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TESTS FOR LEPTONIC CP VIOLATION IN TAU DECAYS
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Abstract

At the Z° or a B factory, there are two tests for non-CKM-type leptonic CP
violation in the t© — pv(a;Vv) decay channel by inclusion of p(a;) polarimetry. By
CP invariance, the moduli ratio of, and the phase difference between, the two
helicity amplitudes for = — p~v(a;"v) decay should equal those for t* —
p*¥(a;*V) decay. Formulas are given for a L-handed v¢, and also for an arbitrary
mixture of v; and vy neutrino helicities. Statistical errors are listed for both the
case that the T~ momentum direction is not known, and when it is known via a
silicon vertex detector.
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Introduction

After almost 30 years, the fundamental origin and significance of the observed
CP and T violations in kaon decays is still a mystery. On the other hand, it is
possible to use new collider data to rigorously search for CP and T violations in the
tau lepton decays.! While such an observation would be surprising, nevertheless
we won’t be sure of its absence unless we search for it. Spin-correlation effects
plus decay polarimetry enable>* such a searchin e’e* — Z°, or y* — tt*.

As shown in Ref. 1, by use of p polarimetry, there are two tests for
“"non-CKM-type" leptonic CP violation in T — pv decay.

This is easily seen because by rotational invariance there are two indepéndent
helicity amplitudes for T~ — p~ v¢ decay

. a . a
ACL-1/2) = IAG-L, -1/2)l @ 1, A, -1/2) = IA0, -12)l e“ ® )
assuming a L-handed vq. The CP-conjugate decay T* — p* V¢ depends on

.4 b b
B(1, 1/2)= B, 121 %1, B, 1/2) = B, 1/2) e * ¥ © )

assuming a R-handed V. By CP invariance By, Ay) = A(-Ay, -Ay). The

two tests are that the phase difference and moduli ratio for the two amplitudes for
T — p~ vy decay must equal those for the CP-conjugate decay. That is

Ba = Bp (Isttest) 3)
where Ba = ¢a-1 - q’oa’ Bb = ¢1b’¢ob; and
1, = 1, (2nd test) )

in terms of the moduli ratios

_ JA(1,-1/2) . = B, 1/2) )
# A 0,-1/2) ° ® T IB(0, 1/2)

It is important to realize that any leptonic-CKM t-type phases will equally affect
the A(-1,-1/2) and A(0, -1/2) amplitudes. Therefore, they will cancel out in B,
and in r,. Hence, B, =B, and r, =, test for a non-CKM-type leptonic CP
violation.

In the standard lepton model (pure V-A and no CP violation), B, = B, =0 and
the moduli ratio r, =1, = V2 m my = 0.613. These two tests, (3) and (4), ghould
be compared with the classic CP test for partial width asymmetry of CP-conjugate
reactions:
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where, e.g. =T (" —p vr) and =T @*— p*Vvy) . For 1 two-body decay

modes, the denominator of (6) is known to (1 to 4)%, so (at best) we know Ar ~
(1 to 4)% whereas we find (see below) that the fractional uncertianty of the modul.i
can be measured to the (3 1)/r, ~ (0.1 to 1)% level from data, respectively, at Y
energies (at the Z°).

Contents cf this Paper
This conference contribution extends the analysis of Ref. 1 in three ways:

(@) Ref. 1 considered the © — pv decay mode. Here the two tests for
non-CKM-type leptonic CP violation are extended to the T — a; v mode.

(b) Ref. 1 assumed a L-handed v; for the T — pv mode. Here formulas are
given for a mixture of V-A and V+A couplings, and for both left-handed and
right-handed neutrinos in 7" — p~ v (a;” v) decay.

(©) Ref. 1 assumed that the 7 momentum direction was only known
kinematically up to two possible directions. However, by a silicon vertex detector,
the T momentum direction may be known at a B factory. Here we obtain and
discuss the improvement in the statistical errors for the two tests for the T — pv
mode when the 17 momentum direction is measured.

Formulas for - — p~ v including both V1A, and both v helicities.
Including both vy and vy helicities and using a “compact boldface

_formalism," we find the composite decay density matrix for T = p v —=> (v %) Vv
is

h.T
R,, e r,
R = )

.7
e®1'r, R

The diagonal elements are
Ry = n,[1£f, cos 6;7]

T (IN2) sin 6% sin2 @, [cos (F, - Bs) | A, -1/2) NA(-1, -1/2)l

— cos (3, +B.5) 1A (0, 1/2) 1AL, 1/2)1] (8)

and




r,. = @)
= n, f,sin0,"
+ (IN2) sin28, {[cos 8;% cos @, -By) +:sin @, - Bl | A, -1/2) Il AC-1, -1/2)l

~ [cos 8;F cos @, +BR) + isin @, + B 1AQ, 1/2)11A(L, 1/2)1} ©)

Note that the two observable phase differences are

Ba = 0% - & (10a)

BX = o1 - R (10b)
In Egs. (8-9),
( n, ] = cos?8, (A (0,-12)2 % 1A (0, 1/2)P)

+ _15 sin2§, (A C1,-1/2)2 £ 1A (1, 1/2)P) (11)

Similarly, for the conjugate process T*—p* V — (1" 7°) V, including both

Vg and Vi helicities,

_ R, o¥'F
R = [ ] (12)
e +02°F R..

R:tt = Iy (1 ¥ fb cos 921)

where

+ (12) sin 8,7 sin2 6, [cos (&, + By ) B(O, 1/2)! IB(1, 1/2)
— cos (B, - B9 1B (0, -1/2)B(-1, -1/2)I] (13)




r. = @)

= -n, f,sin6,°

~ (IN2) sin28, {[cos &;% cos §, +By) +:sin @, +By)] | BO, 112) B, 172)l
— [cos 8,F cos @, - By™) + ésin (B, - ByD)] | B(O, -1/2)l B(-1, -1/2)1} (14)

In Egs. (13-14),

i

Bo = 07 - 65 | (152)
Bl = 0% - ¢2- (15b)

and

cos? 8, (IB (0, 1/2)2 £ B (0, -1/2)R)

ny,

n, f, + % sin? 8, (B (1, 1/2) £ B (-1, -1/2)R) (16)

The full "Stage 2 Spin-Correlation" function (S2SC) is given by

I, = FR—R, R—R) a7

where the I; function on the right-hand side is given in the next equation from
Ref. 1. The simpler I, of Ref. 1 assumed a L-handed v in T — p v, and a

R-handed Vv in t* —p*Vv .

I; = IELEy ¢ 61, 65 65 ¢)

Y 2
Z,, Touh)P Ry, R

hy, hy

+ e® TG+ TC-)r,. I,. + e TC)T+Hr, T, (18)

where T(A;, A,) are the helicity amplitudes? describing Z°, v* — 1" 1*.

Similarly, the simpler 4 (5) variable S2SC functions are




Ls= Lis + 0% s =D + G ks G—FY)
+ QrAP Ls @—P%. P PY) 19
where the ratios of the R-handed to L-handed v — p°V moduli (and vice versa for
tt—p*tv) are

Ny = JAQ12) (208)
-~ TIAQ,-12)l

= _ IB(@,-122)
B, 1/2)l (200)

In Eq. (19), the 4-variable S2SC of Ref. 1 is
I(Ep' s Ep+ ;01 8) = IT(+ ')'2 P+ + p..

FITEHR p. Poy + TEHR ppy Py + TER popo QD

with the integrated, composite decay density matrix for T — p" vg — (F ®°) Vg
with 1" helicity A; =h/2

oy = (1+hcos 8D [cos? @ cos? 6 + 1/2sin® @ sin? 6]
+ (272) (1-hcos®) [sin @ cos?8 + 12 (1+cos® @) sin? 6]
+ h(@,/fp) cosB, sin OTsin 2 @, [cos? 8 - 1/2 sin’ 0] 22)
For the CP conjugate process with t* with helicity A, = h/2,

Phh = P-h-h (subscripts 1 —2, a—b) 23)

The additional pR and pL needed for Eq. (19) are defined (and given) by

R
R _ 1 2r ) R+
= L ¥y
Pz 5z o 48 TP
= p -h-h (ra - r;R ’ B. - BaR) (24)

with B,R given in Eq. (10b), and




IA(, 172)1
R = ot

= A0, 12) @3
Also

=L
—L 1 (2w 5) R+
5= d ——

= Pan @=L, By—PBp) (26)

with Bl of Eq.(15b) and

rbL = M . 7
B (0, -12)!

For the 5-variable S2SC, the additional formulas are

R
R _ _1_ 12" d&s.(.;) I+ F
2n °° 1 TA©, 12)2

©
H
+H

]

= (pFd 28)

pR = -p,. @,—1 K B BD (29)

and

_L
=L _ 1 21 o0 T+7
= L 2y
PE¥ 7 Jo 493 B (0, -12)P

= (Fp (30)

L = -p,. (y—rl Bp— BuD) - (1)

See Ref. 1 for the definitions of P+. and p, _.

Additional vg / vy Tests for CP Violation

There are two tests of "non-CKM" type leptonic CP violation if R-handed
v (and L-handed V) exist:




BaR = ﬂbL (ist vy / VL test)
rR = L (2nd vg/Vy test)

where the phase differences are defined by Egs. (10b, 15b) and the moduli ratios
by Egs. (25, 27).

In the case of both (V F A) couplings and possibly my # 0,the T —p° Vv
amplitudes for A, =—1/2 are

mp

E —_— Ep-Qp, ———
AQ,-12) = g (—p—n{-f"-) Vi By dp) B () Vi By-qp)  (329)

AGL-1/2) = g V2mg(Ey+gp) -gr V2mg (Ey-qp) (32b)
For Ay =1/2 they are

A('la 1/2) =0
Ey - —— E —
AQ,1/2) = -gL (_Eﬁge.) Vmg (By-qp)  -gR (—f-’“—;;lj-))\lm1 (Ey +qp) (33a)

AL 12) = -g  V2mp(Ey-qp) -gr V2mg(Ey+gp) - (33b)

Note that g » respectively denote the chirality (V ¥ A) of the T = p" Vv coupling
whereas Ay = ¥1/2 denotes the handedness of the (massive) tau neutrino.

Formulas for T —> a;” v including both VA, and both v helicities.

First, note that in kinematically describing the 1" — a; v = (r;” my” m3h)
mode, one can use the normal to the (r;” 7, 13*) decay triangle in place of the
momentum direction of p- — ®; m° of the T —p° v decay mode. Then, the
various S2SC functions given above still hold, Egs. (17) and (19).

Including both v; and vg helicities, we find composite decay density
matrices for the T — a;»¥n,” ©, m3*)v decay sequence

RY = S;*R* + §; KR (34)

where RE have the same gorm as Eq. (12) except the elements have "f"
superscripts (see below). S;— describe 3, ™ Ty T m;¢.  When the 3-body
Dalitz plot is integrated over, only the S;* term remains. In Eq. (34), the R*
matrix elements are




{Eq. (8) except (715) - -—\é—)} (350)

=
H
H

i

r;:i = (I' T+)‘
- 1 1
= {Eq. (9) except (;E) - (- Ji')} (35b)
with
( n, J = sin26, (A (0,-12)2 = 1A (0, 1/2)P)

ndf, | (-1 sin?e,) (ACL-I2P£IAMLIDP  (6)

Similarly, the R~ matrix elements are
&

— ~™
= - T
R+ = -ng (1+cos@, )

T V2 sin 8,7 sin 8, [cos (§,-B,) A (0,-1/2)1A (-1,-1/2)i

+ cos @, + BR) 1A 0, 1/2)1A (1, 1/2)]] (373)
with
( n;_\= cos 6, (1A (-1,-12)P 2 1A (1, 1)), (37b)
and nta
.= @)

= sin 6;% cos 8, (IA(-1,-1/2)P + A 12P
+ N2 sin 8, {[cos 8,7 cos (@, -B,) + :sin(@,- Bl IA©,-1/21IACL-1/2)

+ [cos 8,% cos @, + BR) + isin @, + B 1A 0, 1/2)11A (1, 1/2)1} (38)

For the conjugate decay sequence, 1% —a;*V = (1" %* n;)V,

RV - 5 R* + 5, K (39)

The R* matrix elements (see Eq. (12)) are




Ri+ = (Eq.(13)except (ﬁ) — ("Ji’)} (402)

— +
Ty (GARY

(Eq. (14) except (-\-};) - ) (400)

with
( n, } = sin2@, (B, 1/2)? £ B (0,-1/2)P)

n, f, £ (1- 4 sin?6,) (B(L,12)F £ 1B ¢L-12%) @

The R -~ matrix elements are

Ri+

b
n,~ (1£cos 6;°)

T V2 sin 8,7 sin 8y, [cos (§+By) B (0, 1/2)IIB(1, 1/2)l

+ cos @ - B) B (0,-1/2)| B (-1,-1/2)1} (422)
with
( n;S: cos &, (IB (1, 12)F = 1B (-1,-1/2)P), (42b)
nif,
roo= @)

= sin8," cos 6, (B(, 127 + IB(-1,-1/2)%)
+ N2 sin 6 {[cos 8,F cos B, +By) + &sin @+ Byl B (O, 1/2)IB (1, 12)!
+ [cos 8,% cos @ - Bp) + ¢ sin (- ByS)] B (0, -1/2)l B (-1, -1/2)1} 43)

Ideal Statistical Errors

1t — p-v_mode with L-handed v:

Tables 1, 2 and 3 list the ideal statistical errors® of Ref. 1 for the CP and

'Tps discrete symmetry tests. Here :i"ps is the approximate
time-reversal-operation which holds only if possible final-state-interactions are

9




negiected. Such effecis are indeed negligible in the usual V-A, myr =0 lepton
model. By '}Fs the decay amplitude (A or B above) is purely real.

See conference contribution ICHEP-0099 for further discussionl’ these
statistical errors.

v — a"v_mode with L-handed v:

Tables 4, 5, 6 list the analogous ideal statistical errors for the CP and Tgg
discrete symmetry tests in the case of the T —> a,v decay mode.

Improvement from measurement of 1~ momentum direction:

As discussed above, by use of a silicon vertex detector it may be possible to
uniquely determine the T momentum direction. Table 7 shows the improvement
for the 2 tests for "non-CKM" type CP-violation in T — pv decay.

I0A




Conclusions About Ideal Statistical Errors

At the ZO, 107 ZO 's are assumed, and at each ~" energy we assumed 107 7-+*

pairs. Notice that in the measurement of the phase differences at ~* energies, versus at
the ZO, there is not as much improvement as would be expected due to the increase in the
mumber of events. This is because in using p-polarimetry ( or aj-polarimetry ) a Wigner-
rotation is involved in going from the center of mass frame's p-observables (or aj-
obserables ) to the respective 7 rest frame's p-observablies ( or aj-observables ). For
instance, see Tables 3 and 6. :

7 spin correlations are necessary to measure B, at 'y* energies; atthe 79, without
using spin-correlations there would be an extra suppression factor of <P, >= -0.138.

Since the direction of the initial e~ beam has been integrated out, there is no
obvious source for a violation of Tk invariance for the S25C processes considered here.
For instance, unlike in K3 decays, since v is only weakly interacting there is no "old

physics" source for electromagnetic rescattering of the v, and the p~ (oraj ).

The tables for the aj decay modes show approximately the same patterns as those
" for the p decay modes obtained earlier in Ref. 1 and shown here in the first three tables.
However, the net sensitives differ—-the sensitivity for the 85 = Bp test is about 10 times
worse in the a] mode, but the normalized sensitivity is about the same for therg=rp
test for both the p mode and for the a} mode. "Normalized sensitivity" refers to the value

of the fractional error { o(13)/ 13 }.

For measurement of (34 at ~* energies, knowledge of the 7 momentum direction
improves the sensitivity by about a factor of ( 1/2=0.707) which is what would be
expected by statistics. However, there is a small ( about 10 % ) improvement in the
measurement of 1, by measurement of the 7 momentum direction.

In conclusion, at y* energies one can perform the 1st test, Ba= Bp » to about
the 0.59 level, and the 2nd test, g =Tp, 10 about the 0.1% level by the p decay mode.
For the a] , the sensitivity for the st test is about 10 times worse, but is about the same

for the 2nd test.
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Table Captions

Table 1:

v

Table 2:

Table 3:

Table 4:

Table 5:

Table 6:

Table 7:

At E_, = Mz, ideal statistical errors for two tests for CP violation in 1 —
pv by the simpler S2SC function I(Ej, E; 8;, 6,) , see Eq. (21), for the
sequential decay Z° — 1t with T° — p’v — (#'n°v and

Tt —ptV, ntV, or £ vy Vr. We use 107 Z° events.

AtE_ =10 GeV and 4 GeV respectively, ideal statistical errors for two
tests for CP violation in T — pv by the simpler S2SC function, Eq. (21),
for the decay of an off-mass-shell photon ' — 11t with T —pv—
(x'n®)v, and tF—p*V, n*V, or & vy Vr. Weuse 107 y* — 1ttt

events.

Ideal statistical errors for CP/T violation tests based on the full S2SC

function of Eq. (18) for the {p™p*} sequential decay mode. Note that
E’EBa'Bb and B’EBa'*'Bb'

Ideal statistical errors for CP tests for T — a;" v — (m;" 7y ®,*)v at Z°

from the simpler I(E, E, 51, 52) .
Same as Table 4 except at E_, =10 GeV and 4 GeV.

Ideal statistical errors for CP/T violation tests based on full S2SC for {a;

a,*} sequential decay mode.

Percentage improvement for tests for T — pv mode (compare Table 3)

when 1 direction is known, e.g. via silicon vertex detector.




TABLE 1

E.mn=Mz Number of Ideal statistical errors
Mode events. ofr,) 2
{p~p*} 20,302 0.0065 (1202
{p~n*} 9,847 0.0091 (12°)2
{p~¢*} 29,074 0.0056 (15°)?2
Sum of above
modes 59,223 0.0039 [0.6%] (10°)?
TABLE 2
Number of E.n=10GeV Ep =4 GeV
Mode :
events. ofry) (8,2 o(r) o8,
{p”p*} 605,127 .0012 (5.59)? 0011 (8.89)2
{p7m*} 293,527 0017 (5.9°? 0016 (9.19?
{p~¢*} 866, 658 .0010 (7.59?2 0010 (11.5°)2
Sum of above
modes 1,765,312 .0007 (4.7°? 0007 (7.3°0
[0.1%) [0.1%]
TABLE 3
Number of Ideal Statistical Errors
Ecm { p' p+ } ~
o(® o) o@B)
events
Mgz 20,302 1.88° 3.15° 1.84°
10 GeV 605, 127 0.43° 0.74° 0.42°
4 GeV 605,127 0.86° 1.13° d.71°




TABLE 4

Eeg =Mz Number of Ideal statistical errors
Mode events. o(r,) c@,’)
{2, 2;*} 2,718 0.019 (4199
{s; p%} 7,428 0.011 @2°7
{2 %} 3,603 0.016 (U2
{a;" %} 10,638 0.009 (29°?
Sum of above }
modes 24,387 0.0062 [0.6%] (18°)2
TABLE 5
Number of Eep = 10 GeV Eop = 4 GeV
Mode 2
events. of(r) o, o(r,) o8,
{8, 2%} 81,000 .0035 Q17 0035 (26°%
{a; p*} 221,400 0021 (10° 0021 (15°)2
{a" =%} 107,388 0030 (11°)2 .0030 (15%?
{a;"¢%} 317,070 0018 (14°)? .0018.. (19972
Sum of above .
modes 726,858 0011 (59 0012 (1290
[0.1%) {0.1%]) -
TABLE 6
Number of Ideal Statistical Errors
Ean {a - a2+} ~
1 o(B) o(®) o)
events
Mz 2,718 20° 32° 17°
10 GeV 81,000 4° 6° 5
4 GeV 81,000 80 10° g°




TABLE7

,

B Number of Percentage Improvement by ¥ Direction
o {p" 9"}
events o(ry oBy
10 GeV 605,127 7% 27%
605,127 12% 26%

4 GeV




