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Introduction

One of the actual key topics in nuclear physics is the study of exotic nuclei,
i.e. nuclei with extreme properties, such as an extreme ratio of the number of
neutrons and protons, excitation energy or total nuclear spin. The interest for
exotic nuclei has increased enormously since the recent progress in nuclear accel-
erators. This made it possible to produce exotic nuclei with sufficient rates. The
study of neutron rich1 nuclei revealed unexpected phenomena such as weaken-
ing of closed shells and the formation of neutron halos2 [Tan85, Thi75, Tan96].
These phenomena indicated that the interaction between the nucleons - the
strong force - was not well enough understood. In particular the influence of
extreme conditions on the spin-orbit term, which had given rise to the magic
numbers in the shell model [May49], was not understood. As a consequence,
the parametrization of existing nuclear models such as the shell model [May49]
had to be adapted and new models were developed.

The magnetic and quadrupole moment of exotic nuclei are stringent tests for
these new developed nuclear models. They contain a lot of information about
the structure of the nuclear state: the magnetic dipole moment is sensitive to the
orbitals of nucleons that are not paired off to zero spin. The electric quadrupole
moment gives information on the deformation of the charge distribution of the
nucleus.

Of particular interest are the quadrupole moments of the ground states of
the neutron rich 9Li and 11Li. 11Li is a drip line nucleus with a magic number
of neutrons (eight) and is a textbook example of a halo nucleus. It consists of
a 9Li core and two loosely bound neutrons. The influence of these two neu-
trons on the charge distribution of the core can be determined by Q(11Li)

Q(9Li) . The
expected influence is small. Therefore precision measurements are needed. In
order to determine the quadrupole moments precisely via multiple-rf-NQR, first
an accurate knowledge of the magnetic moments is needed.

1This means that the ratio of the number of neutrons and protons is much larger than for
nuclei in the valley of stability.

2A neutron halo nucleus is a nucleus with some very loosely bound neutrons. This results
in a long tail of the neutron density distribution and a very extended matter radius.
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ii INTRODUCTION

These magnetic and quadrupole moments were studied using the β-NMR/
NQR (Nuclear Magnetic Resonance/ Nuclear Quadrupole Resonance) tech-
nique [Mat71] at the ISOLDE facilities in CERN3. For the production of the re-
quired spin-orientation, the technique of optical pumping [Kas50, Kas57, Coh66]
was used. The measurements were performed in collaboration with the COL-
LAPS group of Mainz (Germany) lead by Prof. Dr. R. Neugart. This group had
already measured these moments [Arn92] at the ISOLDE facilities in CERN,
using optical pumping to create nuclear spin-orientation. But the obtained
accuracy was not good enough to be conclusive about the influence of the two
loosely bound neutrons. Therefore a precision measurement was performed with
an improved version of the same set-up. Like this the present know-how was
optimally used. For the optimization of the parameters of the set-up and the
calibration of the magnetic field, the well produced 8Li isotopes were used. Both
the parameters for the optical pumping set-up and those for the β-NMR/NQR
set-up were optimized. My main contributions concerned the optimization of
the β-NMR/NQR.

3Conseil Européen pour la Recherche Nucléaire, European Council for Nuclear Research
[CERN]



Chapter 2

Motivation

In an attempt to understand the interaction between nucleons, nuclear models
have been being developed since the fifties. The most famous of these, the
nuclear shell model [May49], works quite well close to the valley of stability. In
this model nuclear structure is dominated by the shell structure, originating from
an harmonic oscillator potential with spin-orbit coupling. Large energy gaps in
between two shells favor configurations in which the nucleons fill completely a
shell. The numbers of nucleons that give rise to closed shells are called ”magic
numbers”. Going towards the drip lines 1, however, unexpected phenomena
appeared, such as disappearing shell closures and the formation of neutron- and
proton-halos [Thi75, Tan85, Tan96, Han87]. To understand and model these
new phenomena it is important to study experimentally the properties of exotic
nuclei. Of particular interest is 11Li as a halo-nucleus and a nucleus with a
magic neutron number (N=8).

2.1 11Li as a halo nucleus

A nucleus with a neutron halo is one with some very loosely bound neutrons2.
The neutron density distribution in such loosely bound nuclei shows an ex-
tremely long tail, called the neutron halo. As a consequence the radius of such
a nucleus is much larger than expected. Although the density of a halo is very
low, it strongly affects the reaction cross section and leads to new properties
in such nuclei, e.g. a very narrow momentum distribution. This reflects the
Heisenberg uncertainty principle

∆x∆px ≥ ~
2

(2.1)

1Proton and neutron drip lines are the borders of the region of bound nuclei on the nuclear
chart.

2The one or two neutron separation energy Sn(2n) < 1MeV, compared to the common
Sn ≈ 6− 8MeV for nuclei in the valley of stability.

1



2 CHAPTER 2. MOTIVATION

Since the matter radius is very extended, there is a large uncertainty in the
position and thus a small uncertainty in the linear momentum.

In a halo nucleus the three basic ”rules” of nuclear density for nuclei close
to the valley of stability are broken. These three rules are [Tan96]
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Figure 2.1: Schematic view of the nuclear density as a function of distance with
the definition of the half density radius R and the surface thickness t.

1. The radius where the nuclear density is reduced to half of the maximal
density is expressed as R = r0A

1/3. r0 ≈ 1.2fm is the radius constant
(fig. 2.1)

2. Protons and neutrons are homogenously mixed in the nucleus, i.e. ρp(r) ≈
ρn(r). In halo nuclei this is only true for the core.

3. The distance from where the nuclear density drops from 90% of the max-
imal value to 10% of its maximal value, called the surface thickness t, is
constant and is about t ≈ 2.3fm (fig. 2.1). This feature is true for nuclei
in the valley of stability because of the nearly-constant nucleon separation
energy (6-8MeV) for stable nuclei. In general the surface thickness, or the
surface diffuseness is expected to depend on the nucleon separation en-
ergy. The neutron halo is the most pronounced case for a small separation
energy (< 1MeV).

The most prominent and most studied example is 11Li with a 9Li core and
two loosely bound neutrons (fig. 2.2). As early as 1975, C. Thibault et al. [Thi75]
found a very small two-neutron separation energy S2n(11Li) = 170±80keV, but
they didn’t attribute this to a neutron halo. In 1985 Tanihata et al. [Tan85]
discovered the large interaction cross section of 11Li and attributed it to a halo
property. In the fragmentation of 11Li, narrow momentum distributions were
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Figure 2.2: (a) Schematic view of 11Li as 9Li core and two loosely bound neu-
trons. (b) Visualization of the three-body system in 11Li.

found for the 9Li fragments, but not for the other fragments such as 8Li or
8He, indicating that only the two neutrons in the last orbital contribute to the
formation of a neutron halo [Tan96]. 11Li was found to be a three-body sys-
tem, in which none of the internal two-body subsystems (dineutron and 10Li)
were bound, giving it the name ”Borromean3 halo nucleus” [Han87, Zhuk93].
Three-body interactions are necessary for a full description of the nucleus. A lot
of interest was shown in this Borromean nucleus [Sch00, Ann90, Rii92, Neu00],
but nevertheless a lot of questions concerning the structure of this nucleus re-
main unanswered. One such question is the polarizability of the core by the
two loosely bound neutrons: do the two loosely bound neutrons influence the
proton distribution in the core?

The existing experimental data point towards an almost decoupled core and
two neutrons.
An example of the experimental data consists of the almost equal charge-
changing cross sections σcc of 8Li, 9Li and 11Li (fig. 2.3) [Bla92, Tan96]. The
charge-changing cross section σcc is the cross section for all processes which
result in a change of the atomic number of the projectile, i.e. the removal or
pick-up of proton(s). The reaction cross section4 σR is a measure of the nuclear
matter radius [Tan96]. Therefore the reaction cross sections in fig. 2.3 increase
with increasing mass. Analogously the charge-changing cross section is a mea-
sure of the proton-radius [Bla92, Chu00]. The fact that the charge-changing
cross sections for the Li-isotopes are nearly constant with increasing mass, indi-
cates a nearly constant proton radius. This is an indication that the influence of
the neutrons on the proton distribution is small. However, the uncertainty on
the charge-changing cross section of 11Li is about 8%. Within this uncertainty
the neutrons might influence the proton radius.
Another important measurement is that of the quadrupole moments of 9,11Li
by E. Arnold et al. [Arn92]. The two quadrupole moments were found to be

3This name is given by the analogy of the three subsystems to the three rings of the coat
of arms of the Italian Borromean family

4The reaction cross section is the sum of the cross sections for all possible reaction channels.
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cc

Figure 2.3: Reaction cross sections σR and charge-changing cross sections
σcc as a function of neutron number for some Li isotopes. Picture taken
from [Tan96].



2.1. 11LI AS A HALO NUCLEUS 5

equal within the experimental uncertainty of 10%, which also suggests a minor
influence of the halo neutrons on the 9Li core.
On the other hand, T. Misu et al. [Mis97] predicted that in the limit of zero
binding energy the total deformation of a two-body halo system with a core
part and a valence part is totally determined by the spatial structure of the
valence state wave function, independently of the shape of the core. The de-
formed core merely establishes the quantization axis of the system, important
for determining Λ, the projection of the angular momentum of the valence state
wave function. In these calculations a halo state is defined as a state with an
infinite root mean square radius in the asymptotic case of zero binding energy.
T. Misu showed that this is only the case for positive parity states (s1/2) with
Λ = 0 and for negative parity states (p1/2) with Λ = 0, 1. However, this does
not mean that other orbitals cannot form very extended structures when their
binding energy becomes very small. In figure 2.4 some examples of calculated

b
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Figure 2.4: Deformation β2 as a function of log(−ε) with ε the binding energy
of the halo neutrons. The binding energy itself is negative. In the limit of zero
binding energy the logarithm becomes −∞. Picture taken from [Mis97].
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deformations5 β2 for superdeformed shapes with δ = ( R‖
R⊥

)
2
3 −1 = 0.6 are given.

Here R‖(⊥) denotes the major (minor) axis of the ellipsoid that represents the
nucleus. When the binding energy goes to zero, or the logarithm goes to −∞,
the total deformation of the total system converges to that of the valence state.
For positive parity halos with Λ = 0 the deformation goes to 0 while for negative
parity halos the deformation goes to 0.63 for Λ = 0 and to −0.31 for Λ = 1. The
calculations of T. Misu et al. [Mis97] are made for two-body halos: a core state
and a valence state. This makes the generalization towards 11Li, a three-body
system with a core and two interacting valence particles, difficult. Nevertheless
it is an indication that it might be possible that the extra neutrons influence the
core. If only the valence neutrons determine the quadrupole moment of 11Li,
only a contribution of a configuration in which one (or the two) neutron(s) is
(are) in the 0d5/2 orbital will enhance the 11Li quadrupole moment because of
the spherical shape of the 1s1/2 orbital and the necessary coupling to spin 0 for
the configurations p2

1/2 and s2
1/2.

To verify whether the two loosely bound neutrons in 11Li influence the proton
distribution of the core 9Li, a very accurate measurement of the quadrupole
moments of 9,11Li is necessary. If the quadrupole moment of 11Li turns out
to be different from that of 9Li, the two loosely bound neutrons polarized the
proton distribution of the core.

2.2 Shell closure around N = 8 approaching the
neutron drip line

The first indications for weakening of shell closures far from stability were found
around the N = 20 shell with mass measurements on the 26−31Na isotopes by
C. Thibault et al. [Thi75]. The observed binding energies were much smaller
than expected for closed shell nuclei.

The region around the N = 8 shell closures far from the valley of stability
at the neutron-rich side consists of very light nuclei. The shell model assumes
that all nucleons feel a mean field from the other nucleons. The question raises
if this assumption is still valid for such light nuclei and in particular for halo
nuclei with loosely bound neutrons. Nevertheless, because of its simplicity, the
picture of the shell model is often used to extract from the experimental data
the contribution of different orbitals to the total wave function. When configu-
rations with some nucleons in the orbitals of the sd-shell (fig. 2.5) are necessary
to explain the experimental data of the ground state of such light nuclei with
N ≤ 8, one speaks about a disappearing N = 8 shell gap.

5The deformation β2 is defined as

β2 ≡ 4π

5

〈r2Y 0
2 〉

〈r2〉 (2.2)



2.2. SHELL CLOSURE AROUND N = 8 APPROACHING THE NEUTRON DRIP LINE7

The disappearance of the N = 8 shell closure (fig. 2.5) was first suggested
in the 4Be-isotopes. The 4Be-isotopes have proton configurations with a full

0s
1/2

0p
1/2

0p
3/2p-shell

1s
1/2

0d
5/2

0d
3/2

sd-shell

N=8

N=2

N=20

Figure 2.5: Schematic view of the p- and sd-shell single particle levels for light
neutron-rich nuclei [Ots03] (section 7.2.2) .

0s1/2 orbital and two protons and two holes in the 0p3/2 orbital. 11
4 Be7 con-

sists of a 10
4 Be6 core and a loosely bound neutron. Since the ground state of

the core 10Be has spin zero, the spin of the ground state of 11Be is expected
to be determined by the orbital 0p1/2 of the unpaired neutron. This gives a
spin/parity 1/2−. However, this spin/parity was measured to be 1/2+ [Mil83].
This can mean that the unpaired neutron is situated in the 1s1/2 orbital or that
the core is in its first excited state 2+ and couples to the unpaired neutron in
the 0d5/2 orbital, giving the |(10Be)2+ ⊗ ν0d5/2, I

π = 1/2+〉 configuration. In
any case it means that configurations with neutrons in orbitals of the sd-shell,
across the N = 8 shell gap play a role in the wave function of the ground state of
11Be. The later measurement of its magnetic moment [Gei99] together with shell
model calculations by Millener with a free neutron gs factor, suggested a large
contribution (≈ 82%) of the intruder |0+ ⊗ ν1s1/2〉 configuration in the total
configuration [Gei99]. This was confirmed by the 11Be(p,d)10Be transfer reac-
tion in which the |ν0d5/2〉 component was found to represent 16% of the ground
state of this nucleus [For99, Win01]. Extra confirmation came from the study
of the one-neutron knockout reaction 9Be(11Be,10Be + γ) at 60 MeV/nucleon.
The comparison of the experimental cross sections to calculated spectroscopic
factors, indicates a dominant 1s single-particle character of the 11Be ground
state and a small contribution of core excitation |(10Be)2

+ ⊗ ν0d5/2〉 in the
wave function [Aum00].
In 12

4 Be8, a low lying 1− state was observed at 2.68(3)MeV [Iwa00] (fig. 2.6).
The lowering of this state is explained by a quenching of the energy gap be-
tween the 0p1/2 and 1s1/2 orbitals. This quenching is explained by Otsuka et al.
[Ots03] by a reduced strength of the attractive interaction between spin-orbit
partners when the number of nucleons in one of the partner orbitals is decreas-
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ing (section 7.2.2). Recently also a low lying 0+
2 isomeric state at 2.24(2)MeV

N=7 N=8

Figure 2.6: Comparison of the 1/2+ excited states of the N=7 and the 1− excited
states of the N=8 isotones of Be and C [Iwa00, Tal60]. Picture taken from
[Iwa00].

was observed with a lifetime 50ns< τ < 11µs [Shi03]. This can also be un-
derstood in the picture of the quenching of the gap between the 0p1/2 and the
1s1/2 orbitals. In this picture the wave function of both the ground state and
that of the 0+

2 isomer is an admixture of ν(0p1/2)2 and ν(1s1/2)2 configurations.
In addition, the cross section for obtaining the first excited 2+ state of 12Be
via inelastic proton scattering on the 0+

1 ground state was measured [Iwa00b].
Via comparison with theoretical calculations this gives an indication of a large
deformation length δ = 2.00(23)fm of the 12

4 Be8 ground state [Iwa00b], while a
closed shell nucleus (N=8) is expected to be almost spherical. The comparison
of the spectroscopic factors and the experimental cross sections in the one neu-
tron knockout reaction 9Be(12Be,11Be+γ)X show a significant occupancy of the
1s1/2 state in 12Be as well as an admixture of the 0d5/2 state [Nav00, Zwie79].
Finally a large breaking of the p-shell closure in 12Be was suggested by the
theoretical study based on the shell model to explain the observed anomalously
large logft(12Be0+ →12B1+

g.s.) = 3.834(17) value [Suz97]. Such a large logft
value corresponds to a retarding of the Gamow-Teller transitions, i.e. of the
decay.

Recently an indication was found of a large admixture of ν1s2
1/2 in the ground

state wave function of the two-neutron halo 14Be [Lab01] by comparison of the
measured two-neutron removal cross sections and neutron angular distributions
with the three-body model calculations of Thompson et al. [Tho96].



2.2. SHELL CLOSURE AROUND N = 8 APPROACHING THE NEUTRON DRIP LINE9

For the 5B-isotopes a weakening of the shell closure is found by spectroscopy
[Aoi97]. The main configuration of the 2− ground state of 14

5 B9 with nine
neutrons is considered to be π(0p3

3/2)ν(0p2
1/21s1

1/2) in a single particle pic-
ture (fig. 2.5) [Aoi97]. The lowest 1+ state of 14B is in the same picture a
π(0p3

3/2)ν(0p1
1/20p−1

1/21s2
1/2) [Aoi97]. In this case the 1+ state corresponds to

the excitation of one 0p1/2 neutron to the 1s1/2 orbital. Thus the energy dif-
ference ∆ε between the 1s1/2 and 0p1/2 orbitals could be determined. Similar
analysis for N=7 and N=9 isotones lead to the picture of a decreasing ∆ε for Z
decreasing from 6 to 4, independent of the neutron number [Aoi97] (fig. 2.7).
The reduced shell gap ∆ε is also observed in the quadrupole moments of the

Figure 2.7: Energy difference between the ν1s1/2 and ν0p1/2 orbitals for the
nuclei with 7 (horizontal bars) and 9 (filled circles) neutrons as a function of
atomic number Z. Picture taken from [Aoi97].

B-isotopes. The quadrupole moments of the odd-even 5B-isotopes decrease to-
wards N = 8, as expected for a normal shell-closure (fig. 2.9b). However, the
effect is very reduced. Often a reduction of 20 − 30% is observed if 2 − 4 nu-
cleons are removed. Two examples are given in figure 2.8. In figure 2.8a the
quadrupole moments of the isomeric states in the Pb-region are compared to
the quadrupole moment of corresponding isomers in the doubly magic 208

82 Pb126

[Ney03]. When two neutrons are removed (N=124), the quadrupole moment
rises by more than 30%. In figure 2.8b an example in the region of the doubly
magic Z = 8, N = 8 is given. The quadrupole moment of the ground state of
19
8 O11 is about 30% higher than that of 17

8 O9 with nine neutrons, approaching
the doubly magic nucleus 16

8 O8.
The magnetic moments of the odd-even B isotopes, which are sensitive to the
structure of the unpaired valence particles, increase towards the Schmidt value
when the ν0p-shell is being filled (fig. 2.9a). Their spins are known to be 3/2−.
This indicates a pure π0p3

3/2 configuration. The magnetic moment of the odd-
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Figure 2.8: (a) Quadrupole moments of isomers in the Pb-region compared to
that of the corresponding isomer in the doubly magic 208

82 Pb126. Picture taken
from [Ney03]. (b) Quadrupole moment of the ground state of the 17

8 O9 and 19
8 O11

isotopes as a function of the neutron number.
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odd 14
5 B9 isotope µ(145 B9) = 1.185(5)µN [Oku95] can only be explained in the

frame of shell model calculations if the ν1s1/2 orbit is lowered and the gap be-
tween the ν1s1/2 orbit and the ν0d5/2 orbit becomes larger [Oku95].

For the 3Li-isotopes the situation is less clear. The spins of 9,11
3 Li6,8 are

known to be Iπ = 3/2− and the magnetic moments of the Li-isotope chain
increase towards the Schmidt-value (fig. 2.9a), indicating a pure π0p3/2 con-
figuration. This doesn’t indicate any disappearance of the N = 8 shell gap.
However, as demonstrated also in the odd-even B-chain, the magnetic moment
is not very sensitive to deformation. The quadrupole moment of 11Li has an
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Figure 2.9: Experimental (a) magnetic moments and (b) quadrupole moments
of the odd-even Li and B isotopes measured before this work [Arn87, Arn88,
Arn92, Oga03, Oku95, Izu96].

error which is too large to allow conclusions about the shell closure to be drawn
(fig. 2.9b). Some experimental indications of weakening of the N = 8 shell
closure in the Li-chain were found in the past. An indirect indication of ad-
mixture of the intruder ν1s2

1/2 configuration in the ground-state of 11Li was
given several times by the anomalously large logft values in the β-decay of 11Li
[Suz94, Bor97, Aoi97, Ots95, Roe74, Bjo81]. This corresponds to a retarding
of the β-decay and can be explained by two effects. If the initial state of the
β-decay is loosely bound as in a halo and the final state is deeply bound, the
overlap of the single-particle wave functions of the two states of the β-decay
becomes small, which retards the β-decay (”halo effect”). A second effect is the
possible contribution of the sd-shell to the wave function of the ground state.
Because of the absence of sd-shell components in the configuration of the pro-
tons, the neutrons that are excited into the sd-shell do not contribute to the
β-decay. To describe the experimental data, Otsuka et al. needed the two ef-
fects [Ots95]. Another indirect indication came from the study of the unstable
10Li [Zin95]. A low lying s- [Kry93, Zin95] and p-state [You94, Boh93] in the
spectrum of 10Li were found. Thompson et al. [Tho94] found that a neutron
s state at low energy in the spectrum of 10Li would lead to an 11Li halo with
about equal admixtures of 1s2

1/2 and 0p2
1/2. A direct interpretation of the ex-

perimental results by M. Zinser et al. confirmed an appreciable amount of 1s2
1/2
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in the 11Li halo wave function [Zin95].
Recently a direct experimental indication of admixtures in the sd-shell was
found [Sim99]. After the fragmentation of 11Li incident on a carbon target,
the momentum distribution of the 10Li fragments was studied, which gives ac-
cess to the momentum distribution of the removed neutron in 11Li. From the
shape of the distribution, the ν1s2

1/2 contribution to the mixture of ν1s2
1/2 (pos-

itive parity) and ν0p2
1/2 (negative parity) components in the ground state wave

function was determined to be 45±10%. In the calculation the 0d5/2 orbital was
not taken into account. Precise values of the quadrupole moments of 9,11Li can
indicate an extra mixing of normal and intruder states with at least one neutron
in the 0d5/2 orbital in the total wave function of the 11Li ground state. The two
halo neutrons in the configurations ν(0d2

5/2) and ν(1s1/20d5/2) can couple to 2+.
These neutrons can couple with the proton in the 0p3/2 orbital, giving the total
((ν0d5/2)22+⊗(π0p3/2)3/2−)3/2− or ((ν1s1/20d5/2)2+⊗(π0p3/2)3/2−)3/2− config-
uration. This coupling can enhance the quadrupole moment, while coupling to
the ν(1s2

1/2)0+ or ν(0p2
1/2)0+ configurations would not enhance the quadrupole

moment.

Summary

In this thesis the ratio of the quadrupole moments of 11Li and 9Li is determined.
There exist two different approaches to describe a possible change of the 11Li
quadrupole moment with respect to that of its core 9Li.

1. If the N = 8 shell closure is strong enough for the neutron rich 9,11Li nu-
clei, we will observe a smaller quadrupole moment for the ground state of
11Li than for the ground state of 9Li. If not, as indicated by the observed
admixture of ν(s1/2)2 and ν(p1/2)2 configurations in the ground state of
11Li [Sim99], the two quadrupole moments can be equal. Only an admix-
ture of a configuration with at least one neutron in the 0d5/2 orbital, in
the ground state wave function will enhance the quadrupole moment.

2. If the two loosely bound neutrons of the halo nucleus 11Li polarize the
proton distribution of the core, the quadrupole moment of 11Li will be
different from that of 9Li. When the wave function of the two loosely
bound neutrons have only contributions from the 1s1/2 and 0p1/2 orbitals,
both neutrons will couple to 0+ and the quadrupole moment of 11Li could
become smaller than that of 9Li. When one of the two loosely bound
neutrons is in the 0d5/2 orbital, both neutrons can couple to 2+. This
could give rise to a quadrupole moment of 11Li, being larger than that of
9Li. If the core and the two loosely bound neutrons are fully decoupled,
the quadrupole moments of 9Li and 11Li will be equal.

In the two theories, an admixture of the configuration with two neutrons coupled
to 2+ in the wave function of the 11Li ground state will enlarge its quadrupole
moment.
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Because of the almost constant charge-changing cross sections of 8−11Li [Bla92]
and the similar quadrupole moments of 9,11Li [Arn92], the expected effect is
small (< 10%) and a high-precision measurement of the 9,11Li quadrupole mo-
ments is needed.

2.3 Test of new theoretical models

The newly discovered phenomena as halos and disappearing shell closures could
not be explained by simple shell model calculations. Therefore new models were
developed. Some models have already calculated the nuclear moments of the Li
isotopes [Nav98, Var95, Var02, Ots99, Des97, Kan01]. Other models, such as
microscopic models using hyperspherical coordinates and functions, are working
at the limits of computational power [Tim02]. They are not yet able to calculate
the nuclear moments of 11Li. Our new precise experimental results will provide
now or in future a stringent test of these models.

2.4 Structure of this work

After the physics motivation in this first chapter, the second chapter describes
the production of spin-oriented Li-isotopes. The technique of optical pumping
is explained in this chapter.
A third chapter explains some level mixing techniques to measure nuclear mo-
ments via a resonant destruction of the created spin-orientation.
The fourth chapter handles about calibration- and test measurements in order
to optimize some parameters of the β-NMR (Nuclear Magnetic Resonance) set-
up.
In the next chapter we come to the experimental results with a section about
magnetic moments and one about quadrupole moments behind the section on
error propagation. The nuclear moments of 9,11Li were measured relative to
those of 8Li, which are known up to an accuracy of 0.001% for the g-factor
and 2% for the quadrupole moment [Rag89]. For the earlier measurements of
Q(8,9Li), the quadrupole moment of 7Li was used as a reference. Recently this
quadrupole moment has been revised [Pyy01]. The presently adopted value is
Q(7Li) = −40.0(3)mb [Voe91, Pyy01]. This makes a revision of the earlier pub-
lished values of Q(8,9Li) necessary.
The precision on the ratio Q(11Li)

Q(9Li) is obtained from the precision on the ratio of
the observed quadrupole frequencies. This doesn’t depend on the precision of
the absolute values of the quadrupole moments and can, in principle, be better
than 2%.

The last chapter is devoted to the interpretation of the experimental results
within the nuclear shell model. This model is not able to answer all our ques-
tions, and more accurate models are under development. Therefore an overview
of the present status of these more accurate models is also presented.



14 CHAPTER 2. MOTIVATION

The expected difference between the quadrupole moments of 9Li and 11Li
is small. To improve the experimental accuracy, some experimental parame-
ters were optimized with less exotic Li isotopes such as 8,9Li. In each section
the optimization of the parameters explained in that section is given. Here I
give a short overview of the different optimized parameters: an attempt was
made to optimize the production rate by using different targets. The power
and frequency of the laser light were adjusted to create maximal polarization.
Several implantation crystals have been investigated to find the host with the
best implantation properties and a suitable electric field gradient. In addition,
the homogeneity of the static magnetic field was tested and measurements for
different rf-powers were performed.



Chapter 3

Production of spin-oriented
Li-isotopes

In this chapter, the production of the Li-isotopes at ISOLDE is described first.
Afterwards, the creation of atomic and nuclear spin-orientation via the technique
of optical pumping is explained.

3.1 Production of Li-ions

The experiments are performed at the ISOLDE1 experimental facility at CERN.
A schematic view of the ISOLDE hall is given in figure 3.1.
The ISOLDE facility uses the PSB booster of the large proton synchrotron PS
to accelerate the pulsed proton beam to 1.4GeV. The proton pulses (2.4µs wide)
consist of about 3.1013protons. They are separated by 1.2s and distributed to
several facilities. In most of the performed experiments we got about 7 pulses
out of the 14 pulses that form a ”super cycle” of 16.8s.
These protons irradiate a target material which is situated in a heated tube,

kept at a temperature of about 1800◦C. For the choice of the target material
one can be lead by [iso, Let97]. Both Ta and UC2 were used as target material.
The fragmented isotopes evaporate from the target material and diffuse via a
drift tube to a connected ion source [Kug93, Kug00]. For the Li alkali-metals
with a low work function a surface ion source made of a hot W wire is used.
The ion source and the whole target vacuum-chamber are kept at high voltage
(HVISOLDE ≈ +60kV) to accelerate the ions up to 60keV.
Once extracted, the ions are mass separated. There are two mass separators at
ISOLDE, called GPS (General Purpose Separator) and HRS (High Resolution
Separator). The GPS consists of one dipole magnet and has a resolution of
m

∆m = 2400. The HRS consists of two dipole magnets and has a higher reso-
lution of m

∆m = 5000. For the very light Li isotopes the resolution of the GPS

1Ion Separator On Line DEvice [Isolde, Kug93, Kug00]

15
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Figure 3.1: Schematic view of ISOLDE at CERN. Figure taken from [Isolde].

is good enough because there are almost no isobaric contaminants in this mass
region. In the experiments of 2003 the GPS was used. In October 2001 the HRS
was used. In June 2002, two different targets, which were each installed at the
front-end of a different separator, were used. In that experiment, the GPS was
used for the separation of 8,9Li. The HRS was used for the separation of 11Li.
After separation, the ions are guided to the experimental COLLAPS set-up.

The time between a proton pulse impinging onto a target and the arrival of
Li-ions in the COLLAPS set-up is of the order of 100ms. The main contribution
is the release time out of the target (≈ 100ms) [Ben02, Kos00]. The time needed
for the transport towards the set-up (≈ 10−5s) is negligible compared to this
release time.
The release time is small compared to the half life of 8Li (T1/2(8Li) = 838(6)ms).
So most of the produced 8Li-ions arrive at the set-up, leading to a high observed
count-rate of > 106 β

pulse . The release time is of the same order as the half life
of 9Li (T1/2(9Li)= 178.3(4)ms). The observed count rate stays sufficiently high
(> 105 β

pulse ). The β-decay of the Li-isotopes was detected via two plastic scin-
tillator telescopes at the end of the COLLAPS set-up.
The half life of 11Li (T1/2(11Li) = 8.5(2)ms) is one order of magnitude shorter
than the release time. This reduces enormously the observed amount of Li-
isotopes. In addition, the large neutron excess of 11Li (Z = 3, N = 8) causes
a low production rate. To increase the observed amount of Li-isotopes, it is
important to use the optimal target which minimizes the release time and max-
imizes the production rate.
We used a UC2 foil and two different Ta targets (table 3.1). The first Ta target
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(in the table: ”thick”) consists of a rack of roled Ta foils. The foils themselves
have a thickness of about 20µm. The total thickness of the roled foils is 122 g

cm2 .
The second Ta target (in the table: ”thin”) consists of different thin Ta foils of
about 2µ m (added to a total thickness of 13 g

cm2 ) thickness, which is designed
for short-lived isotopes [Ben02].

Table 3.1: (a) β-counts/pulse in one of the detectors of the scintillator tele-
scopes at the end of the COLLAPS set-up with a typical current of 2µA. (b) De-
duced ALi-rates after correction for the efficiency of one of the detectors and the
loss due to beam-transport and normalized for a current of 1µA. (c)Tabulated
ion-rate coming out of the ion source(per pulse) normalized for a current of
1µA [Let97, iso].

8Li 9Li 11Li
(a) UC2 target

1990 9 ∗ 104 200
October 2001 106 105 200
Ta target thick
1990min. ISOLDE2 8 ∗ 106 4 ∗ 105 40
1990max. ISOLDE2 150
June 2002 2 ∗ 106 3 ∗ 105 180
Ta target thin
June 2002 beginning 9 ∗ 105 260
June 2002 averaged over one night 140
June 2002 end 4 ∗ 105 50

(b) UC2 target
1990 ISOLDE2 9 ∗ 105 2000
October 2001 1 ∗ 107 1 ∗ 106 2000
Ta target thick
1990min. ISOLDE2 8 ∗ 107 4 ∗ 106 400
1990max. ISOLDE2 1500
June 2002 2 ∗ 107 3 ∗ 106 1800
Ta target thin
June 2002 beginning 9 ∗ 106 2600
June 2002 averaged over one night 4 ∗ 106 1400
June 2002 end 500

(c) UC2 target 5.8 ∗ 107 3.9 ∗ 106 1400
Ta target thick 8 ∗ 108 7 ∗ 107

Ta target thin 5.8 ∗ 108 1.7 ∗ 107 7000

In table 3.1, the different count rates in one of the scintillator telescopes
(a) are shown, together with the expected number of ions per pulse coming
out of the ion source (c). We have to correct for the loss in beam transport of
about 50% and the efficiency of the scintillator-telescope of about 10%. After
this correction, the count-rate is normalized to a pulse of 1µA. Note that the
corrected production rates (b) are smaller than the expected numbers for 8,9Li.
The production rate of 11Li ions using a UC2 target is more or less as expected
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by the tabulated value. The thin Ta target produces less 11Li isotopes than
expected. In addition, the yield drops very fast as a function of time2. On the
other hand, most 11Li atoms were produced with this target. This fact and the
promise of having a better ”thin Ta target” for the experiment with the optimal
set-up in May 2003 and June 2003, lead to the conclusion of using the ”thin
Ta target” for the production of 11Li. To spare this target, we chose a different
target for the production of 8,9Li, i.e. the ”thick Ta target”.

3.2 Creation of nuclear spin-orientation

3.2.1 Spin-orientation

An ensemble of nuclei (atoms) with spin I is spin-oriented if the nuclear (atomic)
spins have a preferential direction in space. Choosing a quantization axis Z al-
lows the description of this spin-orientation in terms of the probability P (m)
that the nuclear spin has a projection |m〉 onto this axis. If the quantization
axis is an axial symmetry axis of the oriented ensemble, the orientation is fully
determined by these probabilities P (m). For a non-axially symmetric oriented
ensemble, the density matrix ρmm′ = 〈m|ρ|m′〉 is necessary for the description
of the spin-orientation. The diagonal elements ρmm = P (m) describe the pop-
ulation of the different spin-projections. The non-diagonal elements describe
the coherence between different m-states. The density matrix is related to the
density tensor ρn

k [Stef75]:

ρn
k =

√
2k + 1

∑

mm′
(−1)I+m

(
I I k
−m m′ n

)
〈m|ρ|m′〉 (3.1)

and to the orientation tensor

Bn
k =

√
2I + 1ρn∗

k (3.2)

If there exists axial symmetry, but the reflection symmetry is broken, i.e.
P (m) 6= P (−m), the ensemble is spin-polarized (fig. 3.2).

The normalized polarization is defined such that for maximal positive po-
larization, with all spins parallel to the quantization axis, P (I) = +1 and for
maximal negative polarization, with all spins anti-parallel to the quantization
axis, P (I) = −1 [Ney03]

P (I) ≡
∑

m mP (m)
I

(3.3)

The polarization is related to the first order orientation tensor [Kra86]

P (I) = −
√

I + 1
3I

B0
1(I) (3.4)

2After the experiment, sintered foils were observed. This can explain the enormous drop
in the yield.
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Figure 3.2: Spins and population of the m-levels for a polarized ensemble of
nuclei.

3.2.2 Creation of nuclear spin-orientation

In figure 3.3 a schematic overview of the COLLAPS set-up is given. Laser light
(fig. 3.3a) is produced with a continuous wave (CW) dye laser 3 focussed with
lenses and guided towards the set-up. After the focussing, the laser beam has
a diameter of about 7mm. A prism of calcite (fig. 3.3b) polarizes the laser
light linearly. A λ

4 wave plate (fig. 3.3c), consisting of a quartz plate, is placed
where the laser light enters the set-up. This plate introduces a phase shift
δ = π

2 between the orthogonal polarization components of the electric field
~E = E0cos(ωt)~i + E0cos(ωt + δ)~j when the incoming wave of the laser light
makes an angle of π

4 with the optical axis of the quartz plate. Thus the laser
light becomes circularly polarized. This plate will be turned by 90o to change
the sign of the polarization.
The beam of laser light and the ion beam (fig. 3.3d) are made collinear by
two vertical deflection plates (fig. 3.3e) at about 2kV which deflect the ions at
60keV by 10o. Then the ions are accelerated (or decelerated) by a voltage Vacc

(fig. 3.3f), which can be varied from about −10kV to about +10kV.
The accelerated ions are guided to the charge exchange cell (CEC)(fig. 3.3g) full
of Na vapor, which neutralizes the Li+ ions 4. Solid Na is heated to vaporized

3A dye is a chemical molecule in a liquid solvent. The used dye is DCM(LC6501), which
is C19H17N3 (4-Dicyanmethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran). The used
solvent is a mixture of 95% ethylene glycol and 5% benzyl alcohol. This laser is pumped by
an Argonion ArII laser.

4The used reaction is Li+ +Na → Li+Na+ +∆E. Here ∆E is the difference in ionization
energies of Na (Eion(Na) = 5.14eV) and Li (Eion(Li) = 5.39eV). Other properties of Na
are its solid density of ρ = 968 mg

cm3 , its melting temperature Tmelting = 370.87K and boiling

temperature Tboil = 1156K [CRC77]. The electronic configuration of Na is 1S22P 63S and
that of Li is 1S22S.
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Figure 3.3: Schematic view of the experimental COLLAPS set-up.

Na by a coaxial thermo cable at 40V and about 1.2A around the tube filled
with Na. The reached temperature is about 560K, giving a Na vapor pressure
of about 10−2mbar [Vee03, Gei02] and a neutralization efficiency of about 50%.
The non-neutralized ions are deflected out of the beam by a deflection plate on
a high voltage (e.g. 2000V) (fig. 3.3h), while the neutral atoms continue their
way.
Once the atoms are neutralized, the optical pumping process can start [Kas50,
Kas57, Coh66, Ber65, Kei96, Kop69]. This means the atoms are ”pumped” to
one mF -state via laser light (”optical”).

In figure 3.4 the concept of optical pumping is visualized for 8Li atoms with
three electrons and nuclear spin I = 2. The ground state of the valence electron
is the 2S orbital with an orbital angular momentum l = 0. The energy gap
with the first exited state 2P (l = 1) is ∆E = 1.848eV5. The coupling of the
intrinsic electron spin s = 1/2 with its orbital angular momentum l, to the total
spin of the electron J , results in the fine splitting of the atomic levels [Sob79].
This splitting is 105 times smaller than the splitting between the atomic ground
state and the first atomic excited state. The total electron spin J couples with
the nuclear spin I to the total atomic spin F due to the hyperfine interaction
[Sob79, Cot02]. This hyperfine splitting is 103 times smaller than the fine split-
ting.
Each of these hyperfine levels F has 2F+1 degenerated sublevels |F, mF 〉, named

5To excite free 8Li atoms at rest we need an electromagnetic wave, e.g. laser light, with
a frequency νlaser = ∆E

h
= 0.447 1015Hz. This corresponds to a wavelength λ = c

ν
=

670.976nm (red light) and a wave number k = 1
λ

= 14903.67cm−1.
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Figure 3.4: Principle of optical pumping on the atomic mF levels of 8Li with
I = 2. The drawn energy gaps are not in scale.

by their projection mF on the quantization axis. While mF is a good quantum
number, the spin projections of the nuclear spin mI and electron spin mJ are
not good eigenstates of the free atom. It are the mF sublevels that are involved
in the optical pumping process. Right σ+ (left σ−) circularly polarized laser
light induces transitions from the ground state to an excited state6, obeying the
selection rule ∆mF = +(−)1 [Coh66]. The subsequent spontaneous emission
obeys the selection rules ∆mF = ±1, 0. The continuous process of excitation
and decay continues until the level mF = F (−F ) is reached, which can not
be excited by the σ+ (σ−) laser light. After some pumping cycles, typically of
the order of 0.5µs [Kei96], most atoms end up in the mF = F (−F ) level. A
high amount of atomic spin-polarization is created. The symmetry axis of the
polarized atomic ensemble is along the laser beam direction.

Over the whole optical pumping region, the atoms are subjected to a small
”guiding” magnetic field (fig. 3.3i). This field Bs is induced by a DC current
through coils, shielded with µ-metal, around the beam-line over a length of 1.8m.
With a velocity of v = 1.2 106 m

s the atoms will pass during 1.5µs in the optical
pumping section. In the first 60cm maximal spin-polarization is created [Kei96].
Behind the optical pumping region, the atoms are subjected to an additional
high static magnetic field of about B0 ≈ 3000G (fig. 3.3j), perpendicular to
the guiding field. The atomic spins, precessing around the total field, rotate

6The transition from 2S1/2 to 2P1/2 is called a D1-transition. The transition from 2S1/2

to 2P3/2 is called a D2-transition.
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from the direction of the guiding field ~Bs to the direction of the high static
magnetic field ~B0. This rotation of the atomic spins should go slow enough,
i.e. adiabatically, in order to keep the spin-orientation [Kei96]. Therefore the
guiding field was increased towards the large magnetic field from about 10G to
20G. Combined with the stray field of the static magnetic field B0 this causes
a slightly increasing field in the direction of the field ~B0 and thus an adiabatic
rotation of the atomic spins.

Atomic spin polarization implies an indirect spin polarization of the nuclei
via the hyperfine interaction. In a high magnetic field, the hyperfine interac-
tion becomes negligible compared to the Zeemann-interactions (fig.3.5) for a free
atom [Kei96, Ney93b]. The electron Zeemann-interaction dominates the nuclear
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Figure 3.5: Decoupling of the electron spin J and nuclear spin I in the pres-
ence of a static magnetic field, higher than some hundreds of Gauss (Breit-Rabi
diagram). At high B, the eigenstates of the system approach the eigenstates
|ImI ; JmJ〉 of the Zeemann-interaction. At low field we get |(IJ)FmF 〉 states
which are linear combinations of the |Imi;JmJ〉 states [Ney93b].

Zeemann-interaction because the Bohr-magneton is 1836 times larger than the
nuclear magneton7. The guiding field is small enough to keep the coupling of
the electron- and nuclear spin and thus to allow the creation of atomic spin ori-
entation. The large static magnetic field B0 at the end of the set-up decouples
the electron- and nuclear spins. Like this an oriented ensemble of nuclear spins
is created just before the implantation of the Li-isotopes into a single crystal
(fig. 3.3k). This is important because the electron spins will loose very quick
their orientation due to the interaction with the electrons of the crystal lattice.
The nuclear spin-relaxation time due to the interaction of the electrons in the

7The precession frequency of the electrons νL,e = geµBB0
h

while that of the nuclei νL,n =
gnµN B0

h
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crystal lattice with the nuclei, is much longer than the electronic spin-relaxation
time. It varies from 0.5ms up to several seconds or minutes, depending on the
host. So the decoupling of nuclear- and electron spins allows a slower relaxation
of the nuclear spin-orientation.

The spin-orientation is monitored via the β-asymmetry by two plastic (NE102A)
scintillator telescopes (fig. 3.3l). Each detector is biased with a voltage of
−2.150kV. Each telescope consists of two thin ∆E detectors of 1mm, placed at
respectively 0o and 180o with respect to the axis of the static magnetic field ~B0.
In each of the detectors the electrons loose about 300keV. The β-asymmetry is
then defined as N(0◦)−N(180◦)

N(0◦)+N(180◦) with N(0◦) and N(180◦) the number of counts in

the detector placed at respectively 0o and 180o with respect to ~B0. To eliminate
noise in the β-spectra, coincidences between the two detectors of one telescope
were taken. The individual and coincidence counts were stored in the data ac-
quisition.

About 20cm before the coils that induce the large static magnetic field B0,
an ”iris” diaphragm (fig. 3.3m) is placed. This is a kind of variable collimator to
be able to cut the halo around the beam spot (typically about 7mm diameter).
The diameter of the iris is variable between 3mm and 9mm. This diaphragm
can be used for the tests of the collinearity of the laser beam with the ion beam.
If the amount of created polarization doesn’t decrease by opening the iris di-
aphragm, the two beams are collinear.

This ”optical pumping” technique creates rather high polarization (P ≤
30% [Kei96]), but it is not universally applicable. In general, the atomic level
scheme needs to be studied case by case to check the feasibility of the technique.
For all alkali-atoms the atomic level scheme is simple and similar. Singly ionized
alkali-metals have a closed shell configuration like the noble gasses. E.g. for Li+,
the energy gap between the ground state 1s2 and the first exited state 1s12s1

is ∆E = 59eV, corresponding to a needed wavelength λ = 21nm. Laser light
with this wavelength is experimentally hard to create8. For neutral alkali metals
the needed laser light to excite the atoms has a wavelength in the range of the
electromagnetic spectrum of visible light. In addition the atomic excitation
scheme is such that there are no major orientation losses. So this technique is
very suitable for neutral atoms of alkali-metals or ions of alkaline earth metals.
For other elements the atomic excitation scheme is often more complicated such
that it is more difficult (if not impossible) to create sufficient amount of spin-
orientation.

8The electromagnetic spectrum of visible light goes from about λ = 400nm until λ =
700nm.
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3.3 Doppler shifted laser frequency

3.3.1 Calculation of the Doppler shifted frequency

To resonantly excite the accelerated Li atoms with the laser light, the Doppler
shifted laser frequency needs to be applied. When the total acceleration voltage
Vtot is known, one can calculate this frequency [Kei96, Gei02, Arn86]:

νL,D = ν0 + δνD = ν0
1 + β√
1− β2

(3.5)

with ν0 the resonant laser frequency to excite atoms in rest and

β =
v

c
=

√
1− m2c4

(eVtot + mc2)2

≈
√

2eVtot

mc2

with e the charge of an electron, m the mass of the isotope and v(c) the speed
of the ions (light). In the approximation on the second line eVtot is assumed to
be small in comparison with mc2. Applying this approximation once more gives

νL,D ≈ ν0(1 +

√
2eVtot

mc2
) (3.6)

In principle it is possible to excite individual hyperfine levels, which can
enhance the amount of produced spin-polarization. The produced polarization
is different for each resonant hyperfine transition.
To find the correct ν0 for a particular transition, one needs to know the hyperfine
splitting and thus the magnetic and electric coupling constants for the ground
state (and/or excited state of the hyperfine structure), respectively A and B
[Ott89, Sob79, Cot02] (fig. 3.6). In first order the energy splitting is given by

∆E(F ) =
AK

2
+ B

3/4K(K + 1)− I(I + 1)J(J + 1)
2(2I − 1)(2J − 1)IJ

(3.7)

with

K = F (F + 1)− I(I + 1)− J(J + 1)

A =
µIB(0)

IJ
B = eQVzz(0)

with B(0) the magnetic field induced by the atomic electrons at the place of
the nucleus, µI the nuclear magnetic moment, Q the spectroscopic nuclear
quadrupole moment and Vzz(0) the electric field gradient induced by the atomic
electrons at the place of the nucleus. The magnetic coupling constant A will
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be the largest for s-electrons. For J = 1/2 electron states, such as P1/2, S1/2

electron states, the quadrupole coupling constant B = 0 because they do not
induce an electric field gradient. In addition the quadrupole moments of the
Li-isotopes are small. Therefore the hyperfine splitting of the ground-state of
Li(2S1/2) will be fully determined by the magnetic coupling constant A.

2S
1/2

2P
1/2

1

2P3/2

F

I+1/2

I-1/2

I+1/2
I-1/2

I+3/2

I-3/2

=A(I+1/2)
for J=1/2
states

h( (  Li)+IS)n
8

A[MHz]
[Arn86]       154.8(68)      428(8)       460(16)
[Neu73]      153.017(3)
[Ewa04]                            424.14(9)

Li                  Li             Li
8 9 11

IS( Li-   Li)
[MHz]
[Arn86]                            6129(28)     15097(52)

8 A'

I[h]                    2               3/2                   3/2

(a) (b)

Figure 3.6: (a) Hyperfine structure for A′Li. (b) The total isotope shift and the
magnetic coupling constant for some Li-isotopes.

The resonance frequency ν0 for exciting an electron from the 2S1/2 to 2P1/2

level, is dependent on the isotope. The isotope shift IS [Gei02, Lie91, Ott89,
Sob79, Kin84] has two causes: the change in mass between the isotopes (mass
shift) and the change in volume and deformation between isotopes, leading to a
change of the electrostatic potential (field shift or volume shift). For light atoms
as Li, the field shift is 104 times smaller than the mass shift. In figure 3.6 we
tabulated the measured isotope shifts [Arn86]

IS = KMS
mA′ −mA

mA′mA
+ Felδ〈r2〉AA′ (3.8)

with KMS the mass factor and Fel the electronic factor, which are each element
dependent constants [Kin84, Gei02]. mA and m′

A are the masses of the isotopes
and δ〈r2〉AA′ is the difference in the mean square charge radii between isotope
A’ and the reference isotope A.

3.3.2 Tuning the resonance wavelength for doppler shifted
atoms

The total uncertainty on the exact resonance frequency to apply is rather high,
due to systematic errors on the total acceleration voltage Vtot (∆V = 5− 10V ),
on the read-out of the used frequency of the laser light (∆νread = 300MHz) and
the uncertainties on the isotope shifts (fig. 3.6). Therefore we have to verify
experimentally which frequency creates atomic spin-polarization, by scanning
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the Doppler shifted frequency. By monitoring the β-asymmetry during such
”hyperfine scan” the resonance where polarization is created can be found.
The easiest way to vary the Doppler shifted laser frequency is to modify the
beam velocity with a varying voltage Vacc and to keep the frequency of the laser
light constant. This voltage Vacc will accelerate the positively charged ions when
this voltage is negative. It will decelerate the ions when it is positive. The total
voltage Vtot is then the difference between the ISOLDE high voltage and the
voltage Vacc.

Vtot = HVISOLDE − Vacc (3.9)
= HVISOLDE − (Vfluke + 50Vscan) (3.10)

consists of the ISOLDE high voltage of about HVISOLDE ≈ 60kV and the
additional voltage Vacc. On its turn, Vacc consists of a fixed voltage −10kV ≤
Vfluke ≤ 10kV provided by a Fluke power supply and a varying voltage −10V ≤
Vscan ≤ 10V which is amplified by a factor of 50. The read-out of the additional
voltage Vacc is done with a high precision digital PREMA voltage meter and is
stored in the acquisition. The minimal reading time of this precision meter is
2s. During the experiment in October 2001 and a part of the experiments in
June 2002, May 2003 and June 2003, this reading time was accidentally put too
short. Therefore only the set-value of the Vfluke is available, which has a large
systematic error (≈ 20V). The accuracy on the read voltage with the PREMA
meter is 10−4.
Once the right Doppler shifted frequency is found, Vscan will be fixed. The cre-
ated polarization will allow β-NMR-NQR measurements for the determination
of the nuclear moments.

In figure 3.7 an example of a ”hyperfine scan” is given 9. The hyperfine
structure of the 2S1/2 and 2P1/2 levels in 8Li is scanned. In this scan four
transitions are possible.

Due to the high power of the laser light (more than 50mW
cm2 ), the linewidth

of the power broadened resonances is larger than the hyperfine splitting of
the 2P1/2 level (FWHM ≈ 100MHz ≈ 0.14V) [Cit77]. The two overlap-
ping resonances form one broader resonance with a linewidth of about 150MHz
(FWHM = 0.22(1)V). So only two resonances are visible in the measured β-
asymmetry shown in figure 3.7b. Out of the distance of the two resonances10

9A program HFSSIM is made by the COLLAPS group to simulate a ”hyperfine scan”. It
calculates the needed voltage for a given hyperfine structure and Doppler-shifted wavelength.
As an input it needs the used wave number [ 1

cm
] and linewidth [MHz] of the laser light, the

needed total voltage [V] for a reference nucleus. From this reference nucleus, the mass[u],
total electronic spin[~] of the ground state and excited state has to be given. Afterwards you
can give as an input of different isotopes with its mass[u], nuclear spin[~], isotope shift [MHz]
with respect to the reference nucleus, Aground [MHz], Bground [MHz], Aexcited [MHz] and
Bexcited [MHz].

10To find the positions of the resonances in such ”hyperfine scans” the spectra are fitted
with Lorentzian curves. This is only an approximation of the real line shape. But it is a
sufficient approximation for our purposes.
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Figure 3.7: (a) Scanned transitions for 8Li in a ”hyperfine scan” for the D1-
line. (b) Example of a ”hyperfine scan” of 8Li in Si with as power of the laser
light W = 75mW. A = 3.8(1)%, FWHM = 0.22(1)V.

and equation 3.6, we can get a rough determination of the hyperfine splitting
of the ground 2S1/2 level:

∆E(2S1/2(F = 5/2)− 2S1/2(F = 3/2))
h

= A(I + 1/2) = νDoppler1 − νDoppler2

=
ν0

c

√
2e

m(8Li)
(
√
|Vtot1| −

√
|Vtot2|)

The mass of 8Li is 8.0224867(5)u [Aud95], e = 1.602176462(63) 10−19C and
c = 2.99792458 108 m

s [NIST99]. In this example the total acceleration volt-
age applied at the position of the first peak is Vtot1 = +59296(6)V and Vtot2 =
+59271(7)V. This gives us an energy splitting of the 2S1/2 level ∆E = 388(20)MHz
or A = 155(8)MHz (11). This is in agreement with the known coupling constant
A (fig. 3.6). This allows also a rough determination of the magnetic moment if
the magnetic field induced by the electrons at the place of the nucleus is known.
In this example we scanned a range of Vscan = 3.2V to Vscan = 5.5V, correspond-
ing to a range of ∆ν = 1726MHz, in 100 channels with a step of ∆V = 0.025V,
corresponding to ∆ν = 19MHz.

In resonance, spin-polarization is created. The asymmetry in resonance is
called aP

in. Out of resonance, there is no polarization and the instrumental
asymmetry is called a0

out.

11In this calculation only the difference in voltage is important. So the systematic error on
Vfluke cancels out.
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The amplitudes A = a0
out − aP

in of the resonances are proportional to the de-
tected polarization (section 3.4).
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Figure 3.8: Hyperfine scans for different isotopes and different frequencies of the
laser light. The high voltage of ISOLDE was HVISOLDE = +59891(6)V. (a-b)
8Li and 9Li with as wave number of the laser light kD = 14963.46cm−1. (c-d)
9Li and 11Li with as wave number of the laser light kD = 14957.72cm−1.

In figure 3.8 a ”hyperfine scan” for different isotopes is shown. The shift
in the total needed acceleration voltage Vtot for the resonances in the different
isotopes gives the isotope shift ∆IS. For 8Li and 9Li this gives

νL = ν0(8Li)(1 +

√
2eVtot(8Li)
m(8Li)c2

) (3.11)

= ν0(9Li)(1 +

√
2eVtot(9Li)
m(9Li)c2

) (3.12)

taking into account that the frequency νL of the laser light was the same during
the ”hyperfine scans” of the two isotopes. Replacing ν0(9Li) = ν0(8Li) + ∆IS
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gives an isotope shift

∆IS = ν(8Li)
(
√

2eVtot(8Li)
m(8Li)c2 −

√
2eVtot(9Li)
m(9Li)c2 )

1 +
√

2eVtot(9Li)
m(9Li)c2

(3.13)

Because of the large systematic error on Vfluke, we don’t calculate the number
here.

Because of the large mass difference between the isotopes 8Li and 11Li, for
11Li the additional voltage Vacc needs to be ∆Vacc ≈ 21. 103V. The limits of
the used Fluke power supplies do not allow us to keep the frequency of the laser
light constant for all Li isotopes. Therefore the measurements were performed
in two steps. First the measurements on 8,9Li were performed with one setting

Table 3.2: Overview of the settings of the frequency of the laser light and applied
voltages for the D1-line. ”kD[cm−1]” is the wave number of the laser light we
used in the mentioned experiment. The uncertainty on the ISOLDE high voltage
is 10−4. The uncertainty on the fluke voltages is 1V. The uncertainties on
Vscan,res is given by the statistical fit error. ∗ These fluke voltages are only the
set-values and not the values read by the PREMA voltage meter.

Oct. 2001 Jun. 2002 May 2003 Jun. 2003
HVISOLDE +60007(6) +59891(6) +60009(6) +60008(6)

kD(8,9Li)[cm−1] 14963.536 14963.46 14963.64 14963.63
power laser [mW] 130 120 115 300
Vfluke,8Li[V] 500∗ 600∗ 400∗ 500∗
Vfluke,9Li[V] −6409∗ −6700∗ −6400∗
Vscan,res(8Li)[V] 4.22(3) −2.83(1) −3.51(3) −5.939(4)
Vscan,res(9Li)[V] −1.94(1) −2.03(2) −7.208(4)

kD(9,11Li)[cm−1] 14957.72 14957.45
Vfluke,9Li 5696(1) 6368.3(10)
Vfluke,11Li −5676(1) −5003.4(10)
Vscan,res(9Li)[V] −0.90(1) −1.86(2)
Vscan,res(11Li)[V] −1.03(2) −0.04(1)

of the frequency of the laser light. Afterwards the frequency of the laser light
was changed and the measurements on 11Li were performed with a reference
measurement on 9Li. In table 3.2 an overview of the different settings is given.
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3.4 Determining the created spin-polarization

The time integrated angular distribution of β-decay is given by [Pos86]:

W (θ, φ, τ) =
√

4π.
v

c

∑

k,n

AkQn
kBn

k (I)Y n
k (θ, φ) (3.14)

with θ, φ the angles defining the detector position with respect to the chosen
reference frame (fig. 3.9 and 3.3). Ak are the radiation parameters determined by
the type of radiation [Van86]. Bn

k (I) is the orientation tensor. Qn
k represent the

experimental losses of orientation between the time of production and detection.
v is the velocity of the β-particles and c denotes the constant speed of light.
For allowed β-decay Ak 6= 0 for k = 1. Ak 6= 0 for odd k only due to the parity

Z
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Figure 3.9: Definition of the angles θ, φ for a point P.

violation of the β-decay. Because L = 0 for the β+/− particles, the maximum
k-value for which Ak 6= 0 is k = 1 [Sev89]. So we can restrict expression (3.14)
to k = 1. In our experimental set-up (fig. 3.3), φ = 0 for all detectors. Therefore
only n = 0 terms contribute to the final angular distribution:

W (θ, τ) = 1 +
v

c
A1Q1B

0
1(I) cos θ (3.15)

with θ = 0◦ and θ = 180◦.
The experimental asymmetry is

a =
N(0◦)−N(180◦)
N(0◦) + N(180◦)

=
ε0W (0◦)− ε180W (180◦)
ε0W (0◦) + ε180W (180◦)

(3.16)

ε0−ε180
ε0+ε180

represents an experimental correction factor, the experimental asym-
metry due to the possible different efficiencies of the detectors, the position of
the beam with respect to the crystal, etc. To extract out of these data the
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polarization, independent of this experimental asymmetry ε0−ε180
ε0+ε180

, the asymme-
try in resonance (aP

in) which is sensitive to P , is compared to the asymmetry
out of resonance (a0

out) which is sensitive to the experimental asymmetry of the
detection set-up

a0
out =

ε0 − ε180
ε0 + ε180

aP
in =

ε0(1 + M)− ε180(1−M)
ε0(1 + M) + ε180(1−M)

(3.17)

with
M =

v

c
A1Q1B

0
1(I) (3.18)

The experimental asymmetry cancels when we take the normalized asymmetry

an =
aP

in − a0
out

1− aP
ina0

out

(3.19)

This normalized asymmetry is proportional to the created polarization P

an =
v

c
A1Q1B

0
1(I)

= −
√

3I

I + 1
v

c
A1Q1P (3.20)

The factors v
c , A1 (12) and Q1 determine how much of the created polariza-

tion can be detected.
Because of the high Qβ(ALi) > 13MeV [Fir96, Ajz88], v

c = 1 is assumed.
The radiation parameter A1 is related to the spins of the initial and final states
of the β-decay and depends on the kind of transition, Gamow-Teller or Fermi,
β+ or β− [End90]. For pure Gamow-Teller transitions we have [Pos86]

A1(β±) = ±v

c

√
Ii

3(Ii + 1)
for If = Ii + 1 (3.21)

A1(β±) = ∓v

c

√
Ii + 1
3Ii

for If = Ii − 1 (3.22)

with Ii,f the initial and final spin of the transition respectively. When the initial
and final spins are equal, a mixture of Gamow-Teller and Fermi transitions can
occur, giving

A1(β±) =
v

c

1
1 + y2

(
∓1√

3Ii(Ii + 1)
+

2√
3
y) (3.23)

12In literature very often another definition of the asymmetry parameter A [Jac57] is used,
corresponding to an angular distribution of W (θ) = 1 + v

c
AQPcosθ. The two asymmetry

parameters are related by A1 = −
√

Ii+1
3Ii

A.
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with y the relative strength of the Gamow-Teller axial vector matrix elements
CA(GT ) and Fermi vector matrix elements CV (F ):

y =
CV (F )

CA(GT )
(3.24)

Based on the observed decay schemes (fig. 3.10 ) [Fir96], the radiation param-
eters of 8,9Li are calculated to be A1(8Li) = 0.24 (A = −0.3) and A1(9Li) =
0.08(A = −0.098). For 11Li the asymmetry parameter was deduced in the past
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7.9400
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Figure 3.10: Decay scheme of (a)8Li and (b)9Li [Ajz88]. Figures taken from
[bnl].

from the measured β-asymmetry by E. Arnold et al.: A1(11Li) = 0.24 (A=-
0.3) [Arn92]. The ratio of the amplitudes A(11Li)

A(9Li) and A(11Li)
A(8Li) in the spectra of

this work are similar as in [Arn92, Arn88].
Q1 represents the experimental losses of the created orientation. In the ideal
case, the detected polarization equals the created polarization, sensitive to the
power of the laser light and the kind of transition. In reality there are losses of
spin-orientation. Since the creation of spin-orientation happens at the end of the
beam line, losses in spin-orientation before the adiabatic rotation of the atomic
spins are minimal. The main loss of orientation will happen due to the implan-
tation of the nuclei in the stopper crystal. The spin-lattice relaxation which
causes this loss of spin-orientation is dependent on the crystal. So the ampli-
tudes of the resonances depend on the crystal and the power and frequency of
the laser light. The optimization of these parameters is discussed in next section.
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3.5 Optimizing the laser set -up and the crystal.

3.5.1 Frequency of the laser light and sign of polarization

The doppler shifted frequency is adjusted to the hyperfine structure-transition
that induces the largest polarization. The sign of the circular polarization of
the laser light (σ+ or σ−) determines together with the asymmetry parameter
A1 the direction of the resonances and which mF level will be most populated.
To scan the different possibilities for 8Li, the frequency of the laser light is fixed
on klaser = 14963.536cm−1, corresponding to a wavelength of λ = 668.291nm.
The additional voltage Vfluke + 50Vscan on top of the ISOLDE High Voltage
HVISOLDE is varied. Each of the visible resonances in figure 3.11c(d) consists
of 2(4) non resolved resonances.

Most polarization is created in the D1-transition with right circularly polar-
ized light. This is in agreement with the experiments of E. Arnold [Arn86].

3.5.2 Power of the laser light

The power of the laser light is proportional to the number of laser photons.
More photons means a larger probability to interact with the atoms and to
create polarization. Once we have enough photons to have several excitations
(typical 10-20) in the optical pumping region, adding more photons will have no
effect on the amount of created polarization. We are interested in the needed
power of the laser light to saturate the polarization. The power of the laser light
is measured at the entrance of the laser beam into the apparatus. This power
will be a bit lower at the optical pumping section.

In figure 3.12 the saturation curves are shown for 8Li implanted into three
cubic crystals LiF, Au and Si. On the left we see the amplitude of the reso-
nances, i.e. the asymmetry. On the right the spin-polarization is plotted. The
spin-polarization is calculated as in section 3.4. The power needed to saturate
the polarization is of course independent on the crystal and is ≈ 75mW . There-
fore in the rest of the experiments a power of the laser light of 75mW or more
is used unless explicitly mentioned.
Figure 3.12 learns us also that the amount of polarization in saturation is de-
pendent on the crystal. The crystal for which the spin-orientation is the best
conserved, is LiF. This will be discussed in section 5.2.1.

3.5.3 Stability of the laser light in time

Instabilities of the frequency of the laser light or of the ISOLDE high voltage,
show up in a shift of the resonance position of the ”hyperfine scan”. To adjust
for possible instabilities of the laser light, ”hyperfine scans” were performed
regularly, i.e. every two hours throughout the experiment. If the position of the
resonance was drifted, the additional voltage Vscan was adapted in the NMR
scan. Like this the fixed voltage Vscan caused maximal nuclear polarization.
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Figure 3.12: Created polarization as a function of the power of the laser light
for different crystals.

3.5.4 Adjusting the measuring time tmeas

In the sweep of Vscan, each voltage is applied for a time tmeas. For the start of a
measurement, the acquisition program waits for the trigger of the proton-pulse.
When triggered, the beam gate is opened for a time tmeas. In this time, the
counters connected to the signals of the β-telescopes are working. After closing
the beam gate, the counting is stopped and the variable parameter is changed to
its next value. The program waits for a new trigger 13 to restart (see figure 3.13).

For the measurement of decay curves the beam gate 14 is opened very
shortly 15 when the acquisition program is triggered by a proton pulse. Then
the counters count for a time tmeas in the first channel. Then the second chan-
nel is started and the counters start again, without waiting for a new trigger16.
So during the whole measurement of the decay curve, the beam gate is closed,
except for the very beginning.

The measuring time tmeas is chosen as a function of the half life of the
isotopes. In general, the measuring time is limited to tmeas ≈ 3T1/2 such that
most atoms are decayed and the activity of longer-lived daughter decay is not
measured.

In the case of 8Li with T1/2 = 838(6)ms, we chose tmeas = 2s.
For 9Li with T1/2 = 178.3(4)(6)ms, we have used tmeas = 1s. As 9Li decays to

13This mode of triggering is called ”trigger step” in the acquisition program ”MCP”. It
is used for scans, such as a hyperfine scan. The MCP (Measuring and Control Program)
program was developed for the COLLAPS experiments at ISOLDE by Michael Neuroth and
later improved and implemented for windows by Stephan Kappertz.

14The beam gate is an electrostatic deflector which prevents the ion beam from passing
through the beam line if the voltage (≈ 4.5kV) is turned on. When the voltage is turned on,
one says the beam gate is closed. When the voltage is turned off, one says the beam gate is
open.

15The beam gate is opened during ≈ 20ms for 8Li, ≈ 10ms for 9Li and ≈ 1ms for 11Li.
16This mode of triggering is called ”trigger sweep” in the acquisition program MCP.
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9Be, which is stable, the setting of the measuring time is not so important.
11Li decays to 11Be which has a half life of 13.8s. After one second 0.2% of the
11Be isotopes has decayed to the stable 11B isotope. So if the measuring time for
11Li is put lower than 1s, a maximal background of 0.2% due to daughter activ-
ity is present. The best setting for the measuring time for 11Li is tmeas = 0.1s.
In that case the background due to daughter activity is about 0.03%. In most
experiments the 11Li measuring time was set equal to that for 9Li.

In figure 3.13 the proton pulses and the measuring gates are schematically
shown for the different isotopes. In addition the decay curves, measured with
a different trigger mode, are shown. This curve is added on the picture to
show that the lifetime of the selected isotope corresponds to that of the wanted
isotope and to show the remaining activity at the end of one measuring channel.





Chapter 4

Measuring nuclear moments
with level mixing
techniques

4.1 Experimental set-up

In figure 4.1 the part of the experimental set-up, used for level mixing tech-
niques, is shown.
About 30cm behind the iris, the atoms are implanted in a 1mm thick crys-
tal. The implantation depth depends on the crystal, going from d = 0.2µm to
d = 0.5µm for the used crystals. Thus the surface of the crystals needs to be
carefully polished and treated.

Around the crystal in the vertical direction, perpendicular to ~B0 and ~Bs, a
radio-frequency (rf)-coil, connected with a variable capacity (section 5.1.1) is
placed. An AC current produced by a Rode Schwarz rf-generator is amplified
and sent through the LRC-circuit. This induces a rf-field ~Brf to destroy the
polarization in the β-Nuclear Magnetic or Quadrupole Resonance (NMR/NQR)
measurements.

The β-asymmetry is monitored by the two plastic (NE102A) scintillator
telescopes used in the ”hyperfine scans” (section 3.2.2). The total efficiency of
the β-detection is about 10%.

4.2 Some Level Mixing Techniques

In this section we start from a nuclear ensemble with spin-polarization. This
means the acceleration voltage Vacc is fixed to resonance, producing the maxi-
mum amount of atomic and nuclear polarization. The nuclear spin-polarization
will be resonantly destroyed via level mixing techniques.

39
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4.2.1 β-NMR (Nuclear Magnetic Resonance)

The atoms are subjected to two perpendicular dipole interactions, induced re-
spectively by a static field ~B0 and a radio-frequent field ~Brf (with amplitude
B1). The radio-frequent field ~Brf (t) breaks the axial symmetry in a frame
rotating around the Z-axis1 (chosen ‖ B0)

Hrot = −(ωB0 − ωrf )Iz + ωB1Ix (4.2)

with ωrf = 2πνrf the frequency of the rf-field,

ωB0 =
gµNB0

~
= 2πνL (4.3)

the Larmor angular frequency and ωB1 = gµN B1
~ with g the nuclear g-factor and

µN the nuclear magneton. The energy levels of the |m〉 and |m′〉 states2 with
∆m = 1 cross when the Larmor precession νL of the nuclear spins matches the
radio frequency νrf

νL =
gµNB0

h
= νrf (4.4)

When this condition is fulfilled, the levels |m〉 and |m′〉 are mixed due to the per-
turbation term ωB1Ix, similar as the mixing induced by a non-collinear electric
quadrupole and magnetic dipole interaction in Level Mixing Resonance (LMR)
[Cou01]. The initial polarization is then destroyed. This can be detected by a
change of the asymmetry of the nuclear β-decay as a function of the rf-frequency
νrf (keeping the static magnetic field strength B0 constant) or vice versa. For
the measurements in this work, the rf-frequency νrf is scanned without modu-
lation.

In figure 4.2 an example for an NMR-spectrum in LiF from October 2001
is given. Due to the high production rate of 8Li, the statistical errors are
smaller than the dimensions of the points themselves. On the left figure a
”hyperfine scan” with a created asymmetry of A = 6.0(1)% is shown. In this
scan the power of the laser light is in saturation. This asymmetry A equals the
amplitude of the resonance. On the right figure the acceleration voltage is fixed
to resonance, so the β-asymmetry on the baseline is the β-asymmetry aP

in with
created polarization. In the NMR resonance condition this polarization will
be destroyed and we have the asymmetry a0

rf . When all detected polarization
would be destroyed, the level a0

rf would be equal to a0
out. In reality only 90%

of the created polarization is destroyed because not all nuclei undergo the same
Zeemann-splitting due to defects or small inhomogeneities of the magnetic field

1The Hamiltonian in the static frame equals

H = −~µ. ~B0 + ~µ. ~Brf (t) (4.1)

2m is the projection of the nuclear spin I on the quantization axis
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Figure 4.2: (a) ”Hyperfine scan” of 8Li in LiF, W = 75mW, HVISOLDE =
+60007.1V, Vfluke = 500V, kD = 14963.536cm−1. (b)NMR scan of 8Li in LiF
with B1 = 0.5G, the additional voltage fixed on Vscan = 3.18V. The other applied
voltages and properties of the laser light are the same as in (a).

over the crystal. To determine the amplitude, position and linewidth of the
peak, the spectra are fitted with a Gaussian curve3

y = y0 + Ae−2( x−xc
W )2 (4.6)

without conditions. y0 is the baseline, A the amplitude of the peak, xc the
central position of the peak. The full width half max (FWHM) of the peak is
determined by FWHM = W

√
ln(4).

4.2.2 β-NQR (Nuclear Quadrupole Resonance)

A β-NQR experiment is the same as a β-NMR [Sli78, Mat71] experiment, except
that the atoms are implanted in a crystal with a non-cubic lattice symmetry with
an axial symmetric electric field gradient. The caused additional quadrupole
interaction allows the extraction of the quadrupole frequency νQ = 4I(2I−1)ωQ

2π .
The Hamiltonian of such experiment equals:

H =
ωQ

~
(3I2

z − I2)− (ωB0 − ωrf )Iz + (ωB0 sin β + ωB1)Ix (4.7)

3Attention must be paid to different definitions such as

y = y0 + Ae
−0.5( x−xc

W ′ )2
(4.5)

with W ′ = 0.5W , which we don’t use.
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in a frame rotating around the axis of the magnetic field B0 and with a frequency
ωrf .
If the angle β between the static field axis and the symmetry axis of the electric
field gradient is small and if 2πνL À ωQ, the non-equidistant energy levels at a
certain magnetic field B0 of the m-quantum levels are given by

Em = 〈m|H|m〉 = −mh(νL − νrf ) + ~ωQ(3m2 − I(I + 1))
3 cos2 β − 1

2
(4.8)

In our case the angle β between the axis of ~B0 and the axis of the electric
field gradient, is put to zero. An error of one degree will give an additional
uncertainty in the measured quadrupole frequency νQ = 4I(2I−1)ωQ

2π of 0.05%.
An error of five degrees will give an additional uncertainty in the measured
quadrupole frequency νQ = 4I(2I−1)ωQ

2π of 1.1%. This should be taken into
account as a possible systematic error.
The perturbation Hamiltonian of the rf-photons induces resonant transitions
between the m-quantum levels if the energy of the photons matches the energy
splitting of two m-quantum levels with ∆m = 1, i.e. if Em − Em′ = 0. The β-
asymmetry as a function of the rf-frequency νrf shows 2I equidistant resonances
at a distance of ∆ = 6ωQ

2π = 6νQ

4I(2I−1) . In resonance, the initial polarization is
partially destroyed by the mixing of two m-quantum levels. The amplitudes of
the resonances are much smaller than in NMR because only two quantum levels
contribute to the signal.
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In figure 4.3 two examples are given. In the first example for 8Li with I = 2, we
have four resonances as a function of ∆scan = νrf − νL. The distance between
the peaks is ∆ = νQ

4 . In the second example for 9Li with I = 3/2, we have three
resonances at a distance of ∆ = νQ

2 .
In figure 4.4 is shown that only a small part of the initial polarization is destroyed
in a NQR resonance. From the initial asymmetry of 7% in the ”hyperfine
scan” of 8Li in LiTaO3 (fig. 4.4a) only 0.3% was destroyed for the most intense
resonance (fig. 4.4b-c). So only 4.3% of the initial polarization was destroyed
for the most intense resonance.

4.2.3 Multiple-rf-NQR

To overcome the problem of small resonances in single-rf-NQR, several rf-frequencies
are used simultaneously. By applying more than one resonance frequency at the
same time, a resonance with a larger amplitude is obtained. In the next para-
graphs some examples are given. To induce all transitions, 2I simultaneous
rf-frequencies are needed.

• 8Li
Due to experimental limitations, only two4 rf-frequencies were used simul-
taneously for 8Li with I = 2.
In figure 4.5 an example is given from May 2003. In this example 8Li
was implanted into Zn. In the single-rf-NQR scan, 11% of the created
polarization is destroyed in resonance. In figure (4.5d), an example of a
double-rf-NQR spectrum is shown. The two simultaneously used frequen-
cies are νrf,1 = νL + x and νrf,2 = νL − x with x scanned from 0 to
y. In this spectrum about 50% of the created polarization (fig. 4.5c) is

4Instead of 2I = 4
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destroyed. We clearly improved the result compared to the single-rf-NQR
spectrum (fig. 4.5b-d). The narrow peaks are two-photon peaks and will
be discussed later.

There are two possibilities for a double-rf-NQR scan in 8Li. One can use
the frequencies of previous figure or νrf,1 = νL+x and νrf,2 = νL+x

3 with x
scanned from −y′ to +y′. In figure 4.6 the two manners are compared with
examples of June 2002. The spectra in this figure have all an enormous
bump-background around ∆ = 0. This can be explained by the fact that
the beam was hitting the Cu crystal holder. This means that the Zn
crystal was not positioned in the center of the beam line. Afterwards this
position was optimized (section 5.2.3). Because of this bump and because
we don’t have enough points in each peak, it is very difficult to fit the
single-rf-spectrum in figure 4.6a. Since we know the position of the peaks
out of the spectrum of figure 4.5e, we fixed these positions. The baseline
shifted for the double-rf-spectra compared to the single-rf one. The same
shift is visible in the ”hyperfine scans”, which are not shown here.
The amplitudes of the largest peaks of the two double-rf-NQR-spectra are
similar. Because of the smaller needed scan range in the first manner, we
chose for the rest of the experiments for the first manner.

• 9,11Li
For 9,11Li with I = 3/2, three rf-frequencies are used together. One rf-
frequency is fixed at the Larmor frequency ν1 = νL,fix. The two other
rf-frequencies are ν2(3) = νL,fix + (−)∆scan with ∆scan varying from 0 to
y. In figure 4.7 this is illustrated with a measurement from May 2003 of
9Li implanted in Zn.

The fixed frequency νL,fix, being present during the whole scan, causes
a small shift of the baseline (aP

in − aP
rf ). When ∆scan = ∆, all levels are

mixed. In the multiple rf-scan 42% of the created polarization is destroyed,
while in the single rf-scan this was only 12%. The created polarization is
about a factor three smaller than for 8Li due to the smaller asymmetry
parameter of 9Li. The difference in linewidth of the peaks of the single-rf
scan (W = 3.8kHz) and the multiple-rf-scan (W = 1.2kHz), is mainly
due to a different amplitude of the rf-field. In between the single-NQR
scan and the multiple-rf-NQR scan, the baseline of the ”hyperfine scan”
is shifted due to beam fluctuations.

In the two examples the positions of the peaks in the single-rf-NQR and
multiple-rf-NQR spectra agree with each other. To proof that they are really the
same, the deduced ∆ from the fitted positions are plotted for all available single-
and multiple rf-NQR scans of 8Li and 9Li (fig. 4.8a(b)). The grey bands indicate
the weighted averages with error δ over one time period. The uncertainties in
this picture are statistically and are determined by a χ2 analysis which will be
discussed in the chapter about the experimental results (section 6.1). In figure
4.9 an example of a spectrum is shown, together with two simulated Gaussian
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curves, one with a central position xc− δ and the other with a central position
xc + δ. δ is the absolute error.
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Figure 4.8: Comparison of the ∆ in different experiments and for multiple-
versus single-rf-NQR scans (a)8Li in Zn (b)9Li in Zn. The uncertainties are
statistical (section 6.1).

In figure 4.8 several parameters are changed: the time, the measuring proce-
dure and the position of the crystal. The measurements of June 2002 and May
2003 differ in both the parameter of time and that of the crystal position. A
different position or orientation of the Zn crystal with respect to the axis of the
static field ~B0 can influence the result in several ways. If the crystal is not well
centered, the beam can hit the Cu-crystal holder. The interaction of the spin-
oriented Li atoms with the cubic structure of Cu in a magnetic field results in
a broad resonance around the Larmor frequency (fig. 4.6). Also a misalignment
of the electric field gradient and the static magnetic field can cause a shift of
the resonance positions (section 4.2.1) and a reduction of the observed ∆ with
respect to the real ∆. The angle between the axis of the electric field gradient
and the static magnetic field is put to 0o with an error of 5o. The influence on
the measured resonance position due to this uncertainty is around 1.1%. This
is exactly the observed shift in figure (4.8a): there is a systematic shift down-
wards of about 1% for the found resonance positions in May 2003 with respect
to those of June 2002. The consistency of the shift for 8Li and 9Li is quantified
in table 4.1.

This indicates that we should always compare measurements under the same
experimental conditions. And when the crystals are moved within one run one
should also take care to remeasure the reference value. In between the measure-
ments in May 2003 and those in June 2003 the crystals were not removed and
replaced. However, they were moved up and down in the coil. Here we see that
within the error the results are the same: ∆(May03)

∆(June03) (
9Li) = 1.006(15).
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Figure 4.9: Example of a spectrum for 9Li in Zn, measured in June 2002, used
to create figure 4.8. The central curve is the fitted Gaussian function with po-
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parameters as the central curve, except for its position, which is xc−δ with δ the
absolute error. The right curve is made analogously, but with central position
xc + δ. For more details on error propagation: see section 6.1.

Table 4.1: Weighted average of ∆ for one time period (June 2002, May 2003,
June 2003) and one isotope (8Li or 9Li) implanted into a Zn crystal.

∆(8Li) ∆(9Li) νQ(9Li)
νQ(8Li)

[kHz] [kHz]
June 02 8.08(1) 15.7(1) 0.972(6)
May 03 7.96(3) 15.5(1) 0.974(7)
June 03 15.4(2)

8Li 9Li
∆(June02)
∆(May03) 1.015(4) 1.013(11)
∆(May03)
∆(June03) 1.006(15)
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Within one time period, the results are in agreement with each other. This
indicates that the measuring procedure (single-rf-NQR or multiple-rf-NQR)
doesn’t influence the result.

The ratio of the quadrupole frequencies of 8Li and 9Li stays constant over
the different runs (table 4.1). This indicates that this systematic error can-
cels out in the ratio of the quadrupole frequencies. This means a calibration
measurement on an isotope in a crystal with a known quadrupole frequency is
always recommended. The systematic error of 1.1% should only be taken into
account for the absolute values of the quadrupole moments.

For a complete understanding of a triple-rf-NQR spectum for nuclei with I =
3/2, several triple-rf-NQR scans were performed on 9Li in Zn, each with different
fixed frequency νL,fix. For the x-variable of the multiple-rf-NQR spectrum
we have two possibilities: one of the two varying frequencies, e.g. x = ν1 =
νL,fix + ∆scan, or x = ν1 − νL,fix = ∆scan. The position of the resonance as a
function of ∆scan equals ∆ = νQ

2 .
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Figure 4.10: Dependence on the fixed frequency νL,fix to the resonance positions
in multiple-rf-NQR-scans for 9Li in Zn of June 2002. (a)The position of the
NQR-resonance νpeak for one of the two other frequencies. (b) ∆ = νpeak −
νL,fix versus νL,fix. The colored band shows the weighted average with standard
deviation. The uncertainties are statistical and determined by a χ2 analysis as
will be discussed in the chapter about experimental results (section 6.1).

In figure 4.10a is shown that the resonance position ν1,peak varies linearly as a
function of the fixed frequency νL,fix. The resulting ∆ = ν1,peak−νL,fix is con-
stant as a function of the fixed frequency νL,fix (fig. 4.10b). This is important
because the fixed frequency νL,fix in the triple-rf-NQR scan is the measured
Larmor frequency νL,meas. The Larmor frequency νL,meas is measured in a
crystal with cubic lattice symmetry. This can slightly differ from the Larmor
frequency νL of the nuclei in the crystal with non-cubic lattice symmetry: nuclei
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implanted in different crystals and subjected to the same magnetic field can feel
slightly different effective fields due to Knight shifts or inhomogeneities in the
crystal (section 5.2.1). On top of this there is always an experimental uncer-
tainty on the measurement. For the multiple-rf-NQR experiments, the output
signals of several Rode Schwarz rf-generators are summed with a ”resistance
sum box” (fig. 4.11).

R=25 eachW
Out

Input n
3

Input n
2

Input n
1

Figure 4.11: Electric scheme of the ”resistance sum box”.

This is a box with three inputs and one output. Inside it consists of some
resistances to avoid the reflection of the signal. The summed signal is sent
through the LRC circuit.

4.3 Multiphoton transitions

In previous sections, only transitions between adjacent levels, ∆m = 1 transi-
tions, were discussed. If the rf-power is increased, the probability for transitions
between levels with ∆m = 2 induced by the simultaneous absorption of two pho-
tons, called two-photon transitions, increases. Its probability is proportional to
[Ack83, Kei96]

W∆m ∝ (gµNB1)2∆m

~2∆mω2∆m−2
Q

(4.9)

Looking as a function of ∆scan, the ratio of the resonance positions due to
two-photon- and one-photon-transitions is in general given by (using eq. 4.8)

ν2photon − νL

ν1photon − νL
=

0.5(Em − Em−2)
Em − Em−1

=
−6 + 6m

−3 + 6m
(4.10)
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A peak due to a ∆m = 2 transition is narrower than a peak due to a ∆m = 1
transition. The amplitude of a peak due to ∆m = 2 transitions is determined
by several parameters: the probability for the transition, the asymmetry pa-
rameter of the β-decay and the destroyed polarization. The probability for a
∆m = 1 transition is higher than that for a ∆m = 2 transition. The destroyed
polarization is maximal if the most populated m-level is one of the mixing levels.

These ∆m = 2 transitions are only visible as resonances in the β-asymmetry
if the inhomogeneous linewidth is small enough. In crystals with a cubic lattice
symmetry, ∆m = 2 peaks are situated at the Larmor frequency. In this section
we discuss the properties of the resonances due to two-photon transitions in Zn,
which has a hexagonal closed packed lattice structure.

4.3.1 Single-rf-NQR
8Li in Zn

In figure 4.12 a NQR spectrum for 8Li in Zn with three possible ∆m = 2
transitions is shown. The spectrum is symmetric around zero. To examine the
properties of two-photon transitions, it is sufficient to measure one side of the
spectrum.
In figure 4.13 the first part of three single-rf NQR spectra with different rf-
powers are shown. The ratio of the position xc1 of the one-photon peak and
the position xc2 of the two-photon peak is as expected 1.5.

Because only the ∆m = 1 transition is saturated, the amplitude of the
∆m = 2 transition increases the most as a function of the rf-power (fig. 4.14b),
while the linewidth increases most for the ∆m = 1 transition (fig. 4.14a). The
statistical error on the ratio of the linewidths FWHM(∆m=2)

FWHM(∆m=1) and amplitudes
A(∆m=2)
A(∆m=1) are too large to draw conclusions about a systematic change with the
rf-power B1 (fig. 4.14c). The only constraint we can put in the fits concerning
the linewidths, is that FWHM(∆m = 1) > FWHM(∆m = 2). The ratio
of the amplitudes is larger than one in this case because the most populated
m-level is one of the mixing levels in the ∆m = 2 transition.

9Li in Zn

In figure 4.15 an example for 9Li in Zn is shown. The amplitudes of the peaks
are determined by the probability of the transition, the asymmetry parame-
ter of the β-decay and the amount of destroyed polarization. The destroyed
polarization depends on the nuclear spin. Therefore the ratio of the ampli-
tudes A(∆m=2)

A(∆m=1) (
9Li) = 2.0(2) is different from the same ratio for 8Li in Zn:

A(∆m=2)
A(∆m=1) (

8Li) ≈ 1− 1.5.

4.3.2 Multiple-rf-NQR

Multi-photon transitions can also occur in multiple-rf-NQR.
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The uncertainties are statistical (section 6.1).

8Li in Zn

In figure 4.16 two examples of double-rf-NQR spectra for 8Li in Zn are given.
In the measured second half of the spectrum with ∆scan > 0 we expect two
∆m = 2 peaks and two ∆m = 1 peaks. The relative positions of the different
peaks correspond within the error to the expected values. The ratio of the
linewidths FWHM(∆m=2)

FWHM(∆m=1) is a bit larger than for the single-rf-NQR case for the
same rf-power. The ratio of the amplitudes decreased a bit with respect to that
for the single-rf-NQR spectra.

9Li in Zn

If the fixed frequency νL,fix is chosen properly, we expect one ∆m = 1 resonance
and one two-photon peak (fig. 4.17). The small amplitude of the ∆m = 1 peak
compared to that for 8Li is reflecting the smaller asymmetry parameter of the β-
decay of 9Li. In this peak, all m-levels are mixed, so a maximum of polarization
is destroyed. In the ∆m = 2 peak twice two levels are mixed, what destroys only
partially the polarization. This explains why the ∆m = 2 peaks in this case are
much smaller than the ∆m = 1 peak (A(∆m=2)

A(∆m=1) (
9Li) ≈ 0.4). At ∆scan = 0, the

rf-power for this frequency is a factor of three larger than in the rest of the scan,
what can result in a small peak. The relative positions correspond within the
error bar to the expected value. The figure shows that a rf-power of B1 = 0.7G
is not enough to produce ∆m = 2 transitions. In the last picture the power is
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so large that the one-photon peak masks almost the two-photon peak due to its
wideness.

The predictability of the relative positions of the different peaks with the
assumption that the peaks come from respectively ∆m = 2 and ∆m = 1 tran-
sitions is shown once more in figure 4.18, with an overview of all results.

This assures us that the additional resonances belong to ∆m = 2 transitions.
From now on we will fit spectra with multi-photon transitions with the necessary
constraints about the positions.
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Figure 4.17: (a) Energy level scheme for 9Li in a non-cubic crystal. (b-
d)Multiple-rf-NQR spectra for 9Li in Zn. The expected ratio of the position
of the one-photon and two-photon peak is 2, as experimentally verified.
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Chapter 5

Optimizations and
calibrations

5.1 Calibrations

5.1.1 Calibration of rf-power B1

To induce the rf-field ~Brf , an AC current was sent through an electric RLC-
circuit consisting of a coil, a resistance and a variable capacity (figure 5.1a). The
variable capacity is needed to get sufficiently high rf-power. A Rode Schwarz
rf-generator produced an AC voltage with the chosen frequency, accurate up
to 1Hz. A current probe monitored the current Iprobe going through the LRC
circuit. The relation between the amplitude Ip of the current Iprobe and the
rf-power B1 is dependent on the inductance L of the circuit, which was not
measured in this experiment.

The calibration of the rf-power B1 versus the amplitude Ip of the current
was performed with a Hall probe (figure 5.1b). To perform this calibration, a
DC current was sent through the rf-coils. The induced static magnetic field was
measured with a Hall probe for different input voltages Vin. This gives us the
linear relation B0 = DIp with D is a constant for one coil. Using an AC current,
we get a rf-power

B1 = D
Ip√
2

(5.1)

Ip shows a resonance curve as a function of the frequency for a constant ca-
pacity C and constant inductance L [Ser01] with a maximum at νrf,max =

1
2π
√

LC
. Therefore the capacities were optimized for the needed frequency

ranges. In table 5.1 some rf-powers B1 for different frequencies are given for
one input voltage Vin (table 5.1). The rf-power B1 is proportional to the input
voltage Vin.

Two different coils were used (fig. 5.2). In October 2001 and in June 2002
a coil with single windings, with a distance of 4mm between the windings was
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(a) LRC circuit during experiment

(b) LRC circuit during calibration of rf-field
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I

rf
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I
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DC
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Figure 5.1: Schematic drawing of an RLC-circuit which consists of a resistance
R [Ω], an inductance L[H] and a capacity C[F]. (a) The current probe is used
to monitor the amplitude of the AC current through the circuit. (b) During the
calibration of the induced magnetic field with a DC-current, a Hall probe was
inserted into the coil.

Table 5.1: The amplitude Ip of the current Iprobe through the electric RLC-
circuit versus the rf-power B1 for Vin = 100mV. The capacities are optimized
for a frequency in the region.

ν Ip B1

[kHz] [A] [G]
coil 1 1800 0.73(5) 0.94(4)

5000 1.5(1) 0.38(2)
5300 2.0(1) 0.34(2)

coil 2 1800 1.12(5) 5.62(46)
5000 0.45(1) 1.9(1)
5300 0.42(1) 1.7(1)
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used (coil 1). In May 2003 a coil with double windings without spacing and
with additional insulation was used (coil 2). In table 5.1 is shown that we get
much more power out of the second coil, which is used for the final experiment.

4mm

insulation
silver coated tin wire

insulation

zoom of wirezoom of wire

silver coated
tin wire

(b) (d)

(a) (c)

Figure 5.2: Schematic view of the two used rf-coils. (a) Coil used in October
2001 and June 2002, made of a silver coated tin wire (zoom in (b)). The distance
between the windings is about 4mm. (c) Coil used in May and June 2003. The
silver coated tin wire is extra insulated (zoom in (d)). Like this the windings
can be placed without any spacing.

In figure 5.3 the rf-power as a function of the rf-frequency is plotted with an
input voltage of Vin = 100mV. The capacities are optimized for a frequency in
the region. The dotted lines indicate the maximum scan range for that isotope.
Within this scan range, the amplitude of the rf-field B1 is varying with more or
less 4%. The effect in an NMR/NQR-scan will be negligible.

5.1.2 Homogeneity and stability of static magnetic field

The amplitude of the static magnetic field B0, felt by the nuclei is calibrated and
monitored with a NMR-scan on 8Li, with a known g-factor (section 6.2.1). The
drift of the magnetic field was also monitored via the measurement of the current
going through the coils. This was measured via the voltage on a resistance of
R = 0.05Ω placed between the magnet power supply and the coils, using a high
precision Prema voltage meter (accuracy is 10−5). In the beginning of the first
experiment the magnetic field versus the current going through the coils was
calibrated roughly with a hall probe.
Figure 5.4b shows that in June 2002 the Larmor frequency stays constant except
for the first few hours, in which probably the power supply for the magnet
was not yet stabilized. This is not visible on the magnet current (fig. 5.4a)),
because the observed drift is of the order of the accuracy of the Prema meter.
Figure 5.4 c-e show that the magnetic field was drifting a bit during the last
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determined statistically (6.1).
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two experiments. The same trend was found in the Larmor frequencies of 8Li
or 9Li (fig. 5.4d-f).

In October 2001, the time range in which different NMR measurements in
the same crystal with a cubic lattice symmetry were repeated was too short to
show instabilities or inhomogeneities.
In order to take into account these drifts in the interpretation of the nuclear
moments measurements, we will take as a reference value the weighted average
of the frequencies of 8Li (9Li) nearest in time from the frequency measurement
of 9Li (11Li).

5.2 Optimizations

The low count rate of 11Li (< 100β
s ) and the high accuracy we are aiming

for, make an experimental set-up with optimal conditions necessary. Therefore
test measurements were performed on the well produced 8Li (> 106 β

s ) and 9Li
(> 105 β

s ) nuclei in October 2001 and June 2002.

5.2.1 Choice of cubic crystal for magnetic moments

We have three candidates as crystals with a cubic lattice symmetry, i.e. LiF, Si
and Au. LiF is an insulator with a cubic fcc lattice structure [CRC77]. Si is a
semi-conductor with a cubic diamond lattice structure [CRC77]. Au is a metal
with a cubic fcc lattice structure [CRC77].

In figure 5.5 an example of a ”hyperfine scan” and NMR-scan for 8Li in these
crystals is given. In the spectrum for 8Li in Si from October 2001 (fig. 5.5a) we
see a bump with on top a nice peak at the position of the Larmor frequency.
This means that the Li-ion beam was probably hitting the Cu crystal holder,
as explained in section 5.2.3. The fitted curve is a sum of a Gaussian (bump)
and a Lorentzian (peak) curve. This bump is gone in the spectra for 8Li in Si
from June 2002 (fig. 5.5b). By eye we see already that the NMR-resonances
for 8Li in Si are much narrower than the NMR-resonances for 8Li in the other
crystals. The amplitudes of the NMR-resonances for 8Li in Si and in LiF are
similar, while those in Au are much smaller. Now we will discuss the amplitude
and linewidth more in detail. Therefore the spectra of fig. 5.5b-d were fitted
with a Gaussian function.

Asymmetry

The resulting amplitudes for the ”hyperfine scans” are shown in figure 5.6a.
The shown detected asymmetry when the power of the laser light is saturated
is determined by the created polarization and the nuclear spin-lattice relax-
ation time. This relaxation has different causes. The main contribution comes
from the conduction electrons in metals and semi-conductors, which induce fast
changing electro-magnetic fields [Wol79]. Such a time-dependent interaction
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mined statistically (section 6.1).
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Figure 5.6: Different properties of the spectra for different crystals. The men-
tioned uncertainties are determined statistically (section 6.1).
(a)Created asymmetry as a function of the power of the laser light.
(b)Destroyed asymmetry as a function of the rf-power.
(c)Linewidth as a function of the rf-power. In the two first pictures (c1 and c2)
the spectra are fitted with a Voigt curve. The picture which is labeled ”c1” shows
the width of the Gaussian component of the Voigt curve. The picture which is
labeled ”c2” shows the width of the Lorentzian component of the Voigt curve.
In the last picture (c3) the spectra are fitted with one Gaussian function, giving
the total linewidth.
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aims for a thermal equilibrium between the nucleus and the surrounding lat-
tice. In thermal equilibrium, the nuclear spins are populated isotropically. A
measure of the time scale on which this relaxation occurs is the relaxation time
trel. This trel can be expressed by

trel =
1

64
9 π2~3γ2

eγ2
I < |uk(0)|2 >2

Ef ρ(εF )2kT
(5.2)

with γe (γI) the gyromagnetic ratio γ = g
~ of the electron (respectively the

nucleus) , < |uk(0)|2 >2
Ef the electron probability at the site of the nucleus

averaged over the Fermi-surface. ρ(εF ) is the density of electrons at the fermi-
surface, k is the Boltzmann constant and T is the temperature. In this expres-
sion, only γI is isotope dependent, all other parameters are depending on the
properties of the implantation host. Its temperature dependence can also be
expressed by the Korringa relation [Kor50, Wol79]

Ttrel = CK =
γ2

e

4π~kg2
IK2

(5.3)

with CK the ”Korringa constant” (dependent on the nuclear g-factor), and K
the Knight shift (see further) [Ros69, Kor50]. For insulators, the main mecha-
nism of relaxation is caused by the interaction of the fluctuating electric field
gradients, caused by the vibrations of the lattice, with the nuclear quadrupole
moment, called quadrupolar relaxation [Kra54, Wol79]. This mechanism is in
general much slower than the magnetic relaxation. So the relaxation time
trel will be in general much longer for insulators than for metals and semi-
conductors.
The spin-lattice relaxation time trel indicates how fast the spin-depolarization
occurs:

P (t) = P (0)e−
t

trel (5.4)

with P(t) the polarization at time t. If this relaxation time trel is long enough
compared to the half life T1/2 of the implanted nucleus, almost no polarization is
destroyed. This is why most polarization is detected in LiF with the longest re-
laxation time trel(300K) > 15s [Bul72] amongst the used crystals. It is also the
main reason why the detected polarization in Au with trel(8Li in Au)= 0.6(3)s
at room temperature [Has73] is only half that in LiF.

In figure (5.6b) the amplitudes of the NMR peaks are shown as a function
of the rf-power. The observed saturation curve can be explained with the same
argument as for the saturation curve of the created polarization, since the rf-
field consists of a number of photons. The rf-power for which saturation occurs
is not the same for all the crystals. For Au and Si, the saturation point is
reached quickly, i.e. around B1 = 0.3G, while for LiF it is only reached around
B1 = 0.5G. Needing more power for LiF before the maximum polarization is de-
stroyed, means that defects are created or that the total magnetic field in LiF is
less homogeneous than in Au and Si. In the latter case, the LiF crystal contains
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a lot of impurities and induces small additional magnetic fields over the crystal,
what will cause a spread on the Larmor frequency νL and an inhomogeneous
broadening of the resonance. We see that most (least) polarization is destroyed
in LiF(Au) with saturated rf-power. The fraction of destroyed polarization with
saturated rf-power is determined by the implantation of the isotopes into the
crystal and by the relaxation time. The implantation of nuclei into a crystal is
complicated. It is important that all nuclei end up in a site without electric field
gradient and the same total magnetic field B0. The fraction of nuclei that are
not implanted in the expected site will not undergo the same splitting of their
energy levels. This fraction will thus not contribute to resonant destruction of
the polarization by NMR. This reduces the amplitude of the NMR/NQR peak.
In case the sites show a small spread in the electric and magnetic interaction
fields, e.g. due to defects, this causes an increased linewidth of the NMR/NQR
peak (inhomogeneous line broadening).

For this implantation, a few rules can be formulated. When the crystal is
more compact, the nuclei have less space to implant. So the more compact the
crystal, the more nuclei will end up in a perturbed lattice site. If the crystal
is a compound of the implanted atom, the nuclei have a large chance to be
implanted substitutionally. The more defects, the more nuclei will end up in
a perturbed lattice site. In table 5.2 we see that the fraction of destroyed po-

Table 5.2: Overview of the maximum created and destroyed polarization for the
different cubic crystals. In the last column, the fraction of destroyed polarization
compared to the created polarization is given.

crystal created destroyed destroyed
polarization polarization fraction

PQ1[%] PQ1[%] [%]
LiF 20.2(3) 17.7(1) 88(2)
Si 16.7(1) 12.9(1) 77(1)
Au 12.6(2) 5.9(1) 47(1)

larization compared to the created one is about 80% for LiF and Si, while it
is only about 50% for Au. This leads us to the assumption that the compact
structure of Au (ρ = 19.3 g

cm3 , high Z) forces almost two third of the nuclei into
perturbed lattice sites with a non-cubic environment. In LiF (ρ = 2.635 g

cm3 )
and Si (ρ = 2.321 g

cm3 ), about 80% of the nuclei reach an unperturbed lattice
site. LiF is a compound of Li. Therefore a substitutional implantation of most
Li nuclei is expected. This can explain the large amount of nuclei reaching an
unperturbed lattice site.

In summary, the created polarization is related to the relaxation time. The
destroyed polarization is related to the relaxation time and the implantation into
the crystal. The fraction of destroyed polarization with respect to the created
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polarization is related to the implantation.

Linewidths

In figure (5.6c3) the linewidths of the resonances fitted with a Gaussian curve
are shown. It is clear that the spectra for which 8Li was implanted into Si has
the smallest linewidth. In general the linewidth of a NMR resonance consists
of two parts: a homogeneous and an inhomogeneous part. The homogeneous
linewidth is mainly caused by power broadening and is proportional to the
rf-power. The inhomogeneous linewidth is caused by inhomogeneities in the
magnetic field, electric field gradient and impurities in the crystal. So the ex-
trapolated linewidth at zero rf-power represents the inhomogeneous linewidth.
For Si we get a small inhomogeneous line broadening of 0.21(2)kHz. For LiF
we get a large inhomogeneous broadening1 of 6kHz. This confirms what we
assumed due to the large saturation point in LiF: small electric field gradients
are created by defects or small inhomogeneous magnetic fields are induced over
the crystal.

Another way to separate the inhomogeneous and homogeneous part of the
total linewidth, is to fit the spectra with a Voigt curve. This is a convolution
of a Gaussian and a Lorentzian function2. The linewidth of the Voigt curve
consists of a Gaussian part (fig. 5.6c1), corresponding to the inhomogeneous
linewidth and a Lorentzian part (fig. 5.6c2), corresponding to the homogeneous
linewidth. The Gaussian part of the linewidth is shown in figure 5.6c1. Here
we find for Si even a smaller value.
Anyway, the inhomogeneous linewidth for Si is found to be small. This means
that the static magnetic field is homogeneous over the crystal and that Si itself
doesn’t induce additional small magnetic fields or electric field gradients due to
defects. This will give the small total linewidth in Si we noticed in figure (5.6c3).

The small linewidth and the reasonable amplitudes of the peaks in the spec-
tra for Si make of Si the best candidate to perform an NMR scan on Li-isotopes.

1Experience learns that NMR/NQR spectra with atoms implanted into ionic crystals con-
tain broader resonances than NMR/NQR spectra with atoms implanted into metals or semi-
conductors.

2A Voigt curve can be expressed by

y = A

∫ ∞

−∞

e−p2
dp

s2 + (z − p)2
(5.5)

with

s =

√
3

2

FWHML

FWHMG

z =
√

2
x− xc

FWHMG

FWHML (FWHMG) is the width of the Lorentz (Gaussian) function.
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Corrections on the position

The Larmor frequency is related to the nuclear g-factor via the relation 4.4. The
main contribution to the effective magnetic field Beff , felt by the nuclei, is the
external applied magnetic field Bext. But if some electrons of the crystal lattice
have a non-zero probability of penetrating the wave function of the nucleus, they
also induce an additional magnetic field due to the fermi contact interaction term
with as Hamiltonian [Cot02, Wol79, Sli78]

Hfc =
8π

3
gegN

∑

j,l

Iz,jSlδ(rl −Rj) (5.6)

In this equation ge,N are the g-factors of respectively the electrons and the
nuclei, Iz,j is the nuclear spin, Sl is the electron spin. Due to the Kronicker
delta δ(rl − Rj) with rl(Rj) the position vector of the electron (nucleus), only
electrons whose wave function is penetrating that of the nucleus are contributing
to the interaction. This Hamiltonian can be rewritten as [Sli78]

Hfc =
8π

3
〈|uk(0)|〉2Efχs

egNIzB0 (5.7)

with 〈|uk(0)|〉2Ef the electron probability at the place of the nucleus, averaged
over the fermi surface. This expression is equivalent to that for a Hamiltonian
of the interaction of the nuclei with a magnetic field (section 4.2.1)

Bfc =
8π

3
〈|uk(0)|〉2Efχs

eB0 (5.8)

This additional magnetic field does not depend on the used Li isotope.

Another correction factor occurs because the external field Bext induces cur-
rent densities in the closed shells of atomic electrons surrounding the implanted
Li ion, which produce a magnetic field Bds, opposite in direction to the applied
field [Wol79, Sli78, Cor83]

Bds =
−q2

3mc2
B0

1
r

(5.9)

with q,m the charge and mass of the electrons interacting with B0. 1
r is the

average of the position vectors of the interacting electrons.
Analogously current densities are induced via the external field and the elec-
trons of the Li atom themselves. These currents will also shield the magnetic
field for the nuclei.
The two corrections are called diamagnetic shielding3. For neutral Li atoms, the
correction factor due to the surrounding electrons is negligible. The correction
factor σ due to the electrons of the Li-atom is a property of the element and
is isotope independent. For Li this correction factor is σ = 0.000104789 [Rag89].

3Sometimes this is called ”chemical shift”
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The effective field is the sum of all these terms: Beff = Bext + Bfc −Bds =
Bext(1+K−σ) with K = Bfc−B0

B0
the Knight shift and σ = Bds−B0

B0
the diamag-

netic shielding correction factor, both indicating a shift of the Larmor frequency
compared to the Larmor frequency with Bext. All these corrections should be
known or negligible small in order to deduce accurate nuclear g-factors from a
single NMR-spectrum.

Table 5.3: Larmor frequency of 8Li in different crystals with the static magnetic
field around Bext ' 2872G.

crystal νL Beff sys. K corrected νL

[kHz] [G] error[G] [kHz]
LiF 1809.85(7) 2872.1(1) 0.08 / 1810.04(7)
Si 1810.05(3) 2872.45(6) 0.08 0.000077(17) 1810.10(5)
Au 1810.1(1) 2872.5(2) 0.08 0.00017(7) 1809.98(10)

In table 5.3 an overview of the measured Larmor frequencies of 8Li in differ-
ent crystals at the same external static magnetic field Bext is given. The differ-
ence in Larmor frequencies can not be explained by instabilities of the external
field (section 5.4), which are of the order of 2.8 ∗ 10−5, leading to the absolute
systematic error on the effective field Beff of 0.08 (table 5.3). So the differences
are due to the combination of the Knightshift and the diamagnetic shielding.
For 8Li implanted in Au, with 1s conduction electrons, the electron density at
the place of the nucleus is non-negligible and we will have a measurable Knight
shift. This Knight shift is measured to be K = 0.00017(7) [Cor83, Has73]. For
LiF, being an insulator, no correction is needed for the Knight shift. Taking
into account these corrections, the measurements in LiF and Au are consistent
with each other (table 5.3). For Si only the relaxation time of 8Li implanted
on the surface of hydrogen covered Si is known trel = 3(1)s. If pure Korringa
relaxation is assumed, a Knight shift of K = 0.000077(17) is deduced. If we
correct for this Knight shift the result is in agreement with the results for the
other crystals. However attention has to be paid because the relaxation time of
8Li in pure Si can be different from the one in hydrogen covered Si.
If we use the measurement of νL(8Li in Si) to calculate the Knight shift of Li in
Si, we get

K(8Li inSi) =
νL(Si)− νL(LiF )

νL(LiF )
(1− σ) = 0.00011(4) (5.10)

The unknown correction factor for Si is no problem for the measurement
of the nuclear moments of the other Li-isotopes. In the ratio of the Larmor
frequencies of a nucleus with a known g-factor and one with an unknown g-
factor, these systematic errors cancel out if they are isotope independent.

νL(9Li)
νL(8Li)

=
g(9Li)
g(8Li)

Bext(1 + K(8Li)− σ(8Li))
Bext(1 + K(9Li)− σ(9Li))

=
g(9Li)
g(8Li)

(5.11)
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The expression for the Knight shift K = Bfc−B0
B0

(eq. 5.8) shows that K is iso-
tope independent. The diamagnetic shielding is also isotope independent.
In figure 5.7 the isotope independency of this correction factor is checked ex-
perimentally. The position of the Larmor frequency as a function of time is
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Figure 5.7: Positions of the Larmor frequency of 8,9Li in Zn, LiTaO3 and Si
as a function of time for the experiment in May 2003. The uncertainties are
determined statistically (section 6.1).

shown for 8,9Li in different crystals. For the crystals with a non-cubic lattice
symmetry (Zn, LiTaO3) the Larmor frequency of 8Li is defined as the average
of the positions of the outer (or inner) peaks. The Larmor frequency of 9Li in
crystals with non-cubic lattice symmetry is the position of the middle peak of
the spectrum. The values for LiTaO3 and Si are equal within the error bar.
To determine the correction factor between Si and Zn, we fitted a line through
the Larmor frequencies in Si to correct for the drift in the magnet current. We
extracted a value for the relative difference between the extrapolated Larmor
frequency for 8Li in Si and that in Zn of 7.1(6)10−5. For 9Li this difference
equals 7(1)10−5. Within the error this corresponds to the correction factor for
8Li. This is an experimental indication that this correction factor is the same
for 8Li and 9Li.

A last factor to check is the independence of the Larmor frequency to the
rf-power.

In figure 5.8 the found Larmor frequency is shown as a function of the rf-
power B1 for 8,9Li in Si. The used time interval is shown in figure 5.8c-d. In
this time interval the current of the magnet can be taken as constant. The
found Larmor frequencies are also more or less constant. Nevertheless there is
a certain scattering of about 10−5 throughout the data. This shows that the
statistical errors on the Larmor frequency of 8Li are too small and systematic
errors of 10−5 will have to be taken into account for the final result of νL(8Li).
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5.2.2 Choice of non-cubic crystal for quadrupole moments

In order to measure the small quadrupole moments of 8,9,11Li, crystals with a
relatively large axial symmetric electric field gradient (EFG) are needed. To
separate the different peaks of the β-NQR spectrum, the peaks have to be
narrow enough. As candidates LiNbO3, LiTaO3 and Zn are chosen. Zn is a
metal with a hexagonal closed packed (hcp) lattice structure. The measure-
ment of the quadrupole frequency of 8Li in Zn via multiple rf-NQR by Ohtsubo
et al. [Oht93], indicates an interstitial implantation of 8Li nuclei into Zn and
a reasonable amplitude of the NQR resonance, despite the large error on the
result (6%, table 5.4 ). This is an indication of a sufficiently long relaxation
time trel.
LiNbO3 and LiTaO3 are both ionic crystals with a rhombohedral lattice struc-
ture [CRC77, fer03, Hal70]. We expect a substitutional implantation of the
nuclei in these crystals because they are a compound of Li. Of LiNbO3 [Hal70]
we used two different samples, one was used in October 2001 and the other in
June 2002. The spin-lattice relaxation time trel is measured at room tempera-
ture to be trel(300K) = 4.3(12)s [Ack74]. The quadrupole frequency of 7Li in
LiNbO3 was measured with an accuracy of 0.9% [Pet67, Hal70].
LiTaO3 [Abr67, New62] has the largest electric field gradient of the three crys-
tals (table 5.4 ). The quadrupole frequency νQ(7Li in LiTaO3) is known with
an accuracy of 0.4% [Cha99]. The relaxation time trel is measured to be
trel(300K) > 30s [Dub77].

Table 5.4: Some properties of LiTaO3, LiNbO3 and Zn: the quadrupole fre-
quency νQ, the distance ∆ = νQ

4 between two peaks, the density and the relax-
ation time T1. (∗)The quadrupole frequency of 8Li in LiTaO3 is calculated with
νQ(7Li in LiTaO3)= 76.4(3)kHz [Cha99], Q(7Li)= 40.0(3)mb [Voe91, Pyy01]
and Q(8Li)= 31.2(5)mb [Arn88].

LiTaO3 Zn LiNbO3
lattice structure rhombohedral hcp rhombohedral
νQ[kHz] of 8Li in... 59.4(4)(∗) 33.5(2.0) [Oht93] 42.5(6)[Arn88]
∆ [kHz] of 8Li in... 14.9(1) 8.4(5) 10.6(1)
EFG[1015 V

cm2 ] 7.90(7) 4.24(27) 5.66(5)
density [ g

cm3 ] 7.45 7.14 7.46
trel[s] of Li in... > 30 ? 4.3(12)

In figure 5.9 an example of single NQR spectra of 8Li implanted into the
different crystals is given. Out of the available NQR-spectra for each crystal,
the ones with the highest rf-power which still consist of four separated peaks
are chosen. For Zn the peaks are still resolvable for B1 ≈ 5G. With this high
rf-power, additional peaks appear. These additional peaks are caused by ∆m =
2 transitions (section 4.3). Notice that the LiNbO3 sample of October 2001
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contained less impurities than the one of June 2002.
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Figure 5.10: Destroyed polarization (a) and the total linewidth (b) as a function
of the rf-power for different crystals. The errors are determined statistically
(section 6.1).

In figure 5.10(b), the FWHM of the NQR resonances, fitted with a Gaussian
function, is given for the different crystals as a function of the rf-power. The
figure shows a very small linewidth for 8Li in Zn: even at B1 = 4.8G with a
linewidth FWHM < 2kHz, the peaks are still separated (∆ = 8.4(5)kHz [Oht93]).
For LiNbO3, the peaks start to overlap at B1 = 0.2G: the linewidth is FWHM =
6.1kHz while ∆ = 10.6(1)kHz [Arn88]. For LiTaO3, the peaks start overlapping
around one Gauss, with a linewidth FWHM = 7kHz and ∆ = 14.9(1)kHz [Cha99].
The limit of rf-power for which the peaks are still resolved will give us a limit
of amplitude of the NQR resonances. Zn is the best candidate and LiNbO3 is
the worst candidate for an NQR measurements on 11Li. Note that this latter
was used in the previous measurement of Q(11Li)

Q(9Li) [Arn92].

Asymmetry

The created polarization was measured with a power of the laser light W =
100mW. Most created polarization is observed in Zn and LiTaO3 (table 5.5).
This means that the unknown relaxation time of Li in Zn is at least larger than
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three times the half life of 8Li: trel(Li in Zn)> 2.4s. Why in Zn even more
polarization is observed than in LiTaO3 is not clear.

The destroyed polarization was measured as a function of the rf-power B1.
The largest amplitude of the NQR resonances is reached for 8Li in Zn (fig. 5.10a
and table 5.5). For similar rf-power4 similar amplitudes are found for the dif-
ferent crystals. This shows that the fraction of nuclei ending up in a lattice site
with a unique EFG will be similar for the three crystals.

Table 5.5: Overview of the created and destroyed asymmetry A and polarization
P . In the last column, the fraction of destroyed polarization compared to the
created polarization is given. (∗) The amplitude A and the polarization P of the
rf-scan are the ones with the highest B1 out of the measured spectra with four
separated peaks (figure 5.9). From these spectra the average of the amplitudes
of the four peaks is taken.

crystal A A(∗) P P(∗) P(∗) B1
hyperfine rf-scan created destroyed fraction used

scan
[%] [%] [%] [%] [%] [G]

LiNbO3 ’01 5.31(7) 0.16(3) 21.9(2) 0.52(4) 2.4(1) 0.05
LiNbO3 ’02 5.13(8) 0.24(4) 22.5(2) 0.92(5) 4.1(1) 0.3
LiTaO3 ’02 6.57(6) 0.21(2) 26.8(2) 0.63(2) 2.3(1) 0.94
Zn ’02 7.29(5) 0.99(1) 28.3(2) 2.9(1) 10.3(1) 4.8

Out of this study we can conclude that Zn is the best candidate to use for
NQR measurements on 11Li.

5.2.3 Position of crystal in set-up

The crystals are fixed on a Cu bar. The crystal should be placed such that
the 8Li beam doesn’t interact with the Cu bar, which has a cubic structure.
In addition, some places of the crystals can contain more impurities than other
places. The best position of the crystal was experimentally verified by taking
spectra at different positions. In figure 5.11 an example is given for 8Li in Zn. In
the first two positions the 8Li nuclei were interacting with the Cu bar, resulting
in an enormous bump-background at the position of the Larmor frequency of 8Li.
This makes a fit of the distance between the other peaks much more difficult.
A similar bump was observed in June 2002 for the spectra of 8,9Li in Zn and in
October 2001 for 8Li in Si.

4Similar rf-power induced by the LRC-circuit. The rf-power which the nuclei feel can be
reduced for metals due to the skin-effect [Sli78]. This effect is however minor in this case
because of the small implantation depth (d ≈ 0.2 to 0.5µm).
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Figure 5.11: NQR-spectra from May 2003 for 8Li in Zn with different positions
of the crystal with respect to the coil with B1 = 2.5G.

5.2.4 Determination of proper rf-power B1

A last property to optimize is the rf-power.

Minimum rf-power

The rf-power should be stronger than the minimum rf-power, given by the con-
dition V τ > ~ [Sch88, Bor99] with V the interaction strength

V =
gµNB1

2~
√

(I −m + 1)(I + m) (5.12)

In table 5.6 the resulting minimal rf-power B1,min is given in mG for the three
isotopes 8,9,11Li.

Optimum rf-power

With the optimum rf-power, the β-asymmetry is saturated. For the saturation
point we take the rf-power for which the asymmetry reaches 80% of its max-
imum value. For 8Li in Si this corresponds to 0.20(2)G and for 9Li in Si this
corresponds to B1 = 0.18(1)G (figure 5.12).

The optimum rf-power for 8Li and 9Li is much higher than the minimum
rf-power. This is due to the inhomogeneous line broadening.
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Table 5.6: Minimal rf-power B1,min and the experimental rf-power B1,sat for
which the asymmetry of the NMR spectrum is saturated for different isotopes
implanted in Si. For the g-factors the values measured by E.Arnold et al. [Arn87,
Arn88, Arn92] are taken.

T1/2 g I B1,min B1,sat FWHM(Brf,sat)
[ms] [~] [mG] [G] [kHz]

8Li 838(6) 0.826676(9) 2 0.49 0.20(2) 0.30(1)
9Li 178.3(4) 2.2890(35) 3/2 1.18 0.18(1) 0.90(5)
11Li 8.5(2) 2.445(2) 3/2 23.2
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The optimum rf-power for 9Li, which half life is about five times shorter
than that of 8Li, equals more or less that for 8Li. This might suggest that the
optimum rf-power is independent of the life time of the nucleus. In that case
the optimum rf-power for 11Li in Si will be around 0.20(2)G.

From the figure 5.12d an inhomogeneous linewidth for 9Li in Si of 0.73(4)kHz
can be extracted. This is larger than for 8Li (FWHM = 0.21(2)kHz). The
difference in the two inhomogeneous linewidths is due to the use of a differ-
ent rf-frequency νrf . The relative inhomogeneity is the same in the two cases
(0.011%), suggesting that it is mainly caused by the inhomogeneity of the local
magnetic field.

The measurements of 11Li have been performed with high rf-power (section
6.2.3 and 6.3.5). However, an extrapolation of the above calibrations and opti-
mizations indicate that it would be better to use the same rf-power as for 9Li.
In a recent experiment (May 2004) a smaller rf-power of 0.1G has been used.



Chapter 6

Experimental results

In this chapter the experimental results concerning the magnetic (section two)
and quadrupole (section three) moments of the Li isotopes are given. In a first
section the error propagation is explained.

The NMR spectra are fitted with one Gaussian curve1 without conditions.
The NQR spectra are fitted with a number of equidistant Gaussian curves with
common linewidth. This last condition is justified at room temperature for
which equal linewidths were found in conventional NMR measurements on 7Li
in LiNbO3 [Hal70]. If two-photon peaks are involved, they are also fitted with
equidistant Gaussian curves with common linewidth. Additional constraints
on the positions are used to connect the peaks due to ∆m = 1 and ∆m = 2
transitions. The only possible additional constraint on the linewidth is that the
∆m = 2 peaks should be narrower than the ∆m = 1 peaks. This condition will
be omitted unless explicitly mentioned.

6.1 Error propagation

6.1.1 Statistical errors

Individual spectrum

For the determination of the statistical uncertainty on a single spectrum with j
datapoints, each with a β-asymmetry aj , the spectrum is fitted with a Gaussian
function. In this procedure, the reduced χ2 as a function of the position and

1The lineshape of a NMR spectrum has a Voigt-profile. However, some single-NQR spectra
couldn’t be fitted with a Voigt curve. Comparing fits with different lineshapes for 8Li learns
that a Gaussian curve is the best approximation of the real lineshape. The fitted positions of
the resonances are the same for both lineshapes. Therefore we chose to use for all spectra the
same fitprocedure and to fit everything with Gaussian lineshapes.

85
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the linewidth of the resonance is calculated

χ2
red =

1
N − 1

∑

j

(
atheo,j − aexp,j

δj
)2 (6.1)

The optimal parameters are the ones with minimum χ2
min. The interval of

parameters with χ2 between χ2
min and

χ2
α = χ2

min(1 +
p

N − p
F (p, N − p, α)) (6.2)

gives the confidence interval of α [Cli70]. α = 68% corresponds to one standard
deviation σ. p is the number of parameters being determined, N is the number
of datapoints and F is the F-distribution

F (m,n, α) =
Γ(n+m

2 )n
n
2 m

n
2 α

n
2−1

Γ(n
2 )Γ(m

2 )(m + nα)
n+m

2

(6.3)

=
m

m
2 n

n
2 α

n
2−1

(m + nα)
m+n

2 B(n
2 , m

2 )
(6.4)

with

B(p, q) =
(p− 1)!(q − 1)!

(p + q − 1)!
(6.5)

and
Γ(z) =

∫
e−ttz−1dt (6.6)

the Gamma function.
Taking a confidence level of α = 68%, four parameters to determine (posi-
tion, width, baseline and amplitude of the peak) and thirty datapoints, we find
χ2

0.683 ≈ 1.10χ2
min. So a contour of χ2

min +10% will give us in that case an error
of 1σ. The more datapoints we have, the smaller the needed interval. However,
the datapoints on the baseline contain less information on the peak than the
datapoints in the peak. Therefore, we approximated the statistical error by that
obtained from the χ2

min +10% contour for all spectra, even those with 100 data
points. This approximation gives conservative errors.

In practice, contours of 10% of χ2 are plotted as a function of the resonance
position and the linewidth. An example is given in figure 6.1b. Such a χ2 plot
shows us the correlations between the linewidth and the central position of the
resonance. If the contours are circular, both parameters are not correlated. Of-
ten a correlation is present.
To define the uncertainty δ, one projects the χ2

min +10% contour on the axis of
the rf-frequency (fig. 6.1b). If the χ2

red > 1, the error is corrected by multiplying
the error with a factor

√
χ2

red [PRD02].

The spectrum is also fitted with a Gaussian function in Origin. The un-
certainties which Origin give as fit error are called ”fit errors” throughout the
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Figure 6.1: Example of a NMR spectrum for 9Li implanted in Si and a χ2 plot.
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text in this work. These errors are slightly smaller than the errors found in the
way described above. But we preferred to be conservative and take the errors
as described above. For the amplitudes and linewidths, the χ2 analysis is not
made and the fiterror, given by Origin is taken.

Average of several independent spectra

When we have a set of several independent measurements with resonance posi-
tions νr,i and individual uncertainty δi, the weighted average

νr,average =

∑
i

νr,i

δ2
i∑

i
1
δ2

i

(6.7)

is taken as final result. The uncertainty δaverage on this average νr,average is
determined by both the uncertainty

δ1 =
1∑
i

1
δ2

i

(6.8)

and the standard deviation

δstdev =

√
1

n− 1

∑

i

(νr,i − νr,average)2 (6.9)

and equals

δaverage =
√

δ2
1 + δ2

stdev (6.10)

Since the statistical errors are quite conservative, in most cases the standard
deviation will be smaller than the statistical error δ1.

6.1.2 Systematic errors

Besides this statistical uncertainty, some systematical errors may influence the
result.

Larmor frequency of 8Li

For the reference measurement of νL(8Li) there are two systematic errors. The
first one is due to the drift of the static magnetic field. Over the range of a
full experiment this was varying from 2. 10−5 up to 4. 10−4, depending on the
experiment. However, several calibration measurements on 8Li were performed.
The error on the weighted average of the results for νL(8Li) from measurements
performed closest in time to the measurement on νL(9,11Li) together with the
standard deviation, gives the final systematical error on the reference νL(8Li)
for that measurement. We always took reference values both before and after
the measurement on νL(9,11Li).
The used systematic error is thus smaller than the drift over the full experiment.
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The used reference value changes for each measurement. The accurate numbers
are given in the text together with each separate measurement.

The second systematic error on νL(8Li) is due to the fact that the pulses
are only separated by some seconds while the half life of 8Li is 0.838s. If one
assumes that every second pulse was for ISOLDE, like was most of the times
the case, the pulses are separated by 2.4s. Assume that from the first pulse
a number N0 Li-isotopes are reaching the stopper crystal. In the first channel
counts are added during 2s. With a lifetime τ = T1/2

ln(2) = 1.209(9)s , this gives
us

N1(ν1) = N0

∫ 2

0

e
−t
τ dt = 0.67N0 (6.11)

counts in the first channel with an applied rf-frequency ν1 [Kra88]. In the second
channel a rf-frequency ν2 is applied and a fraction

N2(ν1) = N0

∫ 4.4

2.4

e
−t
τ dt = 0.092N0 (6.12)

of β-particles due to the first pulse is present. This fraction of nuclei interacted
with the rf-field with frequency ν1. The rest of the counts in the second channel
is due to the second proton pulse, due to which N0

′ Li-isotopes are reaching
the stopper crystal. This number of counts equals N2(ν2) = 0.67N0

′. One
can assume that all proton-pulses give more or less the same count rate (i.e.
N0 ≈ N0

′). Therefore we can say that 88% of the β-particles in the second
channel has an asymmetry a(ν2) corresponding to ν2 and 12% of them has
an asymmetry a(ν1) corresponding to ν1. Analogously, the counts in the third
channel consist of 86.5% β-particles with an asymmetry a(ν3), 11.8% β-particles
with an asymmetry a(ν2) and 1.7% β-particles with an asymmetry a(ν1).
To calculate the final asymmetry ai of the i-th channel, we take a weighted
average

ai =
∑i

i−4 P (νi)a(νi)∑i
i−4 P (νi)

(6.13)

with P (νi) the fraction of nuclei that was interacting with the rf-field with fre-
quency νi. The found asymmetry can than be compared with a Gaussian curve,
assuming no remaining β-activity from the previous pulses. In figure 6.2 we see
that both curves are very similar and almost identical. However, the curve for
which the remaining β-activity from the previous pulses is taken into account
is shifted slightly to the right compared to the other curve and becomes a bit
asymmetric (see zoom in figure 6.2b). The induced error δpuls is of the order
of one channel, corresponding to an error of δpuls ≈ 10−5. This is of the same
order as the systematic error due to the drift in the magnetic field.

As total systematic error on the Larmor frequency of 8Li

δtot,sys =
√

δ2
Bdrift + δ2

puls (6.14)
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is taken. This systematic error equals the total error on the Larmor frequency
of 8Li, which is used as a reference for νL(9Li) and νL(11Li) measurements, since
the statistical error is smaller (typical 5. 10−6).

Quadrupole frequencies

For the measurements of the quadrupole frequencies, the uncertainty on the
misalignment angle β between the static magnetic field and the electric field
gradient is the main cause of a systematic error. This systematic error equals
3 cos β2−1

2 ≈ 1.1% for β ≈ 5◦ and cancels in the ratio of the quadrupole frequen-
cies, when these frequencies are measured in the same crystal which was not
taken out of the holder. So for example the measurements from May 2003 and
June 2003 may be compared without systematic error.

6.2 Magnetic moments

6.2.1 Reference: µ(8Li)

The Larmor frequency of 8Li in Si is measured each experiment regularly in
time (figure 5.4) as a reference. The used reference measurement is the one
closest in time to the real measurement, unless explicitly mentioned. Each such
measurement takes only about five minutes.
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Figure 6.3: (a) Overview of the different measurements of g(8Li) in the past and
the tabulated value in the compilation of Raghavan et al. [Rag89]. (b) Graphical
overview of the different measured values of g(8Li). The colored band shows
the weighted average of all measurements, without corrections for diamagnetic
shielding.

The magnetic moment of 8Li was measured several times in the past (fig. 6.3).
In the compilation of Raghavan [Rag89], the weighted average of the three last
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measurements, corrected for the diamagnetic shielding (σ(Li) = 0.000104789) is
given: g(8Li)=0.826780(9)), giving a magnetic moment µ = +1.653560(18)µN .
This is also the value we will adopt in this work.

6.2.2 µ(9 Li)

The Larmor frequency of 9Li in Si was measured three times independently in
June 2002.
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Figure 6.4: (a-c) Three independent data sets for NMR measurements of 9Li
in Si from June 2002. Notice the different amplitudes and linewidths due to
different rf-fields. (d-e) Independent data sets for NMR measurements of 9Li in
Si from May 2003. The difference in Larmor frequency is explained by the in-
stability of the magnetic field. To deduce the g-factor, a measurement of νL(8Li)
just before or after the νL(9Li) measurements is used. The mentioned errors in
this figure are statistical errors.

The raw spectra contain hundred channels with 9s of data taking in sweep
mode for each channel. The statistics in three channels was summed to produce
the final NMR-spectra (fig. 6.4a-c). All spectra are consistent with each other
and have a typical statistical relative error of 4. 10−6. These measurements
were performed respectively 29, 29.5 and 39 hours after the beginning of the
experiment in June 2002, i.e. in the period were the Larmor frequency of 8Li
in Si stayed constant within the error (figure 6.5a-b). As reference we take the
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weighted average, including the standard deviation, of the Larmor frequencies
in figure (6.5b), being νL(8Li) = 1809.91(1)kHz. In this weighted average the
first four measurements were not taken into account because for these points
the current of the magnet was not yet stable. The standard deviation takes into
account possible variations of νL(8Li) due to fluctuations in the magnet current.
Taking into account the systematic error due to the remaining β-particles of the
previous pulses one gets νL(8Li) = 1809.91(3)kHz. This gives us the ratio of
the g-factors of 9Li and 8Li, shown in the first part of figure (6.6a). The error is
defined by the standard rules for the error on a product [Kno89] and is mainly
determined by the systematic error on νL(8Li).
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Figure 6.6: (a) Overview of the different results of this work for the ratio of
g-factors for 9Li and 8Li. The colored band is the weighted average of all mea-
surements. (b) Graphical overview of the different measurements of g(9Li) in
the past.

In May 2003 two NMR measurements of 9Li in Si were performed close
in time to a reference measurement, respectively at 52 and 67 hours after the
beginning of the experiment. As reference we take the Larmor frequency of 8Li
in Si measured at respectively 52.2 and 67.2 hours after the beginning of the
experiment (fig. 6.5c-d). Taking into account the systematic error of 3. 10−5

due to the drift of the magnetic field in this experiment and the systematic error
of 1.5 10−5 due to the restactivity, we get νL(8Li) = 1811.15(6)kHz for the first
measurement and νL(8Li) = 1811.26(6)kHz for the second measurement. This
results in the last part of figure (6.6a) for the ratio of the g-factors g(9Li)

g(8Li) .
In these measurements, higher rf-fields were used than in June 2002. This
increased the amplitude of the resonance, while the linewidth increased only a
little bit (figure 6.4d-e), as expected from section (5.2.4). So from these spectra
we can deduce the Larmor frequency of 9Li in Si more accurate than for the
other spectra of June 2002. However, the instability of the static magnetic field
makes the final errors a bit larger than the ones of June 2002.

From figure (6.6a) with the ratio g(9Li)
g(8Li) we can conclude that all the mea-

surements of this work are consistent. For the final result we take the weighted
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Table 6.1: Comparison of different measurements of the magnetic moment of
9Li. Values labeled with ∗ are corrected for the diamagnetic shielding σ.

crystal g µ rel. error
[µN ] [%]

E. Arnold et al. [Arn88] LiF 2.2890 · (35·) 3.4334 · (52·) 0.15%
Correll et al. [Cor83]∗ Au 2.2929 · (4·) 3.4391 · (6·) 0.017%
Correll. fit this work∗ Au 2.2929 · (12·) 3.439 · ·(2 · ·) 0.06%
This work ∗ Si 2.29121(3) 3.43682(5) 0.0013%
[Rag89] ∗ 2.2929(4) 3.4391(6)

2.2890(35) 3.4335(52)

average of all data points g(9Li)
g(8Li) = 2.77124(3) (colored band in figure 6.6a).

Taking the adopted value of [Rag89] for g(8Li), which is corrected for the dia-
magnetic shielding, this results in a g-factor of g(9Li)=2.29121(3), which has
a relative error of 1.3 10−5. With a spin I = 3/2 this gives a magnetic moment
of µ(9Li) = 3.43682(5)µN . This is in agreement with the previous measure-
ment of E.Arnold et al. [Arn88], but not with another earlier measurement by
F.D.Correl et al. [Cor83] (table 6.1). This NMR-measurement was performed
at the Los Alamos National Laboratory Van de Graaf Facility. Polarized 9Li
nuclei were produced in a 7Li(~t, p) reaction, using 5 − 6MeV polarized tritons.
The 9Li nuclei were implanted in a Au single crystal. The Larmor frequency
of protons in Au was measured as reference, giving νH = 4245.8(1.2)kHz with
gH = 5.585552(62)2. A new fit of these data (fig. 6.7) showed however that the
published error νL = 1742.8(3)kHz may have been too small. The newly fitted
value is νL = 1742.9(9)kHz. This error is corrected for the χ2

red = 1.31 being
larger than 1, by the factor [PRD02]

δ = δfit

√
χ2

red (6.15)

With the new error all results are consistent (table 6.1 and figure 6.6b). How-
ever it is not clear if the authors showed all their results in the paper [Cor83].

In table 6.1 and figure 6.6b a compilation of all measurements in the past is
made. Our measurement improves the uncertainty by two orders of magnitude,
what will allow us a more precise fixing of the Larmor frequency in the multi-
rf-NQR measurements for the quadrupole moment of 9Li.

6.2.3 µ(11 Li)

For the measurement of its magnetic moment, 11Li was implanted in Si. In June
2002 we performed three independent β-NMR measurements, but all with too

2In the mean time a more accurate value of gH = 5.585694675(57) [NIST99] exists, but
this doesn’t change the final value of g(9Li) within the error.



96 CHAPTER 6. EXPERIMENTAL RESULTS

1730 1740 1750

-10

-8

-6

-4

-2
n =1742.9(8)kHz
W=3.2(1.1)kHz
A=3.7(9)%

L

A
s
y
m

m
e
tr

y
[%

]

n [kHz]
rf

c =1.31
2

Figure 6.7: Measurement of the Larmor frequency of 9Li in Au by Correll et
al. [Cor83] with a new fit in Origin.

few statistics (fig. 6.8a-c, measurements of three hours) and too low rf-power.
Due to the small rf-power and the rather large scan-range, we only expect one
or two points in the resonance according to the linewidths predicted in sec-
tion 5.2.4. The used rf-powers are not large enough to have the same linewidth
for all Li-isotopes. However, as a rough approximation we can still use the pre-
dicted linewidths from the linear fit in section 5.2.4 to fix the linewidth in the
fit. If we do so, a resonance can be fitted at the same place for the two last
spectra (fig. 6.8b-c). This is a first indication that there is a peak.
Although the different spectra are taken with different rf-power, they were
added. Adding spectra is done by adding the number of counts in the indi-
vidual detectors and taking the asymmetry of the resulting summed number of
counts. This is shown in figure 6.8d, where we see a clear peak at the same
place.
In June 2003 three independent data sets were taken, each during five hours,

this time all three with the same large rf-power and a narrower scan-range. The
linewidth corresponding to this large rf-power B1 = 5G is FWHMexp = 3.2kHz
(section 5.2.4), so now there are enough points in resonance. We had hundred
channels per spectrum. The statistics of three channels is summed, resulting in
the spectra of figure 6.8e-g. In figure 6.8h these spectra are added. This summed
spectrum is first fitted with a Gaussian function with all free parameters. This
learns us that the linewidth should be 3kHz. Therefore in the individual spec-
tra the linewidth is fixed to 3kHz in the fit. To check the influence of the
linewidth on the Larmor frequency, a two-dimensional χ2-plot is made for the
summed spectrum (fig. 6.9). This shows us that for all reasonable linewidths
the same Larmor frequency is found. The limits of the first contour of 10% give
us νL = 5346.6(5) (fig. 6.10). This corresponds to a relative error of 9.4 10−5,
which is slightly higher than the fit error. Since we have in this case no other
reliable data to check the scattering of the data points, this highest error is the
final error.
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Figure 6.8: Overview of the different NMR spectra to measure νL(11Li). (a-d)
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g(11Li).
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final result on νL(11Li), with on top a simulation for νres = νL − δ (left curve)
and a simulation for νres = νL + δ (right curve).

To calculate the g-factor of 11Li from this Larmor frequency, we need a ref-
erence Larmor frequency. In figure (6.11b) the drift of the magnetic field in
time is shown on top of the moment of the other measurements. The Larmor
frequency of 8Li was measured only in the very beginning of the experiment.
The total drift 2.4 ∗ 10−4 over the whole experiment should be considered as
a systematic error. This systematic error is the final relative error on the Lar-
mor frequency of 8Li, giving νL(8Li) = 1806.2(2)kHz. The Larmor frequency
of 9Li was measured in the middle of the measurements of 11Li. As systematic
and final error the drift 1.1 ∗ 10−4 during the period of the 11Li measurements
is taken. This gives us νL(9Li) = 5005.2(3)kHz. With an error of 0.001% on
the g-factor g(9Li) = 2.29121(3) measured in May 2003 (corrected for the dia-
magnetic shielding σ), this reference gives a smaller error on the final result
than the reference of 8Li. So as reference the Larmor frequency of 9Li is used,
resulting in g(11Li)=2.4475(3), with a relative error of 0.01% (colored band
in figure 6.11a). This gives us a magnetic moment of µ(11Li) = 3.6712(5)µN .
These values are corrected for the diamagnetic shielding σ via the reference
measurement. These values are within 2σ in agreement with the measure-
ment of E.Arnold et al. [Arn87] g(11Li) = 2.4449(17) with an error of 0.07%
or µ(11Li) = 3.6673(25)µN (table 6.2, figure 6.11a, plotted in red). The values
of E.Arnold et al. are not corrected for the diamagnetic shielding σ. The un-
certainty is improved by more than a factor of 5. This precision measurement
will allow us a more precise fixing of the Larmor frequency in the measurement
of the quadrupole moment of 11Li via multiple-rf-NQR.

As a final check we compare the -less reliable- results of June 2002 to those
of June 2003. The measurements in June 2002 were performed after the mea-
surements on 9Li, so in the period in which the magnetic field stayed constant
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Table 6.2: Comparison of different measurements on the magnetic moment of
11Li. Values labeled with ∗ are corrected for the diamagnetic shielding σ.

crystal g µ rel. error
[µN ] [%]

E. Arnold et al. [Arn87] LiF 2.4449(17) 3.6673(25) 0.07%
This work ∗ Si 2.4475(3) 3.6712(5) 0.013%
[Rag89] ∗ 2.4452(17) 3.6678(25)

(fig. 6.5b). As reference we take the averaged value νL(8Li) = 1809.91(3)kHz.
This gives us the plotted g-factors at the left side of figure (6.11a). The last
one is the g-factor resulting out of the summed spectrum. The data points in
the middle of the figure (6.11a) are the g-factors of the individual and summed
spectra of June 2003, with as reference nucleus 9Li. All data sets, even those
with very few statistics agree with each other.
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102 CHAPTER 6. EXPERIMENTAL RESULTS

6.3 Quadrupole moments

6.3.1 Overview of performed experiments

The measurements of the quadrupole frequencies of the 8,9,11Li isotopes were
performed in three experiments, one in June 2002, one in May 2003 and one in
June 2003. In each experiment several measurements of the same quadrupole
frequency were performed. In table 6.3 the weighted average of the different
measurements in one experiment is shown for each experiment. The shown er-
rors are statistical, taking into account the standard deviation (section 4.2.3).
Some examples of spectra are shown in the figures 5.12, 5.13, 5.17 and 5.18. The
fit results for 8LiZn and 9LiZn from June 2002, May 2003 and June 2003 are
summarized in figure 3.8. The fit results for 8LiLiTaO3 and 9LiLiTaO3 from
June 2002 and May 2003 are summarized in the figures 5.13 and 5.19.

Table 6.3: Overview of the performed experiments and the resulting averaged ∆
without systematic errors.

8Li 9Li 11Li
nr. of ∆ nr. of ∆ nr. of
scans [kHz] scans [kHz] scans

June 2002
Zn 4 8.08(1) 5 15.7(1)
LiTaO3 2 14.81(9) 2 29.12(55)
May 2003
Zn 6 7.96(3) 4 15.5(1)
LiTaO3 5 14.88(6) 3 28.95(36)
June 2003
Zn 2 15.4(2) 2

In section 4.2.3 was shown that only quadrupole frequencies which are mea-
sured in the same crystal can be compared without introducing a systematic
error if this crystal was not removed from its holder. For the measurements on
the Li-isotopes this means that the ratio of quadrupole frequencies measured
in 2002 and 2003 contains a systematic error of 1.1% due to the uncertainty in
the misalignment angle β, while the ratio of quadrupole frequencies measured
in May 2003 and June 2003 doesn’t contain this systematic error.

To extract the quadrupole moments, the ratio of the quadrupole frequencies
measured in the same experiment is used together with a reference quadrupole
moment. This will be discussed in detail in next sections.
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6.3.2 Quadrupole moment of 8Li

The quadrupole moment of 8Li is known to be positive [Jan94] and is measured
already several times in the past [Ack74, Dub77, Arn88, Min92] (table 6.4). In
the last measurement of Minamisono et al. [Min92] a slightly higher quadrupole
moment than in the previous measurements was found. Therefore a remeasure-
ment was performed. In section (5.2.2) Zn was found to be the best crystal to
measure the quadrupole frequency of the Li isotopes. However, the electric field
gradient of Li in Zn is not known very precise [Oht93] (next section). Therefore
the quadrupole moment of 8Li was measured with a LiTaO3 crystal. A cross-
check was made with a LiNbO3 crystal. Afterwards the quadrupole frequency
of 8Li in Zn was measured to determine the electric field gradient of 8Li in Zn
with higher precision than in [Oht93] (next section). This will be used as a
reference measurement for the extraction of the quadrupole moments Q(9,11Li).

8Li in LiTaO3

Seven independent measurements of νQ(8Li in LiTaO3) with statistics of about
three hours were performed from which two in June 2002 and five in May 2003.

In figure (6.12) some examples from May 2003 are shown. To determine
∆scan = νrf − νL, the Larmor frequency of the last NMR-measurement for 8Li
in Si was used. In the double-rf-NQR spectra there are three peaks. The third
peak is situated at ∆scan = 0, i.e. where the two sent rf-fields have the same
frequency νL(8Li in LiTaO3). This doubles the rf-power, what can be enough
to induce two-photon transitions.

In figure 6.13 an overview of the fit results for the different spectra is given.
The uncertainties are determined via the χ2 analysis mentioned in section 6.1,
applying also the correction factor for χ2 > 1. Due to the constraint of equidis-
tant peaks, ∆ is a fit parameter. The weighted average from the measure-
ments in June 2002 equals ∆ = 14.81(9)kHz (table 6.3). The weighted av-
erage from the measurements in May 2003 equals ∆ = 14.88(6)kHz (table
6.3). To deduce the quadrupole moment Q(8Li) from these frequencies, us-
ing the known Vzz(LiLiTaO3, we take the weighted average of these two data:
∆ = 14.86(5)kHz. This is a relative error of 0.3%. The fact that the frequen-
cies in both experiments are the same within the error bars, suggests that the
crystal was aligned rather well in both cases. However, to exclude any influence
due to a misalignment of Vzz with respect to B0 of maximum < 5◦, we add a
systematic error of 1.1%, resulting in ∆ = 14.86(16)kHz.

The used reference nucleus to extract the quadrupole moment of 8Li is
7Li. The quadrupole frequency of 7Li in LiTaO3 is measured twice in the
past [Pet68, Cha99]. We take the value with the smallest uncertainty, i.e.
νQ = 76.4(3)kHz [Cha99]. The quadrupole moment of 7Li has recently been re-
vised, based on several different experimental data [Ort75, Wel85, Urb90, Voe91]
and is now adopted to be Q(7Li) = 40.0(3)mb [Pyy01, Voe91]. The ratio of the
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Table 6.4: Comparison of the previous measurements of Q(8Li). (a) The
quadrupole moments and quadrupole frequencies are taken directly from the
mentioned papers, often with old values for the reference nucleus 7Li. (b) The
quadrupole moments are recalculated, starting from the quadrupole frequencies of
8Li in the crystal given in the mentioned papers and taking the revised value for
Q(7Li) = 40.0(3)mb [Pyy01, Voe91] and the value with the smallest uncertainty
for the quadrupole frequency of 7Li in that specific crystal. For the values of this
work the systematic error is included. (c) The tabulated values for Q(8Li) in
the preliminary compilation of N.Stone [Sto01]. The compilation of Raghavan
tabulates the first values of [Sto01].
a [Pet67, Hal70] ; b [Cha99]; c [Pet68] ; d [Wel85] ; e [Ort75, Doc74]; f [Min92];
g [Urb90].

used used
crystal νQ(7Li) |Q(7Li)| ∆(8Li) νQ(8Li) |Q(8Li)|

[kHz] [mb] [kHz] [kHz] [mb]
(a)
[Arn88] LiNbO3 54.5(5)a 37.0(8)d 10.63(15) 42.5(6) 28.7(7)
[Ack74] LiNbO3 54.5(5)a 41(6)e 10.8(8) 43(3) 32(6)
[Min92]R LiNbO3 53.3(11)f 40.0(6)g 11.2(2) 44.68(88) 33.5(11)
[Min92]R LiIO3 36.4(5)f 40.0(6)g 7.31(9) 29.24(36) 32.1(8)
[Min92]R average 32.7(6)
[Dub77] LiTaO3 77.6(5)c 41(6)e 15.1(1) 60.2(3) 32(6)

(b)
[Arn88] LiNbO3 54.5(5)a 40.0(3) 10.63(15) 42.5(6) 31.2(6)
[Ack74] LiNbO3 54.5(5)a 40.0(3) 10.8(8) 43(3) 31.6(22)
[Min92] LiNbO3 54.5(5)a 40.0(3) 11.2(2) 44.68(88) 32.8(8)
[Min92] LiIO3 36.4(5)f 40.0(3) 7.31(9) 29.24(36) 32.1(5)
[Dub77] LiTaO3 76.4(3)b 40.0(3) 15.1(1) 60.2(3) 31.5(3)

This work LiTaO3 76.4(3)b 40.0(3) 14.86(16) 59.4(7) 31.12(36)
(c)
[Sto01] [Dub77] 31.7(4)
[Sto01] [Arn88] 28.7(7)
[Sto01] [Min92] 32.7(6)
[Pyy01] -40.0(3)
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frequencies thus gives a quadrupole moment Q(8Li)=31.12(36)mb with a rel-
ative error or 1.15%.

For the comparison of this result with earlier measurements, one has to note
that the used reference value of Q(7Li) changed in time. The mentioned revision
of this quadrupole moment made a revision of the quadrupole moments for the
whole Li-isotope chain necessary. An overview of the non-revised and revised
quadrupole moments for 8Li is given in table 6.4. The result of this work is
in agreement with the previous measurements of the quadrupole moment of
8Li by E.Arnold et al. [Arn88] and H.Ackermann et al. [Ack74] if we use the
same quadrupole moment for the reference nucleus 7Li (table 6.4). However,
this value falls out of the 1σ-error bar of the measurement of Minamisono et
al [Min92], but it falls within the 2σ-error bar (figure 6.14), which covers 95.5%
of the measurements.
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Figure 6.14: Overview of the results for the quadrupole moment of 8Li in the
past. The colored band is the final value of this work.

The uncertainty on the quadrupole moment of 8Li has two main causes.
The largest contribution comes from the systematic error on the misalignment
angle. The second but largest error is due to the relative error on the quadrupole
moment of 7Li of 0.75%.

8Li in LiNbO3

The NQR measurements for 8Li in LiNbO3 (fig. 6.15) can be used as a cross-
check for the found quadrupole moment of 8Li.

As reference nucleus, 7Li is used. With νQ(7Li in LiNbO3) = 54.5(5)kHz [Pet67,
Hal70] and Q(7Li) = 40.0(3)mb [Pyy01, Voe91], quadrupole moments of respec-
tively Q(8Li) = 32.0(5)mb and Q(8Li) = 31.7(4)mb are found. Here the statis-
tical errors, corrected for the χ2 > 1, are larger than the systematic error due
to the misalignment angle. So the statistical errors equal the final uncertainties.
The values are in agreement with the measurements in LiTaO3.
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Figure 6.15: (a) Single NQR-spectrum for 8Li in LiNbO3 from October 2001
with two hours of statistics. (b) Double-rf-NQR spectrum for 8Li in LiNbO3

from May 2003 with one hour of statistics.

6.3.3 Electric field gradient of 8Li in Zn

Ten independent NQR measurements of each about half an hour on 8Li in Zn
were performed from which four in June 2002 and six in May 2003. Some
examples from May 2003 are shown in figure 6.16.

As final value for ∆, the weighted average of the result from June 2002
(∆ = 8.08(1)kHz) and the result from May 2003 (∆ = 7.96(3)kHz) is taken.
The fact that both values do not agree within the error bars, suggests that the
Zn crystal was not well aligned in the May 2003 experiment, in which a lower ∆
was observed. In the final result ∆ = 8.07(8)kHz, the standard deviation is taken
into account, which thus accounts for the systematic error. This corresponds to
a quadrupole frequency νQ(8Li in Zn)=32.27(32)kHz with a relative error
of 1.05% (indeed of the order of the earlier estimated systematic error). This
result is in agreement with the measurement of Ohtsubo et al. [Oht93] νQ(8Li
in Zn)= 33.5(2.0)kHz and improves the uncertainty by almost a factor of six.

With the new quadrupole moment of Q(8Li) = 31.12(36)mb, we get an
electric field gradient for Li in Zn of Vzz(Li in Zn)= 4.29(7) 1015 V

cm2 . The error
is mainly determined by the systematic error on the misalignment angle.

6.3.4 Quadrupole moment of 9Li measured in LiTaO3 and
Zn

For the measurement of its quadrupole moment, 9Li was implanted in Zn and
LiTaO3. We have eleven NQR scans in Zn of each about 1h30min, from which
five performed in June 2002, four in May 2003 and two in June 2003. We have
five NQR scans in LiTaO3 of each about three hours, from which two performed
in June 2002 and three in May 2003. In figure 6.17(6.18) some examples of
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Figure 6.16: Some examples of NQR spectra for 8Li in Zn measured in May
2003. (a-b) Single-rf-NQR measurements. (c) Double-rf-NQR measurement.
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Figure 6.17: Examples of multiple-rf-NQR scans for 9Li in Zn. The indicated
linewidths and amplitudes are properties from the ∆m = 1 peak at ∆scan = ∆.
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Figure 6.18: Examples of multiple-rf-NQR scans for 9Li in LiTaO3. The
indicated linewidths and amplitudes are properties from the ∆m = 1 peak at
∆scan = ∆.



6.3. QUADRUPOLE MOMENTS 111

multiple-rf-NQR scans of 9Li in Zn (LiTaO3) from May 2003 are given. The
positions of the peaks are consistent.
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Figure 6.19: (a-b) Fitted ∆ = νQ

2 for 9Li in Zn and LiTaO3. The colored
bands indicate the weighted average of the results for the indicated experiment.
(c) Ratio of the quadrupole moment of 9Li and that of 8Li. The colored band
indicates the weighted average. All uncertainties are statistical.

In figure 6.19 the fit results of all available spectra are given. The errors
are determined using the χ2 analysis of section 6.1, applying the correction for
χ2 > 1.
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To calculate the quadrupole moment of 9Li, we use the formula

Q(9Li) =
νQ(9Li)
νQ(8Li)

Q(8Li) (6.16)

with νQ(8Li) and νQ(9Li) quadrupole frequencies which are measured in the
same experiment and in the same crystal. The results for 8Li in Zn are given
in figure 4.8, those for 8Li in LiTaO3 in figure 6.13 and those for 9Li in LiTaO3

and Zn in figure 6.19. There are four independent ways to calculate the ratio
Q(9Li)
Q(8Li) :

• as the ratio of the averaged quadrupole frequencies measured in June 2002
with Zn as implantation crystal: νQ(9Li)

νQ(8Li) = 0.5 15.68(10)
8.08(1) = 0.970(6)

• as the ratio of the averaged quadrupole frequencies measured in May 2003
and June 2003 with Zn as implantation crystal: νQ(9Li)

νQ(8Li) = 0.515.53(06)
7.96(3) =

0.976(5)

• as the ratio of the averaged quadrupole frequencies measured in June 2002
with LiTaO3 as implantation crystal: νQ(9Li)

νQ(8Li) = 0.5 29.12(55)
14.81(9) = 0.983(20)

• as the ratio of the averaged quadrupole frequencies measured in May 2003
with LiTaO3 as implantation crystal: νQ(9Li)

νQ(8Li) = 0.5 28.95(36)
14.88(6) = 0.973(13)

Using the values in table 6.3 and in figure 6.19, with νQ(9Li) = 2∆ and
νQ(8Li) = 4∆, we obtain the ratios from figure 6.19. As final value for the
quadrupole moment Q(9Li) we take the weighted average of these four val-
ues, taking into account the standard deviation. This gives Q(9Li)

Q(8Li) = 0.974(4).
With a reference quadrupole moment Q(8Li) = 31.12(36)mb, this results in a
quadrupole moment Q(9Li)=30.31(39)mb with a relative error of 1.3%.

In table 6.5 an overview of the revised and non-revised quadrupole moments
of 9Li of earlier measurements is given. The measurement of this work is in
agreement with the measurement of Correl et al.[Cor83]. The result of E.Arnold
et al.[Arn88] differs by 2σ from the result of this work.

With the measured quadrupole moment Q(9Li) = 30.31(39)mb the uncer-
tainty is improved by a factor of two.

6.3.5 Quadrupole moment of 11Li measured in Zn

For the measurement of its quadrupole moment, 11Li was implanted in Zn. Two
measurements were performed in June 2003, one at B1 = 3G (set 1) during six
hours and one at B1 = 1.4G (set 2) during ten hours. In the first data set
(set 1) only two frequencies were sent simultaneously, i.e. νL,fix − ∆scan and
νL,fix+∆scan without the fixed frequency νL,fix = 5346.200(1)kHz itself. In the
second data set (set 2), all three frequencies were sent simultaneously through
the coil with νL,fix = 5346.100(1)kHz. So all polarization will be destroyed
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Table 6.5: Comparison of the different measurements of Q(9Li) in the past. (a)
The quadrupole moments are taken directly from the mentioned papers, often
with old values for the reference nucleus 7Li. (b) The quadrupole moments are
recalculated, starting from the quadrupole frequencies of 9Li in the crystal given
in the mentioned papers and taking the revised values for Q(7Li) = 40.0(3)mb
[Pyy01, Voe91] and νQ(7Li in LiNbO3)= 54.5(5)kHz [Pet67, Hal70]. (c) The
tabulated values for the quadrupole moment of 9Li in the preliminary compila-
tion of N. Stone [Sto01] and the compilation of P. Raghavan [Rag89]. (d) The
quadrupole moments and frequencies measured in this work with as reference
nucleus 8Li.

used used
crystal νQ(ref) |Q(ref)| ∆(9Li) νQ(9Li) |Q(9Li)|

[kHz] [mb] [kHz] [kHz] [mb]
(a)
[Arn88] LiNbO3 54.5(5) 37.0(8) 18.7(5) 37.4(11) 25.3(9)
[Cor83] LiNbO3 54.5(5) 36.6(3) 24.2(15) 48.4(30) 32.2(66)

(b)
[Arn88] LiNbO3 54.5(5) 40.0(3) 18.7(5) 37.4(11) 27.4(9)
[Cor83] LiNbO3 54.5(5) 40.0(3) 24.2(15) 48.4(30) 35.5(66)

(c)
[Sto01] [Arn88] 25.3(9)
[Sto01] [Cor83] 36(7)
[Rag89] [Arn88] 27.8(8)
[Rag89] [Cor83] 36(7)

(d)This
work

LiTaO3 29.0(3) 58.0(6)
Zn 15.58(17) 31.16(34)

31.12(36) 30.31(39)



114 CHAPTER 6. EXPERIMENTAL RESULTS

5 10 15 20 25 30

-0.075

-0.070

-0.065

-0.060

-0.055

-0.050

-0.045

-0.040

pos1=8(12)kHz
FWHM=4(5)kHz
A=2.7(2.6)%
pos2=16.1(1.8)kHz
FWHM=4(1)kHz
A=0.9(2)%

5 10 15 20 25 30

-0.050

-0.045

-0.040

-0.035

-0.030

-0.025

-0.020

-0.015

-0.010

pos1=8.8(1.8)kHz
FWHM=3(1)kHz
A=0.6(4)%
pos2=17.5(8)kHZ
FWHM=3(1)kHz
A=1.4(4)%

D [kHz]
scan

A
s
y
m

m
e
tr

y
[%

]
A

s
y
m

m
e
tr

y
[%

]

pos1=8.8(1.4)kHz
FWHM=4(2)kHz
A=0.8(3)%
pos2=17.5(8)kHz
FWHM=4.1(7)kHz
A=1.4(3)%

5 10 15 20 25 30

-0.080

-0.075

-0.070

-0.065

-0.060

-0.055

-0.050

-0.045

-0.040

A
s
y
m

m
e
tr

y
[%

]
A

s
y
m

m
e
tr

y
[%

]

5 10 15 20 25 30

-0.060
-0.055
-0.050
-0.045
-0.040
-0.035
-0.030
-0.025
-0.020
-0.015

(a)

(b)

(c)

(d)

set 1, inner detectors

set 2, inner detectors

set 2, coincidences

pos1=8(14)kHz
FWHM=4(6)kHz
A=2.2(9)%
pos2=16(2)kHz
FWHM=4.2(9)kHz
A=0.8(2)%

set 1, coincidences

Figure 6.20: (a-b) First data set with B1 = 3G.
(c-d) Second data set with B1 = 1.4G.
In (a-c) the asymmetry of the counts in the inner detectors is shown. In (b-d)
the asymmetry of the coincidence counts is shown.
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in resonance. Out of resonance already a part of the polarization is destroyed
because of the present νL,fix, what causes a higher baseline. In set 1 we have
a low baseline with an asymmetry ain, but in resonance not all polarization is
destroyed because only twice two levels are mixed, what causes a reduction of
the amplitude.

The fixed frequency νL,fix is smaller than the found Larmor frequency
νL = 5346.6(5)kHz in section 6.2.3 because of the decreasing magnet current.
The effect of the decreasing magnet current on the Larmor frequency was mon-
itored with 9Li.

In figure 6.20 the multiple-rf-NQR spectra are shown with both the β-
asymmetry from the coincidence counts and that from the counts of the inner
detectors. These spectra are fitted with two Gaussian curves and the condition
that the first, ∆m = 2-peak, is narrower than the second ∆m = 1-peak, which
position is twice that of the ∆m = 2 peak. A third Gaussian at ∆scan = 0, is
not added in the fit because it is situated too far from the scan-range to fit it
properly.
In the first data set (fig. 6.20a-b), the scan begins at larger ∆scan than the top of
the two-photon peak. This causes large fit-errors and a shift of the one-photon
peak to the left. When fitting the spectra of set one with only one peak a broad
peak over the whole spectrum is fitted. So that’s also not a good fit. Therefore
and because we see on the figure that both the ∆m = 1 and the ∆m = 2 peak
of the two data sets are consistent, only the second data set will be considered
in the rest of the section.

Once two channels (figure 6.21a,c) and once three channels are taken to-
gether (figure 6.21b,d) in each spectrum. All spectra give consistent results
(fig. 6.22). The uncertainties on these fitresults are determined by the ”fit er-
ror”.

In all these spectra the condition FWHM(∆m = 1) > FWHM(∆m = 2)
results in peaks with equal linewidths, what is not the aim. Therefore we will
artificially vary the ratio of both linewidths for the raw dataset 2 of the inner
detectors.

In figure 6.23 the fit results for different conditions on this ratio are shown.
All fits give consistent results with as uncertainties the ”fit errors”. Increasing
the ratio FWHM(∆m=2)

FWHM(∆m=1) from 0.1 to 0.5 results in an increasing linewidth of the
one-photon peak. When the linewidths of the one-photon peak and the two-
photon peak are taken equal, the linewidth of the one-photon peak decreases
again to 2.55kHz.

Finally a correlation test of the parameters of position and linewidth is per-
formed. This is done via a two-dimensional χ2-plot (fig. 6.24). The contours
are not completely circular. This indicates that there is a correlation between
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Figure 6.21: Second data set with B1 = 1.4G. (a-b) β-asymmetry coming from
the counts in the inner detectors.
(c-d) β-asymmetry coming from the coincidence counts. In (a-c) the statistics
of two channels is summed. In (b-d) the statistics of three channels is summed.
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Figure 6.22: The different fit results for the two sets (inner detectors, coinci-
dences, non summed and summed) with the condition that the two-photon peak
should be narrower than the one-photon peak. Since these are different fit results
from the same data set, it is normal that we don’t have a statistical distribution.
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Figure 6.23: The different fit results for the raw spectrum of the inner detectors
from the second data set with different conditions on the linewidth:
(a) No two-photon peak
(b) FWHM(∆m = 2) = 0.1FWHM(∆m = 1)
(c) FWHM(∆m = 2) = 0.24FWHM(∆m = 1)
(d) FWHM(∆m = 2) = 0.3FWHM(∆m = 1)
(e) FWHM(∆m = 2) = 0.5FWHM(∆m = 1)
(f) FWHM(∆m = 2) = FWHM(∆m = 1)
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Figure 6.24: Two-dimensional χ2-plots for different conditions on the ratio
FWHM(∆m=2)
FWHM(∆m=1) , labeled as in figure 6.23. The shown contours are contours of
10% of χ2.
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the linewidth and the position of the one-photon peak. On the other hand, if
we take the first contour of an increase of 10% of χ2 as error on the result, for
all conditions consistent results are found as is shown in figure 6.25.
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Figure 6.25: Positions of the one-photon peak with the errors determined by the
χ2 plots. The labels are as in figure 6.23.

As final value, we take an averaged value with the largest error determined
by the χ2, resulting in ∆ = 17.3(9)kHz (colored band in figure 6.25). This
corresponds to a quadrupole frequency νQ(11Li in Zn)=34.6(18)kHz, which
is a relative error of 5%. This is larger than the systematic error of 1.1% due to
the misalignment angle.

For the calculation of the quadrupole moment Q(11Li), we used the quadrupole
moment Q(8Li) = 31.12(36), measured in this work. For the quadrupole fre-
quency νQ(8Li in Zn), we used the weighted average from May 2003: νQ(8Li in
Zn) = 31.84(12)kHz. This gives a quadrupole moment Q(11Li)=33.8(18)mb.
This is in agreement with the measurement of E. Arnold [Arn92] (table 6.6) The
uncertainty improved by more than a factor of two.

Table 6.6: Comparison of the different measurements of Q(11Li) in the past.

crystal ∆(11Li) νQ(11Li) Q(11Li)
[kHz] [kHz] [mb]

[Arn92]R LiNbO3 22(3) 44(6) 31.2(45)
This work Zn 17.3(9) 34.6(18) 33.8(18)
[Sto01] [Arn92] 31(5)

In figure 6.26 the NQR spectra of 9Li and 11Li are compared. The col-
ored bands indicate the final result for the two nuclei. The figure shows that
there is no overlap between the two quadrupole frequencies, i.e. the quadrupole
moments of 9Li and 11Li are different.
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Figure 6.26: (a)The best multiple-rf-NQR spectrum for 9Li.
(b) The best multiple-rf-NQR spectrum for 11Li. The narrow band at the left
of the picture indicates the final ∆ for 9Li in Zn. The other band indicates the
final ∆ for 11Li in Zn.
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To specify the difference, the ratio of the two measured quadrupole frequen-
cies is taken. The used quadrupole frequency for 9Li is the weighted average
of the values from May 2003 and June 2003 (fig. 5.19, 2∆2), because between
these two experiments the crystal was not removed from its crystal holder. This
gives3

νQ(11Li)
νQ(9Li)

=
34.6(18)
31.06(12)

= 1.114(59) (6.17)

This ratio is in agreement with the ratio νQ(11Li)
νQ(9Li) = 1.14(16) measured by

E.Arnold et al.[Arn92]. The uncertainty is improved by almost a factor of three.
The found ratio 1.11(6) differs from one by almost 2σ. So, the chance that the
two extra, loosely bound, neutrons in 11Li influence the quadrupole moment is
about 95%. The consequences of this result will be discussed extensively in next
chapter.

6.4 Overview table

In table 6.7 an overview of all experimental results is given.

Table 6.7: Overview of the different properties for the Li isotopes, without the
stable 6Li isotope with g(6Li) = 0.82204728(55), Iπ = 1+, Q(6Li) = −0.83(8)mb
[Rag89].
a[Rag89];b [Voe91]; c [Pet67], d [Cha99]; e [Fir96]; f [Arn92]; ∗ means that the
value is corrected for the diamagnetic shielding.

7Li 8Li 9Li 11Li
Iπ [~] 3/2− a 2+ a 3/2− a 3/2− a

g∗ +2.1709750(27)a +0.826780(9) 2.29121(3) 2.4475(3)
µ ∗ [µN ] +3.25646253(40)a +1.653560(18) 3.43682(5) 3.6712(5)

Q [mb] -40.0(3)b +31.12(36) 30.31(39) 33.8(18)
νQ[kHz] in
Zn 32.27(32) 31.16(34) 34.6(18)
LiTaO3 59.4(6) 58.0(6)

T1/2 [ms] stable 838(6)e 178.3(4)e 8.5(2)e

Qβ [MeV] 16.004(1)e 13.606(1)e 20.610(2e)
A1 0.24e 0.08e 0.24f

The g-factors and magnetic moments are corrected for the diamagnetic
shielding. The uncertainty on the g-factors of 9,11Li are mainly determined

3From this ratio we can calculate as a cross-check the quadrupole moment of 11Li, using
the quadrupole moment of 9Li: Q(9Li) = 30.31(39)mb. This gives us Q(11Li) = 33.8(18)mb,
like expected.
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by the systematic error on νL(8Li) due to the drift of the current for the mag-
netic field and due to the restactivity.

For the quadrupole moments a systematic error of 1.1% is taken into account,
which is the largest contribution on the final error of Q(8,9Li). For Q(11Li), this
systematic error is negligible compared to the statistical error of 5%.



Chapter 7

Interpretation of the results

The experimental results of previous chapter are summarized in figure 7.1 to-
gether with the nuclear moments of the odd-even B-isotopes. Without any
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Figure 7.1: Overview of the present (a)magnetic and (b) quadrupole moments
of the odd-even Li and B isotopes.

calculation we can already see that the nuclear moments are all close to their
single-particle value1. This indicates that all shown Li- and B-isotopes have
a rather pure proton π0p3/2 configuration and that the nuclear moments are
mainly determined by the proton in the 0p3/2 state. The variations of the nu-
clear moments for the different isotopes are small due to small admixtures of
other configurations and due to the interaction of the neutrons and the protons
in these other configurations. For isotopes with an even number of neutrons, the
magnetic moment is much less sensitive to the configuration of the neutrons than

1For the magnetic moments the single-particle value is the Schmidt-value. For an odd
proton in an orbital with j = l + 1/2, this is µsp = j − 1/2 + 2.793. For j = 3/2 we find

µsp = 3.793. The single particle value for the quadrupole moment |Qsp(0p3/2)| = 2j−1
2j+2

〈r2〉e =
2
5
〈r2〉e ≈ 30.4mb. In this calculation 〈r2〉 =

∫∞
0 r4R2

nljdr ≈ 7.6fm2 with Rnlj the radial wave

function, is used [Boh69].
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the quadrupole moment. Therefore the quadrupole moment is better suited to
investigate the presence of different neutron configurations and correlations in
the 11Li wave functions.

The quadrupole moments of the Li isotopes show that the two loosely bound
neutrons in 11Li polarize the 9Li core, resulting in a higher quadrupole moment.
The quadrupole moments of the odd Li-isotopes reach a minimum at 9Li, which
has six neutrons. This minimum is more pronounced than the minimum at
N = 8 for the B-isotopes. On the other hand, the magnetic moments are clos-
est to the Schmidt line when the neutron number is approaching N = 8.

In this chapter these experimental results will be compared with several
theoretical model predictions. First shell model calculations performed with
the ANTOINE code [Cau99] are discussed. It can be questioned whether the
shell-model assumption that all nuclei feel a mean field from the other nuclei, is
still valid for these light nuclei. The validity of this assumption is particularly
doubtful for the extra neutrons in 11Li . However, the shell model calculations
can give an idea about the influence of the different orbitals on the quadrupole
moments. In the subsequent sections an overview of the present status of more
accurate models is given.

7.1 Shell model

The full Hamiltonian of a free nucleus is

H =
A∑

i=1

Ek,i +
A∑

i<j=1

W (i, j) (7.1)

with Ek,i the single nucleon kinetic energies and W (i, j) two-body interactions.
In the shell model the two-body interactions are approximated by one-body
potentials U(i):

H =
A∑

i=1

(Ek,i + U(i)) + (
A∑

i<j=1

W (i, j)−
A∑

i=1

U(i)) = H0 + Hres (7.2)

The one-body potential U(i) represents the mean potential that the ith nucleon
feels in the presence of all other nucleons. Often an harmonic oscillator potential
or Wood-Saxon potential is used for this potential. The eigenvalues of H0

give the bare single particle energies. This gives a good idea of the energies
of nuclei consisting of an inert core plus or minus one nucleon. The residual
interaction Hres contains all two-body interactions. Necessary ingredients for
this interaction are the spin-orbit coupling and pairing. The dimensions of
the diagonalization matrices rapidly become very large when going to heavier
nuclei. Therefore restricted model spaces are chosen in which the calculations
are performed. The nuclear orbitals are divided into a core space and a valence
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space. The core space is completely filled and frozen as a vacuum. For the p-
shell nuclei the 4He nucleus is taken as core. The valence space is only partially
filled. It is usually one major shell on top of the core part. One generates
all possible Slater determinants in the valence shell. The number of Slater
determinants determines the dimension of the calculation. Cutting a model
space introduces errors in the calculations. Therefore the residual interactions
need to be modified to effective interactions. The two-body matrix elements
and the single particle energies are taken as free parameters and are fitted to
describe the experimental nuclear excited states. Another way of obtaining
effective interactions is to start from the free nucleon-nucleon interaction and
to incorporate the necessary modifications to obtain the appropriate nuclear
two-body interaction matrix elements. These interactions are called ”realistic
interactions”.
Due to the use of restricted model spaces, not only the residual interaction has
to be adapted. Also the use of effective operators and charges is necessary. For
the p-sd shell model space, these effective parameters are well known [Bro88].
For the effective g-factors one can use the free ones: gπ

l = 1.0, gπ
s = 5.58, gν

l = 0,
gν

s = −3.826 [Bro88]. For the effective charges one uses eν = 0.5 and eπ = 1.3
[Bro88].

7.2 Overview shell model calculations with AN-
TOINE

Shell model calculations were performed with the latest version of the AN-
TOINE code [Cau99]. In this code one starts from a Wood-Saxon one body
potential U(i). The validity of this mean potential can be questioned for these
light nuclei. The model space and effective interaction can be chosen as an
input. The code uses the Lanczos diagonalization algorithm [Cau99] in which
only the lowest eigenvalues are calculated. The number of desired energy levels
can be chosen as an input parameter.

7.2.1 Effective interactions

Examples of effective interactions

• CKI (p-shell)
This first effective interaction was developed by Cohen and Kurath in
1965 [Coh65, Coh67]. The model valence space is the 0p-shell. As core
the doubly magic 4He nucleus, with two protons and two neutrons in the
0s-orbital, is taken. This interaction was built by adapting the two-body
matrix elements to fit the calculation with experimental binding energies
and energy levels of stable nuclei in the p-shell (A=8-16). Tests of this
interaction with other experimental quantities such as nuclear moments
and transition strengths revealed its strengths and limits. This interaction
works in general quite well in the beginning of the shell. But for the upper
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end of the shell, an admixture of the sd-shell is necessary, as was already
suggested by Cohen and Kurath themselves [Coh65].

• PSDMK (p-sd shell)
For this effective interaction the same 4He nucleus is used as core. For the
valence space the 0p-1s0d-shell is used. The two-body matrix elements
for the 0p-shell are the same as in the CKI interaction. Those of the pure
1s0d-shell are the Preedom-Wildenthal matrix elements [Pre72]. These
matrix elements were established fitting the calculations to experimental
binding- and excitation energies. The mixing matrix elements between
the two shells come from Millener and Kurath [Mil75, Kuo67].
This PSDMK-interaction is an available interaction in OXBASH [Oxb84,
Smi04]. From there it was converted to a readable format for ANTOINE.

• MK3W (s-p-sd shell, cross-shell modified)
For this effective interaction no core is used. As model space the 0s-0p-
1s0d-1p0f-shell is used. The two-body matrix elements for the 0p-shell
are the same as in the CKI interaction. Those of the pure 1s0d-shell
are the same as in the PSDMK interaction. The mixing matrix elements
between the 0p and 1s0d shell come from E.K. Warburton and D.J. Mil-
lener [War89], who modified the Millener-Kurath matrix elements [Mil75]
to fit the 16N spectrum exactly. So it was modified for light neutron-rich
nuclei. The modified matrix elements are called the MKIII matrix ele-
ments [War89]. The matrix elements concerning the 1p0f-shell are taken
from Millener and Kurath [Mil75]. Since we deal only with light elements
in this work, no nucleons will be allowed in the 1p0f-shell. In this case,
the MK3W interaction has a model space s−p− sd. It can be seen as the
PSDMK for which the cross-shell two body matrix elements are modified
for neutron-rich nuclei.
This MK3W-interaction is an available interaction in OXBASH [Oxb84,
Smi04]. From there it was converted to a readable format for ANTOINE.

Magnetic moments

In figure 7.2 the calculations of the magnetic moments with the ANTOINE
code [Cau99] are compared with the experimental results for the odd-even Li
and B-isotopes.

• Li-isotopes
The calculations with the effective CKI interactions, allowing valence neu-
trons only in the p-shell, are reproducing the magnetic moments quite well
(fig. 7.2 filled squares), although it overestimates the magnetic moment of
11Li.

When we allow two nucleons to be excited into the sd-shell, using the
PSDMK interaction (”PSDMK, max. 2”), the magnetic moment of 11Li
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Figure 7.2: Comparison of (b-d) calculated and (a) experimental magnetic mo-
ments of the odd-even Li and B-isotopes. (c) PSDMK interaction with maxi-
mum two nucleons in the sd-shell. (d) PSDMK interaction without restrictions.
(e) MK3W interactions with maximum two nucleons in the sd-shell for the Li-
isotopes. For the 11−15B (17B) isotopes four (six) neutrons and one proton are
allowed in the sd-shell.



128 CHAPTER 7. INTERPRETATION OF THE RESULTS

is still a bit overestimated (fig. 7.2 filled triangles).
When we take the full p-sd-shell without restrictions (”PSDMK, full space”),
the magnetic moments of all Li isotopes are very well reproduced, even
that of 11Li (fig. 7.2, crosses). This is a first indication that excitations of
the halo-neutrons in the sd-shell are needed to reproduce the 11Li magnetic
moment. Even for 7Li and 9Li a better agreement is found by allowing
some 2p− 2h excitations of neutrons from the p-shell to the sd-shell. The
calculated wave function of the ground state of 11Li is in this case 84%
of the normal ν(p2

1/2p
4
3/2)π(p1

3/2) configuration for the valence particles
(appendix A). 15% of the wave function covers all intruder configura-
tions with the two last neutrons coupled in pairs in the sd-shell. The last
1% is the intruder configuration ν(0p4

3/21s1
1/20d1

5/2)π(0p1
3/2) in which two

neutrons are decoupled, reducing the magnetic moment. When we allow
maximal two nucleons in the sd-shell, the neutrons are coupled in pairs in
all configurations. This explains the influence of the model space on the
magnetic moments of the Li-isotopes. However, the effect is small because
the magnetic moments are mainly determined by the unpaired proton in
πp3/2.

The MK3W interaction has cross-shell matrix elements which are specially
modified for neutron-rich nuclei. Therefore we performed the calculation
also with this interaction. In this calculation, maximum two nucleons were
allowed in the sd-shell. This calculation gives a similar result for 11Li, but
less good agreement for 7,9Li, nuclei closer to stability. In this calculation
8% of the 11Li wave function contains a configuration with at least one
unpaired neutron in an orbital of the sd-shell.

• B-isotopes
The magnetic moments for 11B and 13B are underestimated in the CKI
interaction and well reproduced in the PSDMK interaction, even when
not taking the full model space (”PSDMK, max 2”, filled triangles). The
MK3W interaction doesn’t reproduce the magnetic moment of the sta-
ble 11B. This is not surprising, since this interaction was developed for
neutron-rich nuclei.

For the heavier 15B and 17B the CKI interaction can not be used anymore,
since the sd-shell is necessary. For 17B we have to assume more than two
nucleons in the sd-shell. The predictions of the magnetic moments by the
PSDMK and MK3W interactions deviate from the experimental values
for 15B and 17B.
The deviation of the magnetic moments from the Schmidt value has two
origins. One is the first order proton core polarization and the other is
due to those configurations in which two neutrons in the sd-shell couple
to form Jπ = 2+. The former mechanism gives almost full account of the
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quenching at A = 13 and the size of the effect stays quite stable for 11 ≤
A ≤ 17. In contrast, the effect of the latter mechanism rapidly varies as the
neutron number changes [Oku95]. Okuno et al. explained the deviation
from the PSDMK calculations for 15B [Oku95] by the underestimation
of the neutron 2+ configurations. This is confirmed here, by a better
agreement of the full calculation with the experimental value. The same
explanation was given by Ueno et al. for 17B [Uen96].

Quadrupole moments

In figure 7.3 the calculations of the quadrupole moments with the ANTOINE
code are compared with the experimental results for the odd-even Li and B-
isotopes. For the Li-isotopes, the difference between the calculations in the
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Figure 7.3: Comparison of (a) experimental and (b-e) calculated quadrupole
moments of the odd-even Li (left) and B-isotopes (right). In the calculations the
effective charges en = 0.5 and ep = 1.3 [Bro88] were used. For the calculation
(c) maximum two neutrons were allowed in the sd-shell. For the calculation (d)
no restrictions were put on the p-sd model space. In the figure the used effective
interaction is mentioned. For the calculation (e) maximum two neutrons were
allowed in the sd-shell for the Li-isotopes. For the 11−15B (17B) isotopes four
(six) neutrons and one proton are allowed in the sd-shell.

p-shell (CKI) and in the p-sd shell (PSDMK) is minimal, irrespective of the
number of allowed p-h excitations. However, with the MK3 interaction, modi-
fied to better describe the neutron- rich 16N (N=9), the quadrupole moment of
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11Li (N=8) is better reproduced. In the latter calculation about 8% of the cal-
culated 11Li wave function has an unpaired neutron in the sd-shell (table A.10),
while it is only 1% in the calculation with the PSDMK interaction. On the other
hand, this MK3 interaction doesn’t reproduce the quadrupole moments of the
less neutron-rich nuclei 7,9Li. The quadrupole moment of 9Li is best reproduced
with the PSDMK interaction.
The calculated trend of the quadrupole moment as a function of the neutron
number is the opposite from what we observe for all used interactions.
Remarkable is the large underestimation of the quadrupole moment of 7Li with
all used interactions. This was interpreted as a cluster phenomenon by Kanada-
En’yo et al. [Kan01] (section 7.6).

The quadrupole moments of 15B and 17B are largely overestimated with the
PSDMK effective interaction. The MK3 gives a better agreement although the
quadrupole moments are still slightly overestimated. Ogawa et al. explained
this discrepancy with the quenching of the effective charges [Oga03] for isotopes
with large N−Z

A ratios. The varying effective charges were calculated using
particle-vibration coupling models [Sag01, Boh75]. In this model the effective
charges are a function of the parameter x = N−Z

A .

eν(j, j′) =
1
2
αj,j′(1− x)[(1− 0.65x)χτ=0 − χτ=1]

eπ(j, j′) = 1+
1
2
αj,j′(1− x)[(1 + 0.65x)χτ=0 + (1 + x)χτ=1]

with αj,j′ orbital dependent factors, j, j′ the involved orbitals, τ the isospin and
χτ=0(1) the polarizability coefficients. In [Oga03] it is shown that best results are
obtained for χτ=0 = 1.0 and χτ=1 = −0.33. The effective charges are reduced
with increasing isospin by the parameter x. This reduction is more pronounced
for light nuclei. In addition, the polarization charges can be affected by the
radial distributions of single-particle wave functions. In particular the effective
charges can be quenched for loosely bound single particles. This decoupling
effect is incorporated by the orbital dependent factor αjj′ . We used the αjj′

of [Oga03] for the particles in the last filled orbitals. The obtained effective
charges are given in table 7.1.

As Ogawa et al. [Oga03] showed, the calculations with the PSDMK interac-
tion and these quenched effective charges reproduce the trend in the quadrupole
moments of the odd-even B-isotopes (fig. 7.4). However, this calculation system-
atically underestimates the quadrupole moments of the Li-isotopes, even worse
than the other calculations. The given formula for the effective charges was
based on the assumption that the local N−Z

A ratio as well as the total density
are preserved in any point of the nucleus. This is clearly not the case for 11Li
with a long density tail (=halo). This can explain why the quenching doesn’t
work here. To reproduce the quadrupole moment of 11Li with the PSDMK inter-
action by changing the effective charges, one needs in fact an enhanced neutron
effective charge eν = 1.0 and a slightly higher proton effective charge eπ = 1.44.
These are unrealistic values (fig. 7.5). With these high effective charges the
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Table 7.1: Used parameters for the calculation of the quenched effective charges
as explained in [Oga03] with χτ=0 = 1. and χτ=1 = −0.33.

nucleus x eπ eν
11B 0.09 1.29 0.52
13B 0.23 1.26 0.41
15B 0.33 1.23 0.19
17B 0.41 1.21 0.17
7Li 0.14 1.28 0.48
9Li 0.33 1.23 0.33
11Li 0.45 1.20 0.14
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Figure 7.4: Comparison of experimental and calculated quadrupole moments
of the odd-even Li (left) and B-isotopes (right) with quenched effective charges
(table 7.1) and the PSDMK interaction.
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quadrupole moment of 7Li is also surprisingly well reproduced, while that of 9Li
is largely overestimated.
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Figure 7.5: Experimental quadrupole moments of 7,9,11Li compared with AN-
TOINE calculations with the PSDMK effective interactions with unrealistic high
effective charges eπ = 1.44 and eν = 1.0.

Polarizability of the 9Li core

In this paragraph we discuss the question how the halo neutrons polarize the
9Li core when their configuration is respectively s2

1/2, p2
1/2 or d2

5/2. Therefore
different ANTOINE calculations were performed using the PSDMK interaction,
blocking the halo neutron respectively in the 0p1/2, 1s1/2 or 0d5/2 orbitals. The
result is shown in figure 7.6.

The neutrons in both (ν0p1/2)2 and (ν1s1/2)2 configurations will couple to
0+. In a simple single particle picture the quadrupole moment of the two con-
figurations is equal and determined only by the proton configuration π0p3/2.
In the calculations a small difference of about 5% is found due to the proton-
neutron interactions. The experimental value for the quadrupole moment of 9Li
lies in between the two values.
The two neutrons in the (ν0d5/2)2 configuration can couple to 0+ and to 2+.
The part of the neutrons that couple to 2+ will enhance the quadrupole moment
via the coupling with the protons to a total spin 3/2−. The calculations show
an enhancement of about 27%.
The experimental value |Q| = 33.8(1.8)mb lies in between the values for the
0+ configurations ν(0p1/2)2, ν(1s1/2)2 and the value for the ν(0d5/2)2 configu-
ration. This is an indication that an admixture of configurations with the two
neutrons coupled to 2+ is necessary. The contribution of these configurations
are underestimated in the PSDMK calculations performed without restriction
on the number of neutrons in the sd-orbits. The calculated wave function for
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Figure 7.6: ANTOINE calculations for Q(11Li) with the effective PSDMK in-
teraction, assuming different pure neutron configurations for the halo neutrons,
compared to the experimental values for 11Li and 9Li (0p-0h).

11Li results in a large probability of normal, non intruder states (P = 84%) and
only 6% of the intruder 0d2

5/2 or 1s1/20d5/2 configurations (appendix A).

By mixing two wave functions, one can calculate the quadrupole moment of
the mixed wave function as a function of the mixing probability a2. The com-
parison of this to the the experimental quadrupole moment, gives an estimate
of the mixing probability a2.
We define a mixed wave function

|ψ〉 = a|φ1〉+ b|φ2〉 (7.3)

with |φ1〉 a linear combination of all wave functions with neutron configurations
coupled to 0+.

|φ1〉 = c|(ν(0p2
1/2)0+ ⊗ π(p1

3/2)3/2−)3/2−〉
+d|(ν(1s2

1/2)0+ ⊗ π(p1
3/2)3/2−)3/2−〉

+e|(ν(0d2
5/2)0+ ⊗ π(p1

3/2)3/2−)3/2−〉

and |φ2〉 the wave function with a neutron configuration coupled to 2+.

|φ2〉 = |(ν(0d2
5/2)2+ ⊗ π(p1

3/2)3/2−)3/2−〉 (7.4)

We neglect here the |(ν(1s1/20d5/2)2+ ⊗ π(p1
3/2)3/2−)3/2−〉 for simplicity.
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The spectroscopic quadrupole moment of the mixed wave function equals [Hey94]

eQs(|ψ〉) = 〈3/2,m = 3/2|eQs.p. + eQcoll|3/2,m = 3/2〉

=

√
16π

5

(
3/2 2 3/2
−3/2 0 3/2

)
〈3/2||eQs.p. + eQcoll||3/2〉

with Qs.p. the single particle quadrupole moment and

Qcoll =

√
B(E2, 0+ → 2+)

5
[(b†20 + b20)⊗ 1] (7.5)

the quadrupole moment due to collective vibrations [Hey94, Vyv01]. The cre-
ation (annihilation) operators b†20 (b20) create (annihilate) a boson with spin 2.
This gives us

eQs(|ψ〉) = a2Qs(|φ1〉) + (1− a2)Qs(|φ2〉)

+2

√
16πB(E2)

500
a
√

1− a2〈φ1||(b†20 + b20)⊗ 1||φ2〉)

Using the Wigner-Eckart theorem to split the collective operator for the protons
and the neutrons gives [Hey94]

eQs(|ψ〉) = a2Qs(|φ1〉) + (1− a2)Qs(|φ2〉)− 4
{

0 3
2

3
2

3
2 2 2

}
〈0+||b20||2+〉

= a2Qs(|φ1〉) + (1− a2)Qs(|φ2〉) + 1.12
√

B(E2)a
√

1− a2

Using this formula, we can determine the needed amount of mixing to repro-
duce the experimental quadrupole moment. This formula contains four unknown
parameters: Qs(|ψ〉), Qs(|φ1〉), Qs(|φ2〉) and B(E2, |φ1(0+)〉 → |φ2(2+)〉).

• For Qs(|ψ〉) we use the experimental value |Q(11Li)| = 33.8(18)mb.

• Qs(|φ1〉) is the quadrupole moment of 11Li with all neutrons coupled to
0+. In figure 7.6 is shown that this is well approximated by the ob-
served quadrupole moment of 9Li. Therefore we use as an approximation
Qs(|φ1〉) = 30.31mb.

• Qs(|φ2〉) is the quadrupole moment of 11Li with all neutrons coupled to
2+. The calculated quadrupole moment for the configuration 0d2

5/2, is an
admixture of a configuration with the two neutrons coupled to 2+ and a
configuration with the two neutrons coupled to 0+. In the configurations
0p2

1/2 and 1s2
1/2, the two neutrons are coupled to 0+. Therefore we use as

an approximation the calculated quadrupole moment for the configuration
0d2

5/2 for Qs(|φ2〉). This gives Qs(|φ2〉) = −37.5mb.
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• Also for the reduced electromagnetic transition strength B(E2, |φ1(0+)〉 →
|φ2(2+)〉) some assumptions are necessary. For 11Li nothing about this
transition strength is known. Therefore we look to isotones, such as 12Be.
For 12Be the nuclear deformation length δ is measured [Iwa00b], wile the
electro-magnetic deformation length δe.m. = β2R is needed to determine
B(E2) [Ram01, Nun02]

B(E2) = (
3ZRδe.m.

4π
)2 (7.6)

However, from the comparison of the experimental nuclear deformation
length δ with shell model calculations one could deduce B(E2) indirectly
as B(E2,12Be) = 52(6)e2fm4 [Iwa00b].
Nunes et al. [Nun02] calculated the transition strengths for 12Be, but
different parametrizations of the model give very different results varying
from B(E2) = 5e2fm4 to B(E2) = 50e2fm4.

To calculate the needed amount of mixing, we assume that the transition
strength B(E2) is similar for 12Be as for 11Li. Using the extreme values of the
calculations of Nunes et al. [Nun02] for B(E2), one can deduce the limits of
mixing of (2p− 2h)2+ intruder components into the 11Li wavefunction.
The minimum transition strength B(E2) = 5e2fm4 gives a2 = 0.937. This
means an admixture of 6.3% of the ν(0d5/2)22+ configuration to the wave function
of the 11Li ground state. The maximum transition strength B(E2) = 50e2fm4

gives an admixture of 0.8% of the ν(0d5/2)22+ configuration to the wave function
of the 11Li ground state.

So a small, but present, admixture of 2+ neutron configurations can explain
the observed 11Li quadrupole moment. The fact that such a small admixture
leads to an enhancement of the quadrupole moment with about 10% shows the
sensitivity of the quadrupole moment to the admixture of 2+ neutron configu-
rations. However, due to the unknown B(E2) one can not fix the amount of
mixing.
Johannsen et al. [Joh90] predicted that this admixture is less than 1%. These
calculations are based on a three-body model in which two neutrons form a spa-
tially extended halo around an inert 9Li core. In this model the motion of these
neutrons relative to the core is predicted to have total angular momentum L = 0
with less than 1% admixture of L = 2. Our result confirms these calculations if
we use the values for B(E2) deduced from the combination of the experimental
result and shell model calculations.

In this argumentation it was assumed that the two loosely bound neutrons
are in the same orbital. This leads with the effective PSDMK interaction to
a small admixture of L = 2 neutron configurations. With the MK3 effective
interaction, ANTOINE calculates a wave function with also a small contribution
of a configuration with only one neutron in the 0d5/2 orbital (table A.10). With
this wave function the observed quadrupole moment of 11Li is reproduced. So in
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the two cases a contribution of the 0d5/2 orbital to the total wave function of the
11Li ground state is necessary. This is the first experimental indication
that one or both halo neutrons of 11Li have a non-zero probability to
occur in the 0d5/2 orbital.

7.2.2 Realistic interaction leading to the shell evolution
paradigm

Realistic interactions are obtained by fitting the calculated values for the free
nucleon-nucleon scattering observables, such as phase shifts in all possible re-
action channels and polarization data [Hey94]. Based on the general invariance
principles [Rin80] a central part VC , a tensor part VT and a spin-orbit term VLS

contribute to a total realistic force between two nucleons 1 and 2 [Hey94]

V = VC(1, 2) + VT (1, 2) + VLS

= V0(r) + Vσ(r)σ1.σ2 + Vτ (r)τ1.τ2 + Vστ (r)σ1σ2τ1τ2

+(VT0(r) + VTτ (r)τ1τ2)S12

+VLS(r)l.S

with σ, τ the spin- and isospin operator, r the distance between the two nucleons
and S12 = 3

r2 (σ1.r)(σ2.r)− σ1.σ2.
The spin-isospin dependent part Vστ of the central force is attractive and is
acting on spin-orbit pairs j = l ± 1/2 with different isospin and same orbital
angular momentum l [Fed79, Des63]. The strength of this force increases with
the number of nucleons filling the involved orbits. Around stability with N ≈ Z
and ample occupancy of the j = l + 1/2 orbit in the valence shell, the proton
(neutron) j = l − 1/2 orbit is lowered by neutrons (protons) in the j = l + 1/2
orbit. In exotic nuclei, this lowering can be absent and the j = l+1/2 orbit can
be located rather high, not far from the upper shell. This can lead to a weaken-
ing of the shell closure. Since the weakening of shell closures were only observed
since the experimental availability of exotic radioactive beams, this phenomenon
got only recently extra attention. Otsuka et al. [Ots01, Ots02, Ots03] reminded
that the evolution of the relative distance of the orbits over the nuclear chart
can be explained by the varying strength of the spin-isospin dependent term
of the residual nucleon nucleon interaction. To know Vστ as a function of the
isospin, one needs to fit experimental data to Vστ . For the region around the
Island of Inversion of 32Mg shell model calculations, using the adapted isospin
dependent Vστ term, explained the new magic number N = 16 for 24O [Ots01].
Experimental indications for this ”new” magic number N = 16 were found by
a systematic study of the single-neutron- [Oza00] and two-neutron separation
energy [Dlo02] in neutron rich nuclei. At the other side of the stability line,
Z = 16 was found to be a magic number for neutron deficient N = 13 − 15
nuclei by the study of Qβ− and the single-proton separation energy [Kan02].

Also for light nuclei the term Vστ is isospin dependent. In the effective in-
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teraction2 PSDMK2, the attractive Vστ part of the interaction is too weak as
compared to the realistic G-matrix interaction [Sag93]. Therefore this effective
interaction was modified by adapting artificially the two-body matrix elements
[Ots01].
Around N = 8 the energy levels of the N = 7 isotones 13C,11Be and 9He are
reproduced quite well by ANTOINE calculations using this modified PSDMK2
interaction [Ots01].

With this modified PSDMK2 interaction, Suzuki et al. [Suz03] found recently
admixtures of 50% for the 0p2

1/2 configuration and 25% for each of the two in-
truder configuration (1s2

1/2) and (0d2
5/2) for the last two neutrons in 11Li [Suz03].

This was achieved by fitting the calculations to the observed Gamow-Teller tran-
sitions B(GT ) and magnetic moments.
For the quadrupole moments of the Li-isotopes no calculation was performed
with this adapted interaction.

In the qualitative overview of the experimental data around N = 8, it can
be seen that Vστ plays an important role to determine the shell closures (fig. 7.7
and 2.7).

For stable nuclei, such as 13
6 C7, the filled proton-orbit j> = 0p3/2 lowers the

neutron-orbit j< = 0p1/2 due to the attractive coupling Vστ of the two orbits.
This causes a shell gap at N = 8, what is experimentally indicated by the high
first excitation level and the normal spin/parity of 13C (fig. 7.7). When remov-
ing one proton of the j>-orbit, this attraction becomes weaker. The observed
trend line for the quadrupole moments of the B isotopes, which shows the pres-
ence of a weak shell closure at N = 8, confirms this. When removing one more
proton the attractive Vστ term becomes so weak that the νp1/2 orbit is hardly
lowered. Like this a level of the sd-shell might become lower in energy than the
0p1/2 level. The 1s1/2 level has an energy lower than the 0d5/2 level in this case.
This is because the 0d5/2 nucleon interacts more strongly with the 0p1/2 nucleon,
which is not low anymore, while the 1s1/2 nucleon interacts more strongly with
the 0s1/2 nucleons. The well-known inverse parity of 11Be indicates that the
attraction of the spin-orbit pair p1/2 − p3/2 is not strong enough anymore to
keep the shell gap at N = 8. When we remove one more proton, the proton
orbit j> is almost empty and the attraction Vστ term becomes even weaker.
This might give rise to a new shell gap at N = 6. The decreasing quadrupole
moments of the Li-isotopes when approaching 9

3Li6, might be an indication for
such a new magic number.

In this picture of the shell-evolution a possible new magic number N = 6 is
suggested. This magic number was also suggested by the cluster core model of
R.K. Gupta et al. [Gup00, Gup02]. In this model the halo structure is inves-
tigated in terms of potential energy surfaces (PES). These PES are calculated

2This interaction is very similar to the PSDMK effective interaction.
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Figure 7.7: Schematic view of the shell evolution paradigm test.

as the sum of binding energies B(A,Z), Coulomb repulsion, nuclear proximity
attraction Vp [Blo77] and the centrifugal potential Vl [Sar85] for all the possible
cluster and core configurations of a nucleus:

V (A1, A2, R, l) = −
2∑

i=1

B(Ai, Zi) +
Z1Z2e

2

R
+ Vp + Vl (7.7)

In these calculations the nuclei with mass number A are split in a core with mass
number A1 and a cluster with mass number A2 = A − A1. The deformation
effects are neglected in both the Coulomb and proximity energies, for reasons
of simplicity. The radius is calculated as Ri = 1.15fmA

1/3
i . The PES are

calculated as a function of the possible cluster-core configurations, i.e. as a
function of A2. A minimum potential energy means a configuration formed
with the largest quantum mechanical probability. A minimum potential energy
also indicates that one of the contributing nuclei (the core of one of the clusters)
is a magic or nearly magic nucleus [Gup02]. In figure 7.8 some examples are
given from [Gup00, Gup02]. The different curves correspond to different angular
momenta l. Four minima are visible in the picture for 20Mg [Gup02]. These
correspond to the magicity of the neutron deficient 16

10Ne6, 14
8 O6, 18

10Ne8. This
indicates a magic number N = 6 far from stability and N = 8 close to stability.
The potential energy as a function of A2 for 11Li shows only one minimum, i.e.
for a two-neutron cluster and a 9

3Li6 core. This might indicate a magic number
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Figure 7.8: Potential energy as a function of the mass number A2 of the cluster
contributing to the nuclei 20Mg and 11Li. Picture taken from [Gup00, Gup02].

N = 6 for nuclei with Z = 3.

7.3 Large basis no-core shell model (NCSM)

For light nuclei, the capacities of the computers allow larger model spaces. This
is used in large-basis no-core shell model calculations. In such calculations all
nucleons are active without a fixed core. In addition, the model space up to
N~ω is taken into account. This larger model space diminishes the errors in-
duced by approximating the A-body effective interaction by a two-body effective
interaction. Such calculations are performed for A = 7 − 11 by P. Navratil et
al.[Nav98] with N = 6 for A = 7 and N = 4 for the other nuclei. The used effec-
tive interaction is based on the modern nucleon-nucleon Reid93 potential [Rei93]
together with the Coulomb potential. Also isospin-breaking elements are con-
sidered, such as the different T = 1 channels for proton-neutron, proton-proton
and neutron-neutron systems.

In table 7.2 an overview of the calculations for the nuclear moments of the
odd-even Li isotopes is given. Both the magnetic and the quadrupole moments
are systematically underestimated, but the trend line is reproduced: the small-
est quadrupole moment is that of 9Li. In these calculations free g-factors and
bare charges are used. The experimental values can be reproduced by taking
effective charges according to Navratil et al.[Nav98], but no numbers on the nu-



140 CHAPTER 7. INTERPRETATION OF THE RESULTS

Table 7.2: Nuclear moments calculated in a large-basis no-core shell
model [Nav98]. Free g-factors and bare charges are used.

µ[µN ] |Q|[mb]
7Li exp. 3.25646253(40) 40.0(3)

model 2.994 27.10
9Li exp. 3.43682(5) 30.31(39)

model 2.940 20.85
11Li exp. 3.6712(5) 33.8(1.8)

model 3.601 23.01

clear moments are given in that article. The claimed needed effective charges are
close to the common used ones in the shell model: eπ(7Li)= 1.18, eν(7Li)= 0.18,
eπ(9Li)= 1.25, eν(9Li)= 0.25, eπ(11Li)= 1.27, eν(11Li)= 0.27. So even in this
almost unlimited model space effective charges are needed to correct for approx-
imations in the effective interaction.

In the mean time it is possible to use a three-body effective interaction
without any adjustable parameter. This is called ”ab initio large basis no-core
shell model”. It is tested for the 3He and 4He isotopes in the large 18~ω space,
for which well converged results are found [Bar02, Nav03]. Also for some Be,
B,N and C isotopes good agreement for the low-lying spectra were found. Up
to now no nuclear moments for the Li-isotopes were reported.

7.4 Monte Carlo Shell model

The Monte Carlo Shell Model [Ots01b, Ots99, Ots01c] has been developed to
overcome the problem of too large dimensions in conventional shell model cal-
culations. In this model a basis χi, i = 1...n is constructed with a variational
method such that each χi has maximal relevance for the final eigenstates. The
dimension n of this basis is much smaller than for arbitrary bases. This makes
it possible to diagonalize the full matrix. This diagonalization method is called
quantum monte carlo diagonalization. This model has been applied to midshell
nuclei such as 48Cr, 56Ni and the Ba isotopes. Good agreement with experi-
mental level schemes was found.
In the N ≈ 20 region of neutron rich unstable nuclei, the mixing between the
0p0h and 2p2h configurations in low lying states due to a varying shell gap is
reproduced quite well [Uts01].
Until now no calculations were performed for the Li isotopes. It would be in-
teresting to compare future calculations for Li with the calculations presented
in this work.
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7.5 Cluster models

In cluster models the nucleus is not divided into a core and a valence part as in
conventional shell model calculations. The nucleus is described as an interacting
system of two-, three- or more clusters of nucleons. Recently different cluster
calculations were performed. Below an overview is given.

7.5.1 Microscopic multicluster model with a stochastical
variational method [Var95, Var02]

In this model 7Li is described as a two-cluster system 7Li= α + t. For the
other Li-isotopes, neutrons are added: 8Li= α + t + n, 9Li= α + t + n + n,
11Li= α + t + n + n + n + n. The wave function is an anti-symmetrized product
of the internal states of the clusters and the functions of the relative motions.
The internal structure of the clusters (α, t, n) is approximated by a Slater
determinant of 0s harmonic oscillator wave functions [Bra00]

ψ0(x) =

√
β

π
exp (−βx2) (7.8)

of a common width parameter β = mω
~ . Such wave functions have a Gaussian

form with a full width half maximum of FWHM = ln(2)
√

2
β . The width pa-

rameter is adjusted to get nearly correct values for the sum of the radii of the
free α plus t clusters and to minimize its energy. This gives β = 0.52fm−2. The
function of relative motion is approximated by a linear combination of nodeless
harmonic-oscillator functions of different width parameters, which are relatively
unsensitive to the results. Various cluster arrangements are combined to include
the different correlations between the clusters. A cluster arrangement is indi-
cating the priority of coupling of the clusters. In the example of 8Li we have
the arrangements (α, t)n, α(t, n), (α, n)t.
To keep the dimension of the basis low, a stochastic variational method [Var94]
is applied. Here the important basis states are selected using an admittance
test. A candidate is admitted if it, together with the previous selected basis
states, lowers the energy more than a preset value ε. If k successive candidates
fail to fulfill the condition, ε is divided by two and the search is continued.
The Minnesota effective nucleon-nucleon interaction [Tho77], consisting of a
central part, a spin-orbit part and a Coulomb part without effective charges is
used. The strength of the spin-orbit force was set to give the correct spacing
between the 3/2− and 1/2− states of the 7Li and 7Be subsystems. The parame-
ter u of the central part was set to get overall agreement between experimental
and model energies of the states of 7Be, 8B, 7Li and 8Li (u=1). With these
parameters fixed, the model contains no free parameters.
Before applying this model to the Li-isotopes [Var95, Var02] this procedure was
successfully tested on the neutron rich He isotopes [Var94].
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The results of Varga et al.[Var95, Var02] for the nuclear moments of the
odd-even Li-isotopes are shown in table 7.3.

Table 7.3: Nuclear moments calculated in a multicluster model with a stochastic
variational method [Var95, Var02].

µ[µN ] |Q|[mb]
7Li exp. 3.25646253(40) 40.0(3)

model 3.15 36.5
9Li exp. 3.43682(5) 30.31(39)

model 3.43 27.4
11Li exp. 3.6712(5) 33.8(1.8)

model 3.23 37.1

The model predicts the smallest quadrupole moment for 9Li, as it is exper-
imentally observed. However, the 11Li quadrupole moment is largely overesti-
mated, while the 7Li quadrupole moment is underestimated.

7.5.2 Microscopic cluster model [Des97]

P. Descouvement described 11Li in a three cluster model as 9Li+n + n [Des97].
The 9Li nucleus is described in the shell model with all p-shell wave functions
allowed by the Pauli principle. This procedure yields many 9Li states, defined
by a flexible mixing of shell model basis states. In this way core excitations,
expected to be important in halo nuclei [Nun96], are consistently introduced.
The parameter u of the Minnesota force [Tho77] and the strength of the spin-
orbit term was adapted to the binding energy of 11Li and the excitation energy
of 9Li. The results are shown in table 7.4. The quadrupole moment of 9Li is

Table 7.4: Absolute values for the quadrupole moments calculated in a multi-
cluster model [Des97].

Exp.[mb] Model[mb]
9Li 30.31(39) 22.5
11Li 33.8(1.8) 31.3

strongly underestimated. The quadrupole moment of 11Li is reproduced more
or less.

7.5.3 Hyperspherical functions method [Tim02]

In this model, hyperspherical coordinates r,θ,φ1,... are used instead of the
distances between the clusters. The energy is split in a hyperradial and a hy-
perangular part. The eigenfunctions of the hyperangular part are called hyper-
spherical functions. The eigenfunctions of the hyperradial part are called the
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hyperradial functions. The wave function is then expanded in the hyperspheri-
cal functions basis; it is represented as a sum of products of the hyperradial and
the hyperspherical functions.
Such an expansion has been shown to converge for three-four-nucleon bound sys-
tems providing comparable results for binding energies and root mean square
radii to other few-body methods [Bal82]. For A > 4 the number of hyperspher-
ical harmonics becomes very large and no studies of convergence have been
done with the traditional formulation of the hyperspherical functions method.
Recently a modified version was proposed with an adapted effective interac-
tion [Tim02]. At the moment only binding energies of the H and He isotopes
are calculated. The experimental data are reproduced quite well. It would
be very interesting to compare future calculations with the experimental data
presented in this work.

7.6 Antisymmetrized molecular dynamics

The microscopic method of antisymmetrized molecular dynamics (AMD) [Kan01]
is free from assumptions of inert core or existence of clusters. The wave function
of the system is written as a linear combination of AMD basis wave functions
φAMD. An AMD basis wave function φAMD is a Slater determinant of Gaussian
wave packets

φAMD =
1√
A!

AS(φ1, φ2, ..., φA) (7.9)

with φi = φXi(rj)χiτi, AS the anti-symmetrization and

φXi(rj) ∝ exp[−ν(rj − Xi√
ν

)2] (7.10)

with χi is the intrinsic spin function

χi =
(

1/2 + ξi

1/2− ξi

)
(7.11)

parameterized by ξi and τi is the isospin function which is up (proton) or down
(neutron). After the projection onto a parity eigenstate, variational calculations
are performed to find the state which minimizes the energy of the system. Af-
terwards a projection on the angular momentum is performed. In the simplest
version of the model the directions of intrinsic spins of single particle wave func-
tions are fixed via fixed ξi = ±1/2.
As effective interaction the Case(1) of MV1 [And80] force is adopted for the
central part of the effective force. This contains a zero-range three-body force

V (3) = v(3)δ(r1 − r2)δ(r1 − r3) (7.12)

in addition to the Volkov1 two-body interaction [Vol65]

V (2) = (1−m + bPσ −hPτ −mPστ )(VAexp[−(
r

rA
)2] + VRexp[−(

r

rR
)2]) (7.13)
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for the density dependent terms. For the parameters following values are used:
v(3) = 4000MeV fm6, b = h = 0, VA = −83.34MeV, rA = 1.60 fm, VR = 104.86
MeV, and rR = 0.82 fm. Pσ and Pτ stand for spin- and isospin exchange
operators, respectively and r denotes |r1 − r2|. The free parameter m is the
majorana parameter. In addition to the central force, a spin-orbit and Coulomb
term are adopted. The Coulomb interaction is approximated by a sum of seven
Gaussians. For the spin-orbit interaction the two-body G3RS force [Yam79] is
taken

VLS = (uIexp(−κIr
2) + uIIexp(−κIIr

2))P (3O)L.(S1 + S2) (7.14)

with κI = 5.0fm−2 and kII = 2.778fm−2 and uI , uII free parameters.

To find the appropriate values for the free parameters (m, uI and uII)
the binding energies of Li, B, Be and C isotopes were calculated with differ-
ent parameters. Best agreement was found for m = 0.576, uI = −uII =
900MeV [Kan01]. To look at the influence of different interactions, also the
Volkov1 interaction [Vol65] with m = 0.56 and uI = −uII = 900MeV was
used as central force for this calculation. This Volkov1 interaction contains only
two-body forces. The results without the three-body force overestimate the ex-
citation energies of non-normal parity states in most nuclei. So a three-body
force term is necessary to reproduce the data.

With the optimum parameters for the binding energies the nuclear moments
of these isotopes are calculated. In table 7.5 and figures 7.9 and 7.10 an overview
of the results with free charges and g-factors is given.

Table 7.5: Nuclear moments in the pure AMD model (AMD) of Y. Kanada-
En’yo et al. [Kan01] and its Shell Model Limit (SML). Values are taken
from [Kan01]. For Q(7Li) an extra value is given with an adapted wave function
in the pure AMD model (AMD φad.).

µ[µN ] |Q|[mb]
7Li Exp. 3.25646253(40) 40.0(3)

AMD 3.15 27.6
SML 3.14 15.1
AMD φad. 46.1

9Li Exp. 3.43682(5) 30.31(39)
AMD 3.42 27.0
SML 3.44 23.2

11Li Exp. 3.6712(5) 33.8(1.8)
AMD 3.79 29.4
SML 3.79 29.4

When we compare the AMD results with the experimental results, we see
that the trend line of the nuclear moments as a function of the neutron number
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is reproduced for both Li and B isotopes. On the other hand all quadrupole
moments are a bit underestimated.
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Figure 7.9: Magnetic moments of the odd-even Li and B isotopes calculated in
the AMD model [Kan01].

For 7Li, which quadrupole moment is largely underestimated (also in the
shell model) this can be corrected by adapting the wave function of relative mo-
tion. When the clustering is well developed, the relative wave function between
clusters spreads out toward the outer spatial region resulting in a long tail. How-
ever, since the single nucleon wave function of AMD is a Gaussian wave packet,
the relative wave function between clusters is also necessarily a Gaussian wave
packet. The adaption of the wave function is done by superposing several AMD
wave functions which are written as α + t clustering states with different dis-
tances between the centers of two clusters. The obtained quadrupole moment of
7Li with the adapted wave function reproduces better the experimental value,
but now it overestimates it (fig. 7.10(AMD φad) and table 7.5). This confirms
the strongly developed cluster in 7Li, while the clustering effects of 9Li and 11Li
are much less pronounced.

Roughly speaking the electromagnetic properties of the odd-even nucleus
reflect the orbit of the last valence proton. However, the nuclear moments shift
as a function of the neutron number. This can be explained in relation to the
drastic change between cluster and shell-model-like structures. There are two
fundamental effects of the cluster structures on the nuclear moments. One is
caused by the spatial relative distance between the clusters (spatial clustering
effects). The other is concerned with the angular momentum coupling correla-
tion of nucleons. In order to extract the effect of the cluster coupling of angular
momenta from the AMD wave functions, the inter-cluster relative distances in
the AMD wave functions are made artificially very small. In the obtained shell-
model limit (SML) states, the spatial cluster is not recognizable anymore but
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Figure 7.10: Quadrupole moments of the odd-even (a) Li and (b) B isotopes
calculated in the AMD model [Kan01]. The label AMD φad means that the wave
function is corrected for the strong clustering effect.

only effects of the cluster coupling of angular momenta persist. The magnetic
moments in the shell-model limit are found to be almost the same as those of
the original AMD (table 7.5). This means the magnetic dipole moments don’t
depend on the spatial clustering but are effected only by the cluster coupling of
angular momenta. This is easily understood because the expectation values of
linear terms of operators J, L, S are mainly determined by the cluster coupling
of angular momenta. This coupling lowers the magnetic moment compared to
the free Schmidt-value. The cluster effect is the strongest for 7Li which is shown
to consist of α + t [Ike80].

The quadrupole moments are effected most by the spatial clustering. The
amount of spatial clustering is determined by the difference of the full AMD cal-
culation and the shell model limit of the AMD calculation, in which the spatial
clustering has been removed (table 7.5). The spatial clustering is the largest in
7Li and decreases for the other Li isotopes as the cluster structure weakens.

This model describes the experimental nuclear moments the best amongst
the other models. Let’s therefore look to the prediction of another property,
such as the radii. The AMD calculations with the three-body force seem to
qualitatively agree with the observed radii, except for very neutron rich nuclei.
It underestimates the large radii of the halo nuclei 11Li, 11Be, 14Be [Kan01].
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7.7 Overview

In table 7.6 an overview of the presented calculations for the magnetic moments
is given. These are predicted quite well by all models. This is due to the fact

Table 7.6: Overview of the calculated magnetic moments [µN ] compared with the
experimental ones.

7Li 9Li 11Li
Exp. 3.25646253(40) 3.43682(5) 3.6712(5)
Shell model
CKI 3.17 3.38 3.79
PSDMK-full space 3.20 3.41 3.72
PSDMK-max. 2part. 3.28 3.51 3.79
MK3W-max. 2part. 3.18 3.50 3.77
no-core [Nav98] 2.994 2.940 3.601
Cluster models
[Var02] 3.15 3.43 3.23

AMD [Kan01] 3.15 3.42 3.79

that the valence proton has the expected p3/2 configuration and the neutrons
are mainly paired for the Li-isotopes with an even neutron number.

In table 7.7 and figure 7.11 an overview of the calculated quadrupole mo-
ments is given.

Table 7.7: Overview of the experimental and calculated absolute values of the
quadrupole moments [mb]. * The calculation of the quadrupole moment for 7Li
is with an adapted wave function (see section 7.6).

7Li 9Li 11Li
Exp. 40.0(3) 30.31(39) 33.8(1.8)
Shell model
CKI 27.20 29.99 29.5
PSDMK-full space 27.6 30.52 29.6
PSDMK-max. 2part. 27.9 30.78 29.75
MK3W-max. 2part. 31.9 34.7 33.17
no-core [Nav98] 27.10 20.85 23.01
Cluster models
[Var02] 36.5 27.4 37.1
[Des97] 22.5 31.3

AMD [Kan01] 46.1* 27.0 29.4

With the shell model even the qualitative trend line as a function of the neu-
tron number is not reproduced. The CKI and the PSDMK effective interactions
give similar results. While in CKI only neutrons in the p-shell are considered,
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the PSDMK interaction has been used to allow also np-nh excitations from the
νp- to the νsd-shell. However, it turns out that the contribution of such config-
uration is calculated to be very small, thus giving similar quadrupole moments
for both interactions. For 9Li the two interactions are in agreement with the
experiment.
The quadrupole moment of 11Li can only be reproduced if p-h neutron exci-
tations are allowed and if the p-sd cross-shell interaction is modified to better
reproduce the spectrum of neutron-rich light nuclei (the MK3W interaction was
fitted to better reproduce the spectrum of 16N). Thus shell model calculations
are unable to reproduce the trend in the Li-quadrupole moments using the same
effective interaction. This is an indication that the assumption of a mean field
is not valid for these light nuclei. However, in this region of light nuclei, shell
model calculations can still be used to check the influence of the different con-
figurations.
The no-core shell model with a realistic two-body nucleon-nucleon interaction
does reproduce the trend of the quadrupole moments, but underestimates the
absolute values. In this model free charges have been used.
The Cluster models of Varga et al. [Var02] and Descouvement et al. [Des97]
predict a too large polarization of the core by the two halo neutrons. The
quadrupole moment of 9Li is underestimated in the two models. The experi-
mental quadrupole moment of 11Li lies in between the two predicted values.
The AMD-model of Kanada-En’yo reproduces the trend of the quadrupole mo-
ments quite well, but underestimates slightly the quadrupole moments of 9,11Li.
In this model the importance of clustering effects is shown. For 7Li the wave
function has to be adapted to correct for the long tail in the relative motion
caused by the well developed clusters. For the other Li isotopes with weaker
cluster structures, this correction is not needed.

Since none of these models are working perfectly, improvement of these mod-
els and/or calculations of nuclear moments with the models in development will
be necessary in future.
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Conclusions

The nuclear moments of 8,9,11Li were measured very precisely via β-NMR. Nu-
clear spin-orientation was obtained via the technique of optical pumping. The
set-up was optimized, mainly by testing different crystals.
The implantation of the Li isotopes into Si allowed a determination of the
magnetic moment of 9Li with a factor hundred better accuracy: µ(9Li) =
3.43682(5)µN . For 11Li the uncertainty on the magnetic moment is improved
by a factor of seven: µ(11Li) = 3.6712(5)µN .
Both shell model calculations and more sophisticated models reproduce these
magnetic moments quite well. The magnetic moments approximate the free
Schmidt value at N = 8, indicating that the odd proton occupies mainly the
πp3/2 orbit and neutron excitations are mainly of E2-character. Such excita-
tions only slightly influence the magnetic moment.

The implantation of the Li isotopes into LiTaO3 and Zn allowed a deter-
mination of the quadrupole moments of 9,11Li with a twice better accuracy:
Q(9Li)= 30.31(39)mb and Q(11Li)= 33.8(1.8)mb. The ratio of the moments
was deduced from the ratio of the quadrupole frequencies measured for 9,11Li
in Zn, giving: Q(11Li)

Q(9Li) = 1.11(6).
The improvement of the accuracy on the ratio and absolute values of Q(9Li)
and Q(11Li) is mainly due to the implantation in a Zn crystal, which provides a
nearly perturbation-free environment for the Li-probes such that the rf-induced
resonance are very narrow. The production rate of 11Li however was much less
than predicted because of the sintering of the target. Therefore additional beam
time was asked to reduce the uncertainty with an additional factor of two. It
was accepted and the experiment has been performed in May/June 2004.
The consistency of the quadrupole moment of 9Li was checked by the implan-
tation of 9Li into LiTaO3, Zn and LiNbO3. The absolute value of the adopted
quadrupole moments relies on the adopted value for Q(7Li). This reference
value has changed since the first measurements on Q(8,9Li). Therefore all mea-
sured values were revised. For the measurement of the quadrupole moment of

151



152 CHAPTER 8. CONCLUSIONS

11Li, only two data sets were available. Therefore different ways of analysis were
performed to check the consistency of this result.

The accuracy of the electric field gradient of Li implanted in Zn was im-
proved by a factor of six Vzz = 4.29(7) 1015 V

cm2 .

The observed trend in the quadrupole moments might suggest that N = 6
becomes a magic number in these Z = 3 nuclei: the quadrupole moments of
the unpair Li isotopes decrease towards 9Li with six neutrons. The trend in the
magnetic moments is not suggesting this. The g-factor is usually less sensitive
to admixture of quadrupole correlations, which might indicate that N = 6 is
not a new magic number, but rather the two halo neutrons polarize the core.
The fact that the quadrupole moment of 11Li is larger within 2σ than that of
9Li also gives an indication that the two loosely bound neutrons of 11Li polarize
the protons in the core, i.e. that one of the halo-neutrons is situated in the
0d5/2-orbital.

None of the presented models predicts the values of the measured quadrupole
moments. Nevertheless the qualitative trend as a function of the neutron num-
ber is reproduced more or less by all models except for the shell model (the
no-core shell model, the cluster models and the AMD model). The fact that the
trend line is not reproduced by the shell model is not surprising because it can
be questioned if the assumption of a mean field is still valid for these light nuclei.
The trend line is the best reproduced in the no-core shell model [Nav98]. The
cluster model of Varga et al. [Var95] and the AMD model [Kan01] approximate
the experimental data the best. In the AMD model the importance of clustering
effects is shown. For 7Li the wave function has to be adapted to correct for the
long tail in the relative motion caused by the well developed clusters. For the
other Li isotopes with weaker cluster structures, this correction is not needed.
To explain the experimental data within the frame of shell model calculations
with the PSDMK interaction, a small admixture of the ν(0d5/2)22+ configuration
to the total wave function of the 11Li ground state is necessary if one assumes
that the two halo-neutrons are situated in the same orbital. This is the first ex-
perimental indication of a contribution of the 0d5/2 orbital to the wave function
of the 11Li ground state.

These new precise experimental data invite theoreticians to test and improve
their models.



Appendix A

Calculated wave functions
of 7,9,11Li

In tables A.1 - A.10 an overview of the wave functions for the different shell-
model calculations performed with ANTOINE [Cau99] is given. Here a 4He core
with 2 protons and 2 neutrons in the 0s1/2 orbital is assumed.

• ”CKI” means that the effective CKI interaction [Coh65, Coh67] with
the p-shell model space is used.

• ”PSDMK” means that the effective PSDMK interaction with a larger
p-sd shell model space is used [Pre72, Mil75, Kuo67].

• MK3 means that the effective MK3W interaction with a coreless 0s-0p-
1s0d-1p0f shell model space is used [War89, Mil75].

• ”max2” means that only two nucleons are allowed in the sd-shell.

• ”full” means that no restrictions are put on the number of particles in
the sd-shell.

• ”2 fix” means that 2 neutrons are blocked somewhere in the sd-shell.

• ”0 fix” means that all neutrons are blocked in the p-shell.

• ”2 fix 1s1/2” means that two neutrons are blocked in the 1s1/2 orbital
and the other neutrons in the p-shell.

• ”2 fix 0d5/2” means that two neutrons are blocked in the 0d5/2 orbital
and the other neutrons in the p-shell.

• ”2 fix 0d3/2” means that two neutrons are blocked in the 0d3/2 orbital
and the other neutrons in the p-shell.

The wave functions with a probability smaller than 1% are not shown.

153



154 APPENDIX A. CALCULATED WAVE FUNCTIONS OF 7,9,11LI

A.1 7Li

The most probable configuration for the wave function of the 7Li ground state
is one with two neutrons in the p3/2 orbital as expected. Blocking two neutrons
in a specific orbital takes away all degrees of freedom.

A.2 9Li

For 9Li the wave function has the largest probability to have a configuration
with all neutrons in the p-shell for all calculations, except when a number of
particles are blocked in the sd-shell (table A.4).

The wave function for ”PSDMK,2max” and ”PSDMK,full” doesn’t differ a
lot.

A.3 11Li

For 11Li the wave function has the largest probability to have a configuration
with all neutrons in the p-shell for all calculations, except when a number of
particles are blocked in the sd-shell (table A.8). On the other hand the wave
function for ”PSDMK, 2max” and ”PSDMK, full” differ in that sense that
without restrictions for 1.3% of the wave function a pair of neutrons is broken.
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Table A.1: Wave functions of 7Li calculated with the PSDMK and CKI inter-
actions.

ν π
P[%] 0p3/2 0p1/2 0d5/2 1s1/2 0d3/2 0p3/2 0p1/2

CKI
53.8 2 0 1 0
15.5 0 2 1 0
13.3 1 1 1 0
10.1 1 1 0 1
8.4 2 0 0 1

PSDMK, 2 max
63.9 2 0 0 0 0 1 0
13.1 0 2 0 0 0 1 0
8.7 1 1 0 0 0 0 1
8.4 1 1 0 0 0 1 0
4.9 2 0 0 0 0 0 1

PSDMK, full
55.4 2 0 0 0 0 1 0
12.5 0 2 0 0 0 1 0
9.7 1 1 0 0 0 1 0
8.8 1 1 0 0 0 0 1
5.7 2 0 0 0 0 0 1
1.1 1 0 1 0 0 0 1
1.0 1 0 0 0 1 1 0

PSDMK,0fix
64.4 2 0 0 0 0 1 0
12.9 0 2 0 0 0 1 0
8.9 1 1 0 0 0 0 1
8.7 1 1 0 0 0 1 0
5.1 2 0 0 0 0 0 1

PSDMK,2fix
85.3 0 0 0 2 0 1 0
4.2 0 0 2 0 0 1 0
3.7 0 0 1 1 0 0 1
3.6 0 0 1 1 0 1 0
1.3 0 0 0 0 2 1 0

PSDMK, 2 fix 1s1/2
100 0 0 0 2 0 1 0

PSDMK, 2 fix 0d5/2
100 0 0 2 0 0 1 0

PSDMK, 2 fix 0d3/2
100 0 0 0 0 2 1 0
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Table A.2: Wave functions of 7Li calculated with the MK3W interaction, al-
lowing maximum two neutrons in the sd-shell and no in the pf-shell. In the
unmentioned orbitals of the sd-shell no nucleons are present.

ν π
P[%] 0s1/2 0p3/2 0p1/2 1s1/2 0s1/2 0p3/2 0p1/2

43 2 2 0 0 2 1 0
15.3 2 0 2 0 2 1 0
10.6 2 1 1 0 2 0 1
9.8 2 1 1 0 2 1 0
5.5 2 2 0 0 2 0 1
4.3 1 2 0 1 2 1 0
1.2 1 0 2 1 2 1 0

Table A.3: Wave function of 9Li calculated with the CKI interaction.

ν π
P[%] 0p3/2 0p1/2 0p3/2 0p1/2

58.6 4 0 1 0
27 2 2 1 0

11.5 3 1 1 0
2.6 3 1 0 1



A.3. 11LI 157

Table A.4: Wave functions of 9Li calculated with the PSDMK interaction.

ν π
P[%] 0p3/2 0p1/2 0d5/2 1s1/2 0d3/2 0p3/2 0p1/2

PSDMK, 2 max
49.7 4 0 0 0 0 1 0
36.3 2 2 0 0 0 1 0
7.3 3 1 0 0 0 1 0
2.8 3 1 0 0 0 0 1
1.6 2 0 2 0 0 1 0

PSDMK, full
43.9 4 0 0 0 0 1 0
34.4 2 2 0 0 0 1 0
8.2 3 1 0 0 0 1 0
2.8 3 1 0 0 0 0 1
2.0 2 0 2 0 0 1 0

PSDMK,0fix
52.2 4 0 0 0 0 1 0
36.5 2 2 0 0 0 1 0
8 3 1 0 0 0 1 0

2.9 3 1 0 0 0 0 1
PSDMK,2fix

52.9 2 0 0 2 0 1 0
8.7 0 2 0 2 0 1 0
6.4 1 1 0 2 0 1 0
6.2 1 1 0 2 0 0 1
4.9 2 0 1 1 0 1 0
4.1 2 0 2 0 0 1 0
3.9 2 0 0 2 0 0 1
2.7 1 1 1 1 0 1 0
2.4 2 0 1 1 0 0 1
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Table A.5: Wave functions of 9Li calculated with the PSDMK interaction and
two neutrons fixed in a specific orbital of the sd-shell.

ν π
P[%] 0p3/2 0p1/2 0d5/2 1s1/2 0d3/2 0p3/2 0p1/2

PSDMK, 2 fix 1s1/2
68 2 0 0 2 0 1 0
11 0 2 0 2 0 1 0
8 1 1 0 2 0 1 0
8 1 1 0 2 0 0 1
5 2 0 0 2 0 0 1

PSDMK, 2 fix 0d5/2
57 2 0 2 0 0 1 0
12 0 2 2 0 0 1 0
12 1 1 2 0 0 1 0
8.7 1 1 2 0 0 0 1
8 2 0 2 0 0 0 1

1.3 0 2 2 0 0 0 1
PSDMK, 2 fix 0d3/2

65 2 0 0 2 0 1 0
11 0 2 0 2 0 1 0
9 1 1 0 2 0 1 0

7.7 1 1 0 2 0 0 1
6.3 2 0 0 2 0 0 1

Table A.6: Wave functions of 9Li calculated with the MK3W interaction, al-
lowing maximum two neutrons in the sd-shell and no in the pf-shell. In the
unmentioned orbitals of the sd-shell no nucleons are present.

ν π
P[%] 0s1/2 0p3/2 0p1/2 1s1/2 0s1/2 0p3/2 0p1/2

40.7 2 2 2 0 2 1 0
33.6 2 4 0 0 2 1 0
7 2 3 1 0 2 1 0

3.2 1 4 0 1 2 1 0
3 1 2 2 1 2 1 0

2.5 2 3 1 0 2 0 1

Table A.7: Wave function of 11Li calculated with the CKI interaction.

ν π
P[%] 0p3/2 0p1/2 0p3/2 0p1/2

100 4 2 1 0
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Table A.8: Wave functions of 11Li calculated with the PSDMK interaction.

ν π
P[%] 0p3/2 0p1/2 0d5/2 1s1/2 0d3/2 0p3/2 0p1/2 0d5/2

PSDMK, 2 max
91.8 4 2 0 0 0 1 0 0
2.2 4 0 2 0 0 1 0 0
2.1 2 2 2 0 0 1 0 0

PSDMK, full
83.8 4 2 0 0 0 1 0 0
2.4 2 2 2 0 0 1 0 0
2.3 4 0 2 0 0 1 0 0
1.0 2 2 0 0 2 1 0 0
1.3 4 0 1 1 0 1 0 0

PSDMK,0fix
100 4 2 0 0 0 1 0 0

PSDMK,2fix
47.6 4 0 0 2 0 1 0 0
24.8 2 2 0 2 0 1 0 0
6.8 3 1 0 2 0 1 0 0
2.4 3 1 0 2 0 0 1 0
3.4 4 0 2 0 0 1 0 0
2.9 4 0 1 1 0 1 0 0
2.2 2 2 2 0 0 1 0 0
2 3 1 1 1 0 1 0 0

1.8 2 2 1 1 0 1 0 0
1.3 4 0 1 1 0 0 1 0

Table A.9: Wavefunctions of 11Li calculated with the PSDMK interaction and
two neutrons fixed in a specific orbital of the sd-shell.

ν π
P[%] 0p3/2 0p1/2 0d5/2 1s1/2 0d3/2 0p3/2 0p1/2

PSDMK, 2 fix 1s1/2
58.3 4 0 0 2 0 1 0
30.6 2 2 0 2 0 1 0
8 3 1 0 2 0 1 0

2.9 3 1 0 2 0 0 1
PSDMK, 2 fix 0d5/2

46 4 0 2 0 0 1 0
35 2 2 2 0 0 1 0
13 3 1 2 0 0 1 0
2.4 3 1 2 0 0 0 1
1.4 2 2 2 0 0 0 1
1.4 4 0 2 0 0 0 1

PSDMK, 2 fix 0d3/2
56.2 4 0 0 0 2 1 0
30.8 2 2 0 0 2 1 0
8 3 1 0 0 2 1 0
3 3 1 0 0 2 0 1
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Table A.10: Wave functions of 11Li calculated with the MK3W interaction,
allowing maximum two neutrons in the sd-shell and no in the pf-shell. In the
unmentioned orbitals of the sd-shell no nucleons are present.

ν π
P[%] 0s1/2 0p3/2 0p1/2 0d5/2 1s1/2 0s1/2 0p3/2 0p1/2

81.5 2 4 2 0 0 2 1 0
6 1 4 2 0 1 2 1 0

1.5 2 3 2 1 0 1 1 1
1.1 2 3 2 1 0 1 2 0



Appendix B

Nederlandse samenvatting

Eén van de sleutelactiviteiten in de hedendaagse kernfysica is de studie van
exotische kernen. Dit zijn kernen met extreme eigenschappen zoals een ex-
treme verhouding van het aantal neutronen tot het aantal protonen, extreme
excitatie-energie of extreme totale spin. De studie van neutronrijke1 kernen
onthulde onverwachte fenomenen zoals de vorming van neutronhalos2 en de ge-
leidelijke verdwijning van schillensluitingen3. Deze verschijnselen tonen dat de
kracht tussen de nucleonen - de sterke kracht - nog niet voldoende begrepen is.
In het bijzonder is de invloed van de extreme voorwaarden op de spinbaankop-
pelingsterm onvoldoende begrepen. Dankzij deze term zijn de magische getallen
tot stand gekomen in het schillenmodel [May49]. De parametrizaties van de
bestaande kernmodellen zoals het schillenmodel [May49] moesten dus worden
aangepast en nieuwe modellen werden ontwikkeld.

Het magnetische en het quadrupoolmoment van exotische kernen zijn gron-
dige tests voor de nieuwe kernmodellen. Bovendien bevatten ze veel informatie
over de structuur van deze kernen: het magnetische dipoolmoment is gevoelig
aan de orbitalen van de ongepaarde nucleonen. Het elektrische quadrupoolmo-
ment bevat informatie over de vervorming van de ladingsverdeling van de kern.

Deze verhandeling beschrijft een precisiemeting van de kernmomenten van
de grondtoestanden van de neutronrijke 9Li en 11Li kernen. Deze kernen zijn
om twee redenen interessant:

• 11Li is een van de meest bestudeerde voorbeelden van een neutronhalo

1Neutronrijke kernen zijn kernen waarbij de verhouding van het aantal neutronen tot het
aantal protonen veel groter is dan bij stabiele kernen.

2Een neutronhalokern is een kern met enkele zeer zwak gebonden neutronen. Dit zorgt
voor een zeer uitgestrekte massastraal.

3Kernen waarvan de nucleonen een volledige schil vullen zijn veel stabieler dan andere
kernen. Althans, dit is het geval voor kernen dicht bij de stabiliteitslijn. Wanneer men verder
van deze stabiliteitslijn gaat, blijkt dit niet altijd het geval meer te zijn. Het aantal nucleonen
nodig om een volledige schil te vullen wordt een ”magisch getal”genoemd.
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kern, bestaande uit een 9Li pit (Eng.: core) met twee zeer zwakgebon-
den neutronen. Nochtans blijven er heel wat vragen onopgelost, zoals de
invloed van de twee zwakgebonden neutronen op de ladingsverdeling van
de pit. De bestaande experimentele gegevens duiden op een ontkoppelde
pit en twee neutronen. Een voorbeeld van zulke experimentele gegevens
bestaat uit de bijna constante werkzame doorsnedes (Eng.: cross secti-
ons) van 7Li tot 11Li voor ladingsveranderende processen [Bla92, Tan96].
Dit zijn processen die een verandering van het aantal protonen van het
projectiel tot gevolg heeft. Deze werkzame doorsnede is een maat voor de
protonstraal. Het feit dat deze werkzame doorsneden ongeveer constant
blijven voor de Li-isotopen, wijst op een bijna constante protonstraal in
functie van het aantal neutronen. Dit wijst op een quasi afwezige invloed
van de extra neutronen op de protonverdeling. Binnen de foutenmarge
is er echter wel een toename van de protonstraal mogelijk. Anderzijds
voorpelde T. Misu et al. [Mis97] dat voor bindingsenergieën gaande naar
0 en voor een tweedelige halo de vervorming van een systeem bepaald
kan worden door de valentiedeeltjes, onafhankelijk van de deformatie van
de pit. Als dit doorgetrokken kan worden naar een driedelige halo zoals
11Li, zal het quadrupoolmoment van 11Li verschillen van dat van 9Li. Een
nauwkeurige bepaling van de verhouding van beide quadrupoolmomenten
Q(11Li)
Q(9Li) zal een verduidelijking brengen in de polarizatie van de 9Li romp
die de halo-neutronen teweeg brengen.

• 11Li heeft juist acht neutronen, wat een magisch getal is. Kort bij de sta-
biliteitslijn zou dit een gevulde schil van neutronen betekenen. De vraag is
of deze schillensluiting behouden blijft zo dicht bij de neutrondruppellijn4.
Voor de 4Be-isotopen met vier protonen zijn aanwijzingen gevonden dat
deze schillensluiting verdwijnt. Zo werd er voor de spin en pariteit van
de grondtoestand van 11

4 Be7 Iπ = 1
2

+ gevonden in plaats van de verwach-
te Iπ = 1

2

− [Mil83] met het ongepaarde neutron in het 0p1/2-orbitaal.
Er zijn twee mogelijke configuraties voor deze spin en pariteit: een on-
gepaard neutron in het 1s1/2-orbitaal of een ongepaard neutron in het
0d5/2-orbitaal dat koppelt met een aangeslagen (10Be)2+ pit (Eng.:core)
(fig. 2.5). Beide mogelijkheden wijzen echter op een configuratie waarbij
het ongepaarde neutron zich in de 1s0d-schil bevindt in plaats van in de
0p-schil. Dit is een indicatie dat de energiekloof (Eng.: energy gap) tus-
sen beide schillen afneemt voor neutronrijke kernen voor Z = 4. In 12

4 Be8

werden laagliggende aangeslagen toestanden met Iπ = 0+ en Iπ = 1−

gevonden [Shi03, Iwa00]. Normaal verwacht men dat de aangeslagen toe-
standen voor een kern met een magisch aantal neutronen allen zeer hoog
in energie liggen. Laagliggende toestanden wijzen dus op iets onverwacht.
Dit geval werd verklaard door het verdwijnen van de energiekloof tussen
de 0p1/2 en de 1s1/2-orbitalen [Shi03].
In het β-verval van 11Li [Suz94, Bor97, Aoi97, Ots95] werden er onver-

4De druppellijn is de grens van gebonden kernen op de kernkaart.
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wacht grote logft-waarden5 gevonden. Dit kan enkel worden verklaard als
de sd-schil ook bijdraagt tot de golffunctie van 11Li [Ots95]. Recent werd
er ook een directe experimentele aanwijzing gevonden voor een bijdrage
van configuraties met nucleonen in de sd-schil tot de totale golffunctie van
de grondtoestand van 11Li. De longitudinale momentumverdeling van 10Li
fragmenten, gevormd uit de fragmentatie van 11Li en een koolstoftrefschijf,
werd opgemeten [Sim99]. Uit de vorm van de verdeling werd bepaald dat
de bijdrage van ν1s2

1/2 component in de golffunctie van de grondtoestand
45± 10% is. Hierin werd enkel de ν1s1/2 en ν0p1/2 orbitalen in rekening
gebracht. Het 0d5/2 orbitaal werd buiten beschouwing gelaten.
Wanneer de N = 8 schillensluiting behouden blijft voor de neutronrij-
ke kern 11

3 Li8, zal zijn quadrupoolmoment kleiner zijn dan dat van 9Li.
Wanneer er een opmenging van indringtoestanden (Eng.:intruder states)6

optreedt in de grondtoestand van 11Li, is dit niet noodzakelijk meer. Wan-
neer een van de opmengende indringtoestanden minstens een neutron in
het 0d5/2- orbitaal heeft, kan het quadrupoolmoment van 11Li groter zijn
dan dat van 9Li. Een precieze meting van het quadrupoolmoment van 11Li
kan een indicatie geven over de eventuele menging van indringtoestanden
met een halo neutron in het 0d5/2-orbitaal en normale toestanden in de
golffunctie van de 11Li-grondtoestand.

De kernmomenten van 9,11Li werden opgemeten met de β-NMR/NQR (Nu-
cleaire Magnetische Resonantie/ Nucleaire Quadrupool Resonantie) techniek
[Mat71] aan de ISOLDE faciliteiten in CERN7. De vereiste initiële spinoriëntatie
werd geproduceerd met de techniek van optisch pompen8 [Coh66]. Deze tech-
niek is uiterst geschikt voor alkalimetalen zoals Li. Deze kernmomenten werden
opgemeten in samenwerking met de COLLAPS-groep van Mainz (Duitsland),
geleid door Prof. Dr. R. Neugart. Deze groep had de kernmomenten van 9,11Li
al opgemeten, gebruikmakend van de ISOLDE-faciliteiten in CERN en de tech-
niek van optisch pompen. De nauwkeurigheid was echter niet goed genoeg om
iets te besluiten over de invloed van de twee zwakgebonden neutronen op de pit
van de kern. Daarom werd nu een precisiemeting uitgevoerd met een geoptima-
liseerde versie van diezelfde set-up. Dit garandeerde het optimaal gebruik van
de bestaande expertise.

Het nauwkeurig opmeten van quadrupoolmomenten met de multiple-rf-NQR-
techniek [Arn92] vereist een nauwkeurige kennis van de magnetische momenten.
Daarom werden ook de magnetische momenten heropgemeten.

5De logft waarde is een maat voor de sterkte van de overgang. Kleine logft-waarden
wijzen op een sterke overgang. Grote logft-waarden wijzen op vertraagd verval waarbij de
matrixelementen voor de overgang klein zijn.

6Voor kernen met N < 8 zijn indringtoestanden configuraties met neutronen in een van de
orbitalen uit de sd-schil.

7Conseil Européen pour la Recherche Nucléaire [CERN].
8Bij de techniek van optisch pompen, maakt men gebruik van atomaire overgangen,

gëınduceerd door circulair gepolariseerd laserlicht om de atomaire spins te polarizeren. Deze
oriëntatie wordt overgebracht naar de kernspins via de hyperfijnkrachten.
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Het optimaliseren van de experimentele opstelling gebeurde voornamelijk door
het testen van verschillende implantatiekristallen. Deze testen gebeurde met
8Li kernen die veelvuldig aangemaakt worden. Ook de calibratie van het mag-
neetveld gebeurde met 8Li kernen waarvan de g-factor bekend is.

De implantatie van de Li-isotopen in Si maakte een honderd keer nauw-
keurigere bepaling van het magnetisch moment van 9Li mogelijk: µ(9Li) =
3.43682(5)µN . Voor µ(11Li) werd de foutenmarge met een factor zeven geredu-
ceerd: µ(11Li) = 3.6712(5)µN . Deze magnetische momenten zijn gecorrigeerd
voor de diamagnetische afscherming (Eng.: diamagnetic shielding). Zowel schil-
lenmodelberekeningen als meer gesofisticeerde modellen voorspellen deze mag-
netische momenten vrij goed. De magnetische momenten van de Li-isotopen
gaan naar de Schmidt-waarde toe wanneer het aantal neutronen het magisch
getal acht benadert. Dit duidt aan dat het oneven proton hoofdzakelijk het
π0p3/2 orbitaal bevolkt en dat de neutron excitaties hoofzakelijk een E2 karak-
ter hebben, aangezien deze het magnetisch moment nauwelijks bëınvloeden.

De implantatie van de Li-isotopen in LiTaO3 en Zn zorgde voor quadru-
poolmomenten van 9,11Li met een twee keer kleinere foutenmarge: Q(9Li) =
30.31(39)mb en Q(11Li) = 33.8(1.8)mb. Dit geeft een verhouding Q(9Li)

Q(11Li) =
1.11(6).

De consistentie van het quadrupoolmoment van 9Li werd nagegaan door ver-
schillende metingen met implantatie in verschillende kristallen LiTaO3, Zn en
LiNbO3. De absolute waarde van de aangenomen quadrupoolmomenten steunt
op de aangenomen waarde van Q(7Li). Deze referentiewaarde is veranderd sinds
de eerste metingen van de quadrupoolmomenten Q(8,9Li) [Pyy01]. Daarom wer-
den alle vroeger gemeten waarden aangepast.
Er werden slechts twee metingen uitgevoerd voor het quadrupoolmoment van
11Li. Daarom werden er verschillende analyses uitgevoerd om de consistentie
van het resultaat na te gaan.

Verder werd de foutenmarge van de elektrische veldgradiënt van Li gëımplan-
teerd in Zn, gereduceerd met een factor zes: Vzz = 4.29(7)1015 V

cm2 .

De experimentele gegevens zouden een aanwijzing kunnen geven dat N = 6
een magische schillensluiting is. De quadrupoolmomenten van de oneven Li-
isotopen verkleinen immers bij het naderen van 9Li met zes neutronen, zowel
gaande van 7Li naar 9Li als van 11Li naar 9Li (dit laatste is wel slechts een 2σ-
effect). Aan de andere kant suggereert de trend in de magnetische momenten
dit helemaal niet.
De verhouding Q(9Li)

Q(11Li) = 1.11(6) geeft aan dat met ongeveer 95% kans de twee
zwak gebonden neutronen van 11Li de protonen in de pit bëınvloeden, en dus
dat minstens één van de haloneutronen zich in het 0d5/2 orbitaal bevindt. Dit
is de eerste experimentele aanwijzing voor een bijdrage van het 0d5/2 orbitaal
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aan de golffunctie van de 11Li grondtoestand.

Geen van de huidige modellen voorspelt de quadrupoolmomenten correct.
Toch wordt de kwalitatieve trend in functie van het neutronenaantal vrij goed
voorspeld door de meeste modellen. Het schillenmodel is hierin de grote uit-
zondering. Dit is geen verrassing, aangezien de geldigheid van de aanname van
een gemiddeld interactieveld (Eng.: mean field) dat alle kernen voelen voor
zulke lichte kernen in vraag gesteld kan worden. De trendlijn wordt het beste
voorspeld door een uitbreiding van het schillenmodel waarin alle nucleonen in
rekening gebracht worden zonder een deel van de nucleonen te bevriezen (Eng.:
no-core shell model) [Nav98]. Het clustermodel van Varga et al. [Var95] en het
geantisymmetriseerde moleculaire dynamica (Eng.: Antisymmetrized Molecu-
lar Dynamics) AMD-model [Kan01] benaderen de experimentele gegevens het
best. In een clustermodel worden de 7Li kernen aanzien als bestaande uit twee
subdelen, clusters, een α (twee neutronen en twee protonen) en een triton 3H.
Voor 9Li en 11Li zijn de bijkomende neutronen allemaal extra afzonderlijke sub-
delen. In het AMD-model worden er geen veronderstellingen over een bevroren
pit (zoals in het schillenmodel) of over subdelen gemaakt. Alle configuraties
toegelaten door het Pauli-principe worden in rekening gebracht. Voor het re-
produceren van het quadrupoolmoment van 7Li bleek het echter noodzakelijk
om in de golffuctie correcties aan te brengen voor de bestaande clustereffecten.
Voor de andere Li isotopen bleek deze correctie niet nodig.
Om het geobserveerde quadrupoolmoment van 11Li te verklaren met behulp van
het schillenmodel met de effectieve PSDMK-interactie, is een bijdrage van de
ν(0d5/2)22+ configuratie in de gemengde totale golffunctie van de 11Li grondtoe-
stand noodzakelijk wanneer we veronderstellen dat beide haloneutronen zich in
hetzelfde orbitaal bevinden.
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of Radioactive Nuclei, Topics in Current Physics 31, Edt. J. Chris-
tiansen, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo (1983).

[Ajz88] F. Ajzenberg-Selove, Nucl. Phys. A490 (1988) 1.

[And80] T. Ando, K. Ikeda, A. Toshaki, Prog. Theor. Phys. 64 (1980) 1608.

[Ann90] R. Anne, S.E. Arnell, R. Bimbot, H. Emling, D. Guillemaud-Mueller,
P.G. Hansen, L. Johannsen, B. Jonson, M. Lewitowicz, S. Mattson,
A.C. Mueller, R. Neugart, G. Nyman, F. Pougheon, A. Richter, K. Ri-
isager, M.G. Sain-Laurent, G. Schrieder, O. Sorlin, K. Wilhelmsen,
Phys. Lett. B250(1990) 19.

[Aoi97] N. Aoi, K. Yoneda, H. Miyatake, H. Ogawa, Y. Yamamoto,
E. Ideguchi, T. Kishida, T. Nakamura, M. Notani, H. Sakurai,
T. Teranishi, H. Wu, S.S. Yamamoto, Y. Watanabe, A. Yoshida,
M. Ishihara, Nucl. Phys. A616 (1997) 181.

[Arn86] E. Arnold, ”Experimmente an on-line polarisierten kurzlebigen
Lithium Isotopen”, PhD. thesis, Johannes Gutenber-Universität,
Mainz (1986), unpublished, p. 56.

[Arn87] E. Arnold, J. Bonn, R. Gegenwart, W. Neu, R. Neugart, E.-W. Otten,
G. Ulm, K. Wendt, Phys. Lett. B197 (1987) 311.

[Arn88] E. Arnold, J. Bonn, W. Neu, R. Neugart, E.W. Otten, ISOLDE col-
laboration, Z. Phys. A331 (1988) 295.

[Arn92] E. Arnold, J. Bonn, A. Klein, R. Neugart, M. Neuroth, E.W. Otten,
P. Lievens, H. Reich, W. Widdra, Phys. Lett. B281 (1992) 16.

[Aud95] G. Audi, A.H. Wapstra, Nucl. Phys. A595 (1995) 409-480.

167



168 BIBLIOGRAPHY

[Aum00] T. Aumann, A. Navin, D.P. Balamuth, D. Bazin, B. Blank,
B.A. Brown, J.E. Bush, J.A. Caggiano, B. Davids, T. Glasmacher,
V. Guimaraes, P.G. Hansen, R.W. Ibbotson, D. Karnes, J.J. Kolata,
V. Maddalena, B. Pritychenko, H. Scheit, B.M. Sherrill, J.A. Tostevin,
Phys. Rev. Lett. 84 (2000) 35.

[Bal82] J.L. Ballot, M. Fabre de la Ripelle, J.S. Levinger, Phys. Rev. C26
(1982) 2301.

[Bar77] F.C. Barker, G.T. Hickey, J. Phys. G3 (1977) L23.

[Bar02] B.R. Barrett, P. Navratil, J.P. Vary, Nucl. Phys. A704 (2002) 254c.

[Ben02] J.R.J. Bennett, U.C. Bergmann, P.V. Drumm, J. Lettry, T. Nilsson,
R. Catheral, O.C. Johnson, H.L. Ravn, H. Simon, Isolde collaboration,
Nucl. Phys. A701 (2002) 327c.

[Ber65] R. Bernheim, ”Optical pumping: an introduction”, Benjamin New
York (1965).

[Bjo81] T. Björnstad, H.A. Gustafsson, P.G. Hansen, B. Jonson, V. Lindfors,
S. Mattsson, A.M. Poskanzer, H.L. Ravn, Nucl. Phys. A359 (1984)
1.

[Bla92] B. Blank, J.-J. Gaimard, H. Geissel, K.H. Schmidt, H. Stelzer,
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[Kra86] K.S. Krane, ”Nuclear Oriëntation Formalism”, in ’Low-Temperature
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