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1 Introduction

The conformal anomaly first obtained by M.Duff [1] plays the important role in the
development of string theory. The existence of this anomaly is the main starting point
of Polyakov’s approach to quantization of two-dimensional gravity [2]. Trace, or Weyl
anomaly exists also in all even dimensions, and continues to be an object of investiga-
tion. This article is devoted to the considerations of the following fields in that subject.
First, we consider the construction of the analog of Liouville action in higher dimensions,
and obtain some exact expressions, particularly the closed form of that action in four
dimensions; next, we investigate in general form the well-known possibility of mapping
the Weyl anomaly through local counterterms in effective action into the anomaly of dif-
feomorphisms group, and obtain the general prescription for that mapping (the resulting
diffeomorphisms anomaly actually violates diffcomorphistms group only partially, main-
taining the volume-preserving part of that group, (2d case see in [3])); finally, we consider
the general structure of trace anomaly in all dimensions and make claim that the struc-
ture, suggested by Deser and Shwimmer [4], is actually the consequence of Wess-Zumino
consistency condition. Unlike the 2d case, at d > 2 the Weyl anomaly is not enough
for construction of full effective action W(g,,) of conformal matter field, because the
parameters of local symmetry group:

Weyl & Dif f(2k)

do not cover all components of the metric. But one has a possibility of construction of
the finite variation of effective action on Weyl rescaling of metric:

S(a‘ g;w) = ”"(C”ﬂ;w) - ”"(.(/uv} .

This local action corresponds in d = 2 to Liouville action [2]. This action S(0.gur)
has a property of being 1-cocycle of Weyl group, and may be used for transition from
W(g..) to Weyl invariant effectjve aclion u'(g,u,), the finite variation of which under the
diffeomorphism z* —» f#(z) gives us the l-cocyele of diffcomorphisms group S(f°, g,0).
(2d case see in [3]).

The organization of the paper is as follows. In section 2 we consider the transformation
of measure of conformal matter field under the Weyl, or Dif f(d) transformation of metric.
We derive the cocycle property of S(o,g,,) or 5'(]“, 9u) and define the local counterterms
for transition from Weyl to D1 f f(d) invariant effective action.In section 3 we consider the
finite variation of d = 4 effective action, which we call d = 1 Liouville action.In section 4
we discuss the extension of this construction on higher even dimensions and investigate
the connection between Wess-Zumino consistency condition [5] and structure of trace
anomaly .



2 Cocycle and Effective action

tad

Let’s consider now the problem of the change of the measure in the functional integral for
conformal matter field ¢ in external gravitational field under the Weyl transformation :

2—-d

Gop = € Ogap; 0o eT o, (1)

The measure in the functional integral changes in the following way:

Deatm g = Dy exp 5(0; gap). (2)
This type of relations isvery important, being the starting point of DDK calculation of
the critical exponent of 2d gravity [6].
The action S(o;g) in (2) has to satisfly some conditions. First,in the case of infini-
tisimal transformation éo(x) it has to reproduce the trace anomaly:

S(60(e)igna) = [ T20at) 3. 3)

Second, S(o;g) has to satisfy the following property, which follows from the application
of (2) to the composition of two Weyl transformations o, and o:

S(oy + 023 9) = S(o1;€”2g) + S(92:9), (4)
which means that S(o;g) is the l-cocycle of the group of Weyl transformations. On the

other hand, the action S(o;g) coincides with the finite variation of anomalous effective
action, due to the property (3):

W(g) =t [ Dpespl=Sufei0)}, (5)

6, W(g) = /Tﬁ&a(x)\/gdzkz, (6)

where S, (; ¢) is classical Weyl and diffeomorphism invariant action for matter fields. In
other words

S(o,9) = W(e7g) - Wi(9) (M)
and non-triviality of the cocycle S(c;g) follows from the fact that W(g) is non-local,

Dif f(2k)-invariant functional on g4g.
Let’s now consider the new non-local effective action:

W(g) = W(g) + S(o39) ’ (8)
o=— % in /g
where dimension of space-time is d = 2k. It’s easy to see that due to the group relation
(4) (cocyclic property) this action is Weyl invariant, but not_diffcomorphism invariant.
Let’s now in analogy with (7) calculate the finite variation of W (g) under diffeomnorphism
transformation:



W(f*g) ~Wl(g) = S(f:9). (9)
It’s easyto see that from (4),(8) and from

In/Fg(z) = In+/g(f) + In AL, (10)

where
af(z)
f
Al = det 328 (11)
we obtain
S(£;9) = S(03 9as/ (VI''*) o (12)
a:%lnAz

This action has a cocyclic property for the Dif f(2k) group

S(f o hig) = S(fih"g) + S(hig). (13)

Therefore we can define the change of the measure for Dif f(2k) transformation in the
case when we use Weyl! invariant regularization:

Df‘g‘P:Dg‘PeXPS’(f%gaﬁ), (14)

where S(f;g) is defined in (12) and has the property of being l-cocycle of Diff(2k)
group.

3 Liouville action in d =4

Let’s now consider the  application of our construction to the cases of 2 and 4 dimensions.
The trace anomaly in d = 2k is some polynomial A(R, k) degree k on Riemann tensor:

T = A(R, k). (15)
In two dimensions A is simply
c
A(R,2) = —R 16
(R,2) = =R, (16)

where R - 2d Euler characteristic’s density. The four-dimensional anomaly has much more
complicated form [1]

1
(2r)?

here C is Weyl tensor, E is Euler characteristic’s density . The coefficients a,b, are given
by

A=—

[aC? + bE], _ (17)



a = 480(17\/0+6A]\/1/2+1)’\ )

1

where No, Nyjz and N, are the number of real spin 0, Dirac spin 1/2, and real spin 1
fields,respectively. If we look  for the general solution of equation (4) with condition
(3), we have to take 0; = o and 0y = 8o and get the differential form of (4):

88(e;9) = S(o;¢%g) = /A(R(e"g;k))&a’ﬁd“z. (19)

The explicit form of solution for two-dimensional case is famous Liouville action 21

Sie.9) = 3= [ Foi5e 0,000+ Ro) (20)

In four dimensions explicit form of S first” has been found in [7)

Sa(o,g9) = /d“z\/_ b{ [ (V.oVoo)? 4+ %V(,avaavza
— (R — ;g“ﬁR)V(,ovgo]} +0oA). (21)

This expression satisfles the cocyclic property (4) and can be used as phase function in
the Weyl transformation of the measure (2). Thereforc the expression (21) define the
1-cocycle of Weyl group in d = 4. Finally we can substitute (21) in (12) and obtain the
Diff(4) cocycle

$ulfi9) = Sulor gaa/(\/@‘/?){ . (22)

-1
a:% lnA;{

The corresponding D[ f(2) cocycle was obtained in ref.[3]. In the next section we discuss
the extension of this construction on higher even dimensions.

4 Conclusions and outlook

Let’s discuss the connection between Wess-Zumino consistency condition (5] and structure
of trace anomaly in any even dimensions. The Wess-Zumino condition means that the
second Weyl variation of effective action W(g) has to be symmetric.This means that
variation of anomaly expression A(R; k) on Ricci tensor is covariantly divergenceless:

SSA(R k)
T6ReE T

The Euler characteristic satisfies this condition in any even dimension due to Bianchi
identity. So we can suppose that in any dimension the general form of conformal anomaly

ve (23)



is the Euler characteristcs density modulo Weyl invariant terms (like C? in d = 4)[4].The
terms with lower order on R can be obtained as variations of local functionals and can
be removed by adding local counterterms to an effective action. On the other hand, to
construct the cocycles we need only the Weyl noninvariant part of anomaly which coincides
with the Euler characteristcs density. Therefore we can use the known expression for Euler
density:

1
E, = ﬁeuwxml’z BRVR g 5 afban e Rﬁ,‘f,‘ Rz:f: ... Rz:f: (24)

for construction of higher dimensions Weyl and Dif f(2k) cocycles.” This work is now in
progress and will be done in near future.
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