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Abstract

From particle identification to the discovery of the Higgs boson, deep learning algorithms have become
an increasingly important tool for data analysis at the Large Hadron Collider (LHC). We present an in-
novative end-to-end deep learning approach for jet identification at the Compact Muon Solenoid (CMS)
experiment at the LHC. The method combines deep neural networks with low-level detector information,
such as calorimeter energy deposits and tracking information, to build a discriminator to identify different
particle species. Using two physics examples as references: electron vs. photon discrimination and quark
vs. gluon discrimination, we demonstrate the performance of the end-to-end approach on simulated events
with full detector geometry as available in the CMS Open Data. We also offer insights into the importance
of the information extracted from various sub-detectors and describe how end-to-end techniques can be
extended to event-level classification using information from the whole CMS detector.

Talk presented at the 2019 Meeting of the Division of Particles and Fields of the American Physical Society
(DPF2019), July 29–August 2, 2019, Northeastern University, Boston, C1907293.

1 Introduction

The analysis of data collected at the LHC often involves the classification of hadronic jets and particles in
collision events. The CMS experiment [1] uses the particle flow algorithm [2] that combines raw data from
different subdetectors to identify different classes of particles. The particle-flow objects are then clustered
into jets and used as an input to algorithms aimed at distinguishing different flavours of the jet (light
quark, gluon, c quark, b quark, and top quark). Recently, jet classification algorithms based on deep neural
networks have been introduced [3, 4], achieving the current state-of-the-art performance in jet classification
tasks, often using simplified detector models.

2 The End-to-end approach

This work presents an innovative approach to the classification of jets and particles that instead uses low-
level detector information. This approach is called end-to-end (E2E) classification and in this work is
applied to develop a discriminator between light quark and gluon-initiated jets [5].

1

ar
X

iv
:1

91
0.

07
02

9v
1 

 [
he

p-
ex

] 
 1

5 
O

ct
 2

01
9



The E2E approach consists of building a convolutional neural network (CNN)-based jet or event dis-
criminator by using the low-level detector inputs directly. We use an image-based approach where the
information from each subdetector is represented by one or more image maps and combined with those
from other subdetectors to form a single multi-layer image. The pixel coordinates of the image are then
mapped to the discretized detector coordinates expressed in azimuthal angle φ the pseudorapidity η.

The work presented here uses simulated datasets from the CMS Open Data repository [6], which are
essential to ensuring a high-fidelity representation of the detector. New releases of the CMS Open Data
portal continue to be published that specifically target machine learning (ML) studies [7, 8], including end-
to-end-oriented workflows. For instance, tools and instructions for reproducing the full simulation chain
of CMS are available allowing access to any kind of low-level detector information one may need.

The first step to the construction of the detector images is to generate an image for the electromagnetic
calorimeter (ECAL). For this subdetector, each pixel in the image corresponds to a crystal of ECAL. The
intensity of each pixel is proportional to the energy measured in the corresponding crystal. Other data
attributes like timing of the energy deposit are also available, though this did not yield any further im-
provement for the classification tasks considered in this work. This may potentially change, however, with
the improved timing capabilities of the Phase 2 upgrades of the CMS detector.

The second image considered contains information from the hadronic calorimeter (HCAL). In this case,
each pixel of the image corresponds to one of the calorimeter towers. Similarly, the intensity of each pixel
contains the energy collected from each tower. By construction, a 5x5 window of ECAL pixels corresponds
to a single HCAL pixel.

Finally, for the tracking system, reconstructed tracks are used. The position of the track is propagated
to the ECAL surface. The (η, φ) coordinates of the track position at the ECAL surface are discretized on
a grid with the same granularity as the ECAL’s. The intensity of each pixel corresponds to the transverse
momentum of the track. Figure 1 shows the E2E images for the three subdetectors detectors described
above.
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Figure 1: E2E images for the electromagnetic calorimeter, the hadronic calorimeter and the tracker of the
CMS detector.

One of the problems of generating detector images is that the some endcap detectors use a different
coordinate system. For example, while the HCAL endcap sensor elements are discretized in (η, φ) coordi-
nates, the ECAL endcaps are discretized in Cartesian coordinates (x, y). In order to obtain a single image
from the barrel and the endcap regions of a subdetector, the images need to be stitched together in the
same coordinate system. This is done by morphing the endcap images, making a coordinate transform
from (x, y) to (η, φ) then stitching them to the edges of the barrel image.

The full-detector E2E images can be directly fed to a CNN for training an event-wide discriminator. On
the other hand, smaller images can be cropped from the full-detector around region of interests, such as
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jets or photons. In the case of jet discriminators we crop an 125x125 pixel image around the jet.

3 Previous work

This section briefly summarizes the previous applications of the E2E framework [9]. The first application
of E2E was the construction of a discriminator between photons and electrons. This application used only
ECAL energy images. The E2E images were fed to a ResNet-15 [10] network obtaining an area under the
curve of the Receiver Operating Charactersitic (ROC AUC) score of 0.788. Additionally, a di-photon vs.
di-electron discriminator was built using similarly constructed detector images and a ResNet-23 network,
obtaining a ROC AUC of 0.997.

The E2E framework was also used to distinguish the Higgs boson to di-photon decay from non-resonant
di-photon production and misidentified photons. This application used ECAL, HCAL and track images.
One of the challenges in this particular application was the correlation of the discriminator output with the
mass of the Higgs boson, which is an undesirable feature in physics analyses. The discriminator was de-
correlated from the diphoton mass through the use of an additional loss penalty proportional to the learned
mass correlation as measured by the Cramer-Von Mises metric [11]. The de-correlated discriminator yielded
a ROC AUC score of 0.77 in distinguishing H → γγ from non-resonant γγ production, 0.95 for H → γγ
vs. γ+jet (misidentified photon), and 0.81 for H vs. non-resonant γγ and γ+jet together.

4 Quark- vs. gluon-jet discriminator

Similarly to the H → γγ case, the E2E quark vs. gluon jet classifier uses three image channels from the
ECAL, HCAL, and track momentum. Figure 2 shows the three E2E detector images for quark and gluon
jets, averaged over 70k jets.
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Figure 2: E2E detector images for quark and gluon jets, averaged over many events

To understand the relevance of the information contained in the different image layers, the ResNet-
15 network is first trained using images from a single subdetector alone. The tracker layer shows the
highest ROC AUC score at 0.782, followed by ECAL (0.760), and finally HCAL (0.682). Following this,
we can assess how much of the information in the different layers is redundant by training on different
combinations of the subdetector layers. The combination of ECAL and HCAL images has a ROC AUC of
0.781, slightly below using the track layer alone. On the other hand, adding ECAL to just the track layer
brings a considerable improvement to the ROC AUC at 0.804. Finally, using all three subdetectors together
brings only a modest improvement (0.808).
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The performance of the jet classifier is then benchmarked against the QCD-aware recursive neural
network (RecNN) approach outlined in [12] and adapted to the quark vs. gluon jet case in [13]. Figure
3 shows a comparison between the E2E and RecNN quark vs. gluon discriminators using the same jets
selected from the CMS Open Data dataset. The E2E jet classifier thus has performance comparable to the
existing state-of-the-art, and performs significantly better than traditional jet images.
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Quark vs gluon jet
ROC AUC

E2E jet image, Tracks 0.782

E2E jet image, ECAL 0.760

E2E jet image, HCAL 0.682

ROC AUC

E2E jet image, ECAL+Tracks 0.804

E2E jet image, Tracks 0.782

E2E jet image, ECAL+HCAL 0.781

E2E jet image, ECAL+HCAL+Tracks 0.808

ROC AUC
E2E image, ECAL+HCAL+Tracks 0.8077 ± 0.0003*
RecNN, ascending-pT 0.8017 ± 0.0003*
RecNN, descending-pT 0.802
RecNN, anti-kT 0.801
RecNN, Cambridge/Aachen 0.801
RecNN, no rotation/reclustering 0.800
RecNN, kT 0.800
RecNN, kT-colinear10-max 0.799
RecNN, random 0.797

‣ RecNN, Jet ID for QCD vs boosted W jet
‣ K. Cranmer et al.: https://arxiv.org/pdf/1702.00748.pdf 
‣ DELPHES detector simulation 
‣ Applied to quark vs gluon by T. Cheng: 

https://arxiv.org/pdf/1711.02633.pdf 
‣ Traditional jet images perform less well than 4-momenta

Single subdetector

Subsystems combined

Comparison with RecNN

Traditional jet images                                 0.720

Figure 3: Performance comparison of the E2E jet classifier vs. RecNN. *Represent ROC AUC mean ±
standard deviation over five training runs.

The final step consists of building a di-jet qq vs gg discriminator. Three different scenarios are consid-
ered. In scenario A, we crop images around the two jets. In scenario B, the four-momenta of the two jets
are included with the images. Lastly, in scenario C, the full-detector E2E images are used. Scenario C has
the best performance with a ROC AUC of 0.889, followed by scenario B (0.878) and a (0.876). Approaches
A and B have a very similar performance, while using a full detector image gives the best result.

5 Recent developments

Recent developments in the E2E framework goes in the direction of using more and lower-level detec-
tor information, particularly from the tracking system. Different image channels are added for different
parameters of the reconstructed tracks. In addition to the transverse momentum, new layers are added
that encode the transverse and longitudinal projections of the impact parameter of the track, dz and d0,
computed with respect to the primary vertex of the interaction. The images for these new channels have
the same pixel distribution as the transverse momentum image, but each pixel is assigned a different in-
tensity, depending on the track parameter represented. These additional parameters allow the encoding of
information from pileup vertices and secondary vertices coming from the hadronization of b quarks.

Another idea still involves using even lower-level tracker information. The CMS tracking system in-
cludes a three-layer pixel detector placed very close to the beampipe. In particular, each of the three pixel
detector layers can each be transformed in an image layer. Each pixel can be either 0 or 1 depending on
the presence of a hit in the corresponding position. The resolution of the images could also be increased
to fully take advantage of the higher resolution of the tracking system. Figure 4 shows a full-detector E2E
image with these three pixel layers in addition to the original ECAL, HCAL, and track momentum layers.

6 Conclusion

The E2E approach can be used for particle and jet identification. We show that the algorithm can learn
particle kinematics and shower shapes. We adapted the E2E framework to build a quark- vs. gluon-initiated
jet discriminator. The performance of the algorithm is competitive to the current state-of-the-art for this
task. Work is currently ongoing to extend this approach to include even lower-level tracker information
and other classification tasks such as for top vs. light-flavour jet discrimination.

4



Full Detector Image
Pixel layer 1

Pixel layer 2

Pixel layer 3

Track pT

ECAL

HCAL

Figure 4: E2E detector images including new tracker layers.
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