(a)['(c+n)n!’
shows that the particular combination [I'(c)](~1) F(a;c; 2) is finite for c = —m .

One then easily finds

_,:_;_F(—‘I) — K+ %)
I'(-2x+1)
s-sTEnt et 3)
I'(2s+1)
with no singularities , and positive and negative values of & (1 or p + 1) are equivalent
and may be summed over. In fact, x may be replaced by || .

z

1
F(—n—n+§; —2k+1; 2)=

1
F(-n+r+ 5 2 +1; 2), (A.2)
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