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Over the years, ATLAS has developed a large number of monitoring and accounting tools for 
distributed computing applications. In advance of the increased experiment data rates and monitoring 
data volumes foreseen for LHC Run 3, starting in 2012, a new infrastructure has been provided by the 
CERN-IT Monit group, based on InfluxDB as the data store and Grafana as the display environment. 
ATLAS is adapting and further developing its monitoring tools to use this infrastructure for data and 
workflow management monitoring and accounting dashboards, expanding the range of previous 
possibilities with the aim of achieving a single, simpler, environment for all monitoring applications. 
This contribution describes the tools used, the data flows for monitoring and accounting, the problems 
encountered and the solutions found. 
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1. Introduction 

Every experiment that produces and processes large amounts of data needs to monitor the 
infrastructure and the applications that deal with these data. Monitoring is essential to be able to spot 
and fix any system failure in a short time and to identify ways to improve the system performance, 
within the available hardware resources. The ATLAS experiment [1] at the CERN LHC accelerator 
collected in 2015–2018 (“Run 2”) almost 20 billion physics events plus a large amount of detector 
calibration data and about three times as many simulated events; events are stored in files that are then 
grouped into datasets. The processing of all these events takes place using the distributed computing 
infrastructure comprising the World-wide LHC Computing Grid (WLCG), consisting of over 120 sites 
distributed in all continents, and a few High-Performance Computers (HPCs) that are available to 
ATLAS.  

The Distributed Data Management system Rucio [2] is used to move, store and catalogue all 
ATLAS data. The processing operations are accomplished by the Workload Management system 
PanDA [3], which takes all processing requests, transforms them into “tasks” that act on datasets, 
splits tasks into jobs and finally submits the jobs to the best computing facility depending on CPU 
availability and input data location. Both Rucio and PanDA operations depend on the availability of 
central computing clusters where all components of their systems run. 

ATLAS used during LHC Run 1 (2009–2012) and Run 2 (2015–2018) a monitoring and 
accounting infrastructure for the distributed computing applications developed about 10 years ago by 
CERN-IT together with ATLAS members. These “old dashboards” started showing aging effects in 
the last few years, visible primarily as an increasing slowness of data retrieval due to the massive 
amount of data in Oracle databases. Also, the lack of in-depth knowledge for maintenance as most 
original developers left long ago, led to a lack of flexibility and impossibility to develop new views 
and/or data correlations across different data sources. This system worked well enough for general 
monitoring until the end of Run 2 last year but was evidently in need of a good refurbishing. 

Since 2016 the CERN-IT MonIT group started developing a new infrastructure and 
environment for monitoring and accounting applications based on modern Open Source components, 
and ATLAS started implementing “new” dashboards using this infrastructure, for data and workload 
accounting and global monitoring.  

In the meantime, the BigPandaMon [4] application was developed for user and task-oriented 
monitoring of the jobs submitted to the ATLAS Grid/Cloud/HPC resources through PanDA; this is 
now the workhorse of user-level job monitoring. 

In recent years many Analytic tools have appeared on the market. They can be used for more 
detailed investigations and to correlate data from different sources. The Analytics cluster provided by 
the University of Chicago allows a more interactive use of monitoring data for detailed investigations 
and correlations between the various distributed computing systems. 

2. ATLAS dashboards in the MonIT infrastructure 

2.1 The MonIT infrastructure 
The CERN-IT MonIT group provides “Monitoring as a Service” for the CERN data centre and 

the WLCG collaborations. The services consist in providing the infrastructure to collect, transport, 
process and store the monitoring data, and the dashboards to display all collected information. The 
diagram in Figure 1 shows the components used and the data flow through them: 

• A number of data collector units receive information from the services to be monitored and feed 
the data pipeline. The relevant collectors for our applications are the messaging system ActiveMQ 
[5], Collectd [6], Apache Flume [7] and Logstash [8].  

• Apache Kafka [9] is the core of the data pipeline. It decouples the producers of information from 
the consumers, enables stream processing and is resilient, with a data retention time of 72 hours. 



Proceedings of the 27th International Symposium Nuclear Electronics and Computing (NEC’2019) 
Budva, Becici, Montenegro, September 30 – October 4, 2019  

 
Figure 1. Data flow through the MonIT infrastructure. 

• Data are stored as time series in the InfluxDB [10] database, which can keep data long-term, with 
adjustable time bins. All data are also kept in the Hadoop file system HDFS [11] for archival and 
batch usage. Part of the data can be stored in ElasticSearch [12], which offers more interactive 
analysis possibilities but has a shorter retention time (one month as default). 

• The data can be visualised using dashboards in Grafana [13] or by developing more interactive 
views in Kibana [14] or using Jupyter notebooks [15] using Swan [16]. 

There are three groups of dashboards, with different read/write access parameters and frequencies of 
upgrades: the Production dashboards are stable and updated only with tested improvements; the 
Development dashboards are used to test new features or views before implementing them into 
production; the Playground dashboards are used to explore new possibilities or tools. 

2.2 The ATLAS dashboards 
Several groups of dashboards have been developed to monitor ATLAS Distributed Computing 

(ADC) applications. For Distributed Data Management, data usage and transfer information is 
constantly sent by Rucio to the message brokers and then further processed; data storage information 
is periodically extracted from the Rucio database in Oracle, dumped to HDFS and further processed to 
be stored in InfluxDB. Many views are available, including historical views going back to the start of 
Rucio in 2015, current snapshots of data volumes by site or data type, data transfer rates and 
efficiencies between any two endpoints. Figure 2 shows two examples of DDM dashboards. 

 
Figure 2. Examples of DDM dashboards: (left) display of the data stored on disk between March 2018 

and September 2019, for each storage site; (right) different views of the current data statistics for 
each data type. 

The second most important group of dashboards refer to job monitoring and accounting. In 
this case the information is collected from the PanDA database every ten minutes and stored into 1-
hour time bins; 24-hour, 7-day and 30-day bins are calculated automatically. The dashboards display 
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the number of pending, running or finalising jobs, as well as statistics for the completed jobs including 
errors, CPU and wall-clock time consumption, and many other job parameters. Information is also 
imported from other sources, such as the site topology from the ATLAS Grid Information System 
(AGIS) [17] database, and the pledge information from the WLCG REBUS [18] database; in this way 
it is possible to group the sites by federation, country or cloud, and display the actual CPU usage 
against the pledges (see Figure 3). Data stored in the previous generation dashboard, dating back to the 
start of the LHC in 2009, were also imported in the new system, so it is possible (but not fast) to 
generate plots for 10 years of data processing operations. 

 
Figure 3. Examples of job accounting dashboards: (left) number of CPU cores used by ATLAS 

between January and September 2019; (right) used computing power in HepSpec2006 units between 
January and September 2019, compared to the total pledged resources shown as the overlaid red line. 

A dashboard for short-term but site-oriented job monitoring was also developed; here the data 
are aggregated by site, thus reducing the cardinality by a large factor (the number of sites, over 120), 
and keeping a reduced number of variables. In this way it is possible to display data directly in much 
smaller time bins and create automatic alarms in case of anomalous conditions in real time. An 
example of this dashboard is shown in Figure 4. 

 
Figure 4. Example of the job monitoring dashboard: (top-left) number of jobs by PanDA status;  
(top-right) number of jobs by resource type; (bottom-left) number of production vs analysis jobs; 

(bottom-right) number of jobs by PanDA queue. 
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Several other dashboards have been developed to monitor the status of other central and 
distributed services and servers. In addition, a summary display of ADC monitoring dashboards was 
created: the “Live Page”. It is a web site with several pages that show some statistics and a few static 
plots extracted from the various dashboards and refreshed every hour; clicking on each plot leads to 
the relevant dashboard where more detailed investigations of any problem can be performed (see 
Figure 5). This is the entry point for shifters and computing managers wishing to have a global view of 
the current status of the ADC systems. 

  
Figure 5. Examples of the Live Page displays: (left) display of the number of CPU cores used by 

ATLAS in the last week, grouped by different relevant parameters; (right) display of the data transfer 
rates and efficiencies in the last week, grouped by different parameters. 

3. User level job/task monitoring with BigPandaMon 

The MonIT dashboards provide a wealth of information but by design they contain only 
statistical aggregations of jobs and tasks, with their properties, stored as time series. For detailed 
monitoring of the processing of tasks and job status evolutions, the BigPandaMon application provides 
real-time access to the PanDA data in the Oracle database.  

BigPandaMon is built as an aggregator of information from different sources, of which the 
PanDA database is the principal, but not the only, one. The retrieved information is cached for 10 
minutes, allowing the users to digest it and formulate more detailed queries; if the new query only 
needs information that is already cached during the main query, the system will respond very fast, 
otherwise a new query to Oracle will be launched and the response time will depend on the amount of 
retrieved data – usually a few seconds will suffice. Figure 6 shows the data flow within BigPandaMon. 

 
Figure 6. Data flow within BigPandaMon. 
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From the top page, users can select a number of views or search directly for a given task or 
job, and get all details, including the relations between tasks and jobs, sites where the jobs are running 
or have run, log files, error conditions and so on. Every displayed piece of information is clickable and 
leads to the source of this information and additional details. Figure 7 shows examples of the task and 
jobs tables, as well as the task-level statistics on job execution times, CPU and memory usage, and 
task completion rates. 

 
Figure 7. Examples of BigPandaMon displays: (top-left) user page listing all active tasks;  

(bottom-left) task page listing all jobs in the task and their status; (top-right) memory used by all jobs 
in a given task vs execution site; (bottom-right) job definition, start and end times for all jobs in a task. 

4. Analytics cluster at UChicago and its applications 

The analytics cluster at the University of Chicago provides an interactive environment to 
develop additional or alternative dashboards and investigate correlations between several data sources. 
It is complementary to the monitoring and accounting infrastructure at CERN. In addition to the 
information imported from the PanDA and Rucio databases at CERN, it collects data from the WLCG 
File Transfer System (FTS) [19] servers that are distributed in several locations, from the Frontier 
servers that provide access to the conditions database [20], and from the PerfSonar [21] network 
testing probes. It has been essential in tracking down wrong and repeated accesses to the conditions 
database by ATLAS jobs [22] and in identifying malfunctioning network routes that can impact the 
data transfers and thus the usage of ATLAS resources. 

5. Conclusions and Outlook 

 ATLAS Distributed Computing has a coherent set of monitoring and accounting dashboards 
and interactive tools. Technologies evolve all the time, so we have to follow them; we try to use Open 
Source solutions as much as possible, even if at times some home-made parts are inevitable, for 
example because of the low number of display options available in Grafana. 

The future is in the more interactive environments providing the possibility to correlate 
information from many different sources. ATLAS has already started in this direction and is actively 
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developing new views and new tools to increase the level of automatic error or anomaly detection in 
view of the start of LHC Run 3 in 2021. 
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