CERN Accelerating science

Article
Report number arXiv:1910.14012 ; CERN-TH-2019-178 ; CPHT-RR060.102019 ; DESY-19-184 ; DESY 19-184 ; FTUV/19-1031 ; KEK-TH-2163 ; LPT-Orsay-19-36 ; PSI-PR-19-22 ; UCI-TR-2019-26 ; IFIC/19-44
Title $\texttt{HEPfit}$: a Code for the Combination of Indirect and Direct Constraints on High Energy Physics Models
Author(s) De Blas, J. (Padua U. ; INFN, Padua) ; Chowdhury, D. (Ecole Polytechnique, CPHT ; Orsay, LPT) ; Ciuchini, M. (INFN, Rome) ; Coutinho, A.M. (PSI, Villigen) ; Eberhardt, O. (Valencia U., IFIC) ; Fedele, M. (Barcelona U.) ; Franco, E. (INFN, Rome) ; Grilli Di Cortona, G. (Warsaw U.) ; Miralles, V. (Valencia U.) ; Mishima, S. (KEK, Tsukuba) ; Paul, A. (DESY ; Humboldt U., Berlin) ; Peñuelas, A. (Valencia U.) ; Pierini, M. (CERN) ; Reina, L. (Florida State U.) ; Silvestrini, L. (INFN, Rome ; CERN) ; Valli, M. (UC, Irvine) ; Watanabe, R. (INFN, Rome3) ; Yokozaki, N. (Tohoku U.)
Publication 2020-05-21
Imprint 2019-10-30
Number of pages 31
Note 44 pages 5 figures
In: Eur. Phys. J. C 80 (2020) 456
DOI 10.1140/epjc/s10052-020-7904-z (publication)
Subject category hep-ex ; Particle Physics - Experiment ; hep-ph ; Particle Physics - Phenomenology
Abstract $\texttt{HEPfit}$ is a flexible open-source tool which, given the Standard Model or any of its extensions, allows to $\textit{i)}$ fit the model parameters to a given set of experimental observables; $\textit{ii)}$ obtain predictions for observables. $\texttt{HEPfit}$ can be used either in Monte Carlo mode, to perform a Bayesian Markov Chain Monte Carlo analysis of a given model, or as a library, to obtain predictions of observables for a given point in the parameter space of the model, allowing $\texttt{HEPfit}$ to be used in any statistical framework. In the present version, around a thousand observables have been implemented in the Standard Model and in several new physics scenarios. In this paper, we describe the general structure of the code as well as models and observables implemented in the current release.
Copyright/License publication: © 2020-2025 The Author(s) (License: CC-BY-4.0)
preprint: (License: arXiv nonexclusive-distrib 1.0)



Corresponding record in: Inspire


 Datensatz erzeugt am 2019-11-01, letzte Änderung am 2022-08-05


Article from SCOAP3:
Volltext herunterladenPDF
Fulltext from Publisher:
Volltext herunterladenPDF
Volltext:
Volltext herunterladenPDF