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1 Introduction

In this paper we discuss single particle states in the continuum by analyzing
a series of experimental results on one-neutron transfer in heavy-ion reactions. The
Bonaccorso-Brink model is used for the calculation of the inclusive spectra and for the
extraction of the background due to elastic and inelastic breakup. Also it allows the
decomposition of the cross section into the contributions of the various final angular
momenta. Such a decomposition is used to study the single particle properties of the
continuum states populated by transfer. We calculate the spectral distribution, escape
and spreading widths of the states in two different ways. One method uses an optical
model description of the interaction of the transferred neutron with the target. The
other method is based on the semiclassical calculation of the neutron-target S-matrix

and of the widths of the single particle target states.

The experimental inclusive spectra of all targets show some structures up to about
E, ~ 10MeV and the comparison between the calculated and the experimental cross
sections suggests that they are due to the population of continuum single particle
states. The higher energy part of the spectra varies according to the incident energy
and to the projectile-target combination. If the incident energies are in the range
Eine ~ 40 — 50MeV/nucleon and provided the initial bound state energy of the
neutron in the projectile is of the order of several MeV, then the matching conditions
allow the population by transfer of high lying single particle states like the 1may1/o n
208 pp and the 17,5/, in °' Z7 and the experimental spectra show indeed bumps at the
corresponding energies predicted by the shell model. This rather unexpected feature
is consistent with the results of the calculations which give values for the widths of
the single particle states smaller than their spacing. Such a situation occurs when the
resonance energy is below the top of the barrier formed by the real plus centrifugal
potentials and at the same time there is a small surface imaginary potential describing
the absorption of the neutron on the target. When these conditions are not satisfied,
as in the ¥8Ca case, the single particle states in the target are quite damped and the

transfer spectra are dominated by the breakup.

This paper is organized in the following way. In Sec.2 we give a brief review
of the status of the experimental results, then in Sec.3 we resume the transfer to

the continuum model and we introduce the semiclassical methods used to study the




microscopic structure of the bumps. The S-matrix calculations are discussed in Sec.4
and the widths in Sectjon 5. Sec.6 contains the discussion of both the experimental

and theoretical results and finally in Sec.7 we give our conclusions.

2 Experimental review

In this section we review some of the experimental data on neutron transfer to the
continuum in heavy-ion reactions for which we have made also a theoretical analysis.
Data taken up to 1988 were discussed in [1]. More recent data are published in
(2, 3, 4, 5, 6, 7, 8, 9] and in Sec.6 we will show some of them together with our
calculations. Many experiments have targets in the region of lead but also ¥Cq,

%Zr, 12065 and 4 N; have been studied.

One characteristic common to all inclusive spectra is that there are structures up
to an excitation energy of about E; ~10MeV. At higher excitation energies some
spectra show a structureless continuum. This happens for light projectiles like a-
particles and/or when the incident energy is less than about Eioe = 30MeV/nucleon.
However there are other spectra in which the situation is rather different because
they show also structures at Er ~20—40MeV superimposed to a large continuum. -
This happens in the reactions with heavy projectiles like 2 Ne and ©°Ar ang when

the incident energy is of the order of E.,, ~ 40MeV/nucleon.

From the experimental point of view the nature of the low energy structures
has been studied recently by detecting their decay via neutron emission. This has
been possible in some experiments in which not only the inclusive spectra were
measured but also the coincidence between the neutrons emitted by the excited
residual nucleus and the ejectile . The reaction studied were 28 Pb(c,® He)209 pp at
Eine = 30MeV/nucleon[7] and BCa(®Ne 10 Ne)®Caq at E;,. = 48MeV/nucleon[8).
The analysis of the angular correlation in those data has shown that while the reac-
tion on *8Ca is dominated by the breakup the reaction on 28 Pp ig dominated by the

absorption of the transferred neutron on the high spin continuum states of the target.

In this paper we wil] discuss four reactions whose inclusive cross sections show

Just one dominant bump centered around E, ~10MeV

2B Pb(a,3 He)29pp ot Eine = 30MeV/nucleon[7];



07r(a’ He) Zr at Eipe = 30MeV/nucleon(7];
12050 (a,3 He)'*' Sn at Eine = 30MeV/nucleon|7};
$4Ni(a, He)®Ni at Eine = 30MeV/nucleon(T].

Then the following reactions which have inclusive cross sections showing high

energy structures superimposed to a large continuum
07PH(2°Ne,'® Ne) B Pb at Eine = 48 MeV/nucleonl6, 9];
208 ph(40 Ar3® Ar)2®Pb at Eine = 41MeV/nucleon(6, 9);
R Zr(2Ne,® Ne)?' Zr at Ein. = 40MeV/nucleon(3].

Finally a reaction on **Ca that shows some low energy structures and then a

large structureless continuum

80 a(°Ne,® Ne)8Ca at Ein, = 48MeV/nucleon(8).

3 Theory

We give now a brief account of the theory behind the transfer calculations.

In the Bonaccorso-Brink model[10, 11, 12, 13] the neutron transfer probability
from a definite single particle state of energy ¢: , angular momentum /; and spin 7
in the projectile to a final continuum state of energy & within an interval dey in the
target is given by the sum of the transfer probabilities to each possible final j-state
in the energy bin dey .

dP .
d—€7 = Ei/<|1_sj/|2>B(qu]i)
= Ej/(“_ < Sj/ > l2 + ij)B(jf)ji) (31)
where
T, =1-]<S8;, >~ (3.2)

< S;, > is the optical model S-matrix which describes the re-scattering of the neu-
tron on the target. The sum in Eq.(3.1) is over all possible final angular momenta

corresponding to the given final energy. B(jy,J:) is an elementary transfer probability



which depends on the details of the initial and final states, on the energy of relative

motion and on the distance of closest approach between the two nuclel.
In Ref.[11] it was shown that the first term in Eq.(3.1), proportional to

|1— < §j, > |?, gives the elastic breakup spectrum while the second term proportional
to the transmission coefficient T gives the absorption spectrum. The elastic breakup
gives some part of the physical background of the spectra . The way of calculating
it has been described in previous publications {12, 9]. The inelastic breakup comes
from the absorption term from which it can be extracted according to the method
described in Ref.[13]. It contributes also to the background. Finally we remind the
reader that the way to obtain the cross section do /des from the transfer probability
given by Eq.(3.1) was shown in Ref.[12] .

In this paper we discuss the results of the calculated inclusive cross section and
we show also the contribution to the absorption term of Eq.(3.1), as a function of
the energy, of a number of relevant j ;-single-particle final states. Since each of these
individual terms due to a final state of definite angular momentum is normalized
by the transmission coefficient from the optical model describing the neutron-target
interaction, then it contains the same physical information as the structure function
of the state as defined in [1] and in [16].

Our model requires the calculation of the optical model S-matrix which describes
the re-scattering of the neutron on the target. In the next section we will discuss two
approaches to such a calculation. First by calculating the S-matrix with an energy
dependent optical potential we shall be able to reproduce the experimental spectra, to
explain the structure of the bumps in terms of the single particle states contributing
and also to estimate the resonance energy for each js-state. On the other hand we
will calculate also the S-matrix near resonance with a semiclassical formula which
contains a Lorentzian shape for the resonance ‘with an explicit dependence on the
width. This calculation, although less accurate than the calculation with the optical
model S-matrix, is useful to disentangle the single particle properties of the final
states from the resonant behavior of the cross section which, in some cases, might be

due only to an optimum Q-value effect.



4 S-matrix calculations

4.1 Optical model

An important part of the calculation is the evaluation of the optical model S-matrix
which is responsible for the convergence of the sum over final angular momenta ap-
pearing in Eq.(3.1) [12, 11} and for the continuum energy distribution of each final

state of definite angular momentum.

The form Eq.(3.1) of the transfer probability shows that the transfer process hap-
pens through a re-scattering on the target of the neutron emitted from the projectile.
The S-matrix appearing in Eq.(3.1) describes in fact the neutron- target interaction.
Such an interaction can be described by the nucleon-nucleus optical potential which
is energy dependent. One has to take properly into account this dependence for the
description of transfer to the continuum. In fact the energy spectrum of a neutron
transfer reaction, corresponds to a collection of information on neutron scattering on
the target in a range of incident energies corresponding to the neutron final continuum
energies in the target. The peculiarity of the transfer process is that since the neutron
comes from inside a nucleus it carries a momentum and an angular momentum higher
than those it could have had if it were free. This allows it to match the high angular

momentum resonance states of the target which are in the continuum.

In this paper we have used the following form of the real plus spin-orbit neutron-

target optical potential

A d
Vs L (X)L - o (4.1)
meC rdr

V(r) = Ve(e))f(Xr) +(

while the imaginary part contains a volume and a surface term given by

W(r,e1) = Wy () F(X0) = daWs(eg) - () (+2)

In both the above equations f(X,) has a Woods-Saxon shape

(4.3)

f(Xo) = [1 + exp i Ra]_l

[o

with R, = r A3 _ a = R,I for the real and imaginary parts of the potential

respectively, and A is the target mass number.
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In order to reproduce the experimental spectra the depths of the real and Imagi-
nary parts of the optical potential have to be energy dependent. The parameterization
of such an energy dependence has been discussed in detail in Refs. [9, 12] as it plays
a key role in the analysis of the inclusive cross sections. In the next subsection we de-
scribe in detail the different parameterizations used to calculate the reactions studied

in this paper.

4.2 Optical potential parameterization

The nucleus which has been more widely studied both from the experimental and from
the theoretical point of view is 28pp . To get the energy dependence of the strength
of the imaginary potential we followed two different parameterizations of the neutron-
28 pp optical potential given by Mahaux and Sartor (15, 16]. Refs.[15, 16] contain

also a very detailed study of the resonance states of 208 pp,

We have found that the parameterization of Ref.[15] gives a good description of
the high energy part of the spectra and we have used it for the calculations relatjve
to the reaction 20TPh(?0Ne 19 Ne)*®pp at E;,, = 48MeV/nucleon together with the
real potential of Ref. [9] while we have used both the real and imaginary potential of
[16] with a spin-orbit strength V,, = 7MeV for the reaction 28 Pb(a,® He)20°Pp at
Einc = 30MeV/nucleon because it gives a better description of the spectra at low

excitation energy.

In Ref.[9] we gave the sequence of bound and resonance states obtained in the real
plus spin-orbit part of the potential when the rea] depth is taken Vi = —45.8Mel.
The sequence of the states shown in Ref.[9] agrees with the single particle levels

obtained for 28 pp by using the quasiparticle-phonon model [1].

For the reactions having #¥Ca and 9 Zr has a target we used the parameterizations
suggested in [16] and [17] respectively. For the other two targets 12°Sn and 84 N; we
have constructed our own parameterization since there is no one in the literature. In
both cases we used an optical potential having only a surface imaginary part. In Fig.1
the full lines show the strengths of the real and imaginary part used for 129G while
the dashed line shows the real potential strength used for ®4Ni. The imaginary part
parameterization was the same as that suggested in [16] , corrected for the appropriate

Fermi energy which we took equal to Er = —8MeV.



4.3 Semiclassical S-matrix

The transfer to high angular momentum resonances that we would like to discuss in
detail now is a peripheral process dominated by barrier penetration effects. These
effects are important for potentials which are weakly absorbing at the barrier, the
so called surface transparent potentials. When the two nuclei are at the distance of
closest approach there is an effective barrier between them such that the neutron can

tunnel to a final continuum state in the target.

The resonance states in the target that we are concerned with here are states
like the 1k;7/; in lead. They have positive energy which is however below the barrier
formed by the real plus centrifugal potential plus spin-orbit potential as it is shown
in Fig.2. As we will show they are responsible for the bumps in the inclusive spectra.
In such a situation one can try to calculate the S-matrix which appears in Eq.(3.1)
by using a semiclassical approximation based on a WKB evaluation of the barrier

penetration probability.

The formulas used in the following are due to Brink and Takigawa [19] and they

are also discussed in Ref.[20]. The S-matrix is given by

< [1 4+ N exp(2:S32)
= 2t . 4.4
S=e [ N + exp(2:S32) (4.4)

The quantity 6, in Eq.(4.4) is the external phase shift which could be complex if there
were direct reactions. We take it zero since we are interested in discussing only the

absorptive part of the scattering. Also
N? =1 + exp(—2Q). (4.5)

In Eq.(4.5) Q is a WKB barrier penetration integral and

1

P=1-1/N)2 —————
/ 1 + exp(2Q)

(4.6)

is a barrier penetration factor. The quantity Saz is defined in Appendix A. It is a
WKB integral between turning points in the pocket behind the centrifugal barrier. It

has a real part and an imaginary part corresponding to absorption so we can write
exp(2iS32) = Aexp(2iY) (4.7)
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where A and 1 are real and A < 1.

We can get resonances by choosing 0 < A < 1 and taking some suitable energy

dependence for ¥. Then

1— A?
1-|S*P=P : 4.8
191 “ 17 241 = Pcos(29) + A*(1 — P) (48)
One gets a resonance when cos(2y) = —1. Expanding about the resonance position,
cos(2¢) & —1 + ales — €res)? gives
A2 2
1-A (T'/2) (4.9)

1—l5|2: P x 1= A ____1_P)2 X (ef_ercs)2+(r/2)2.

A simple form for P would be to take a centrifugal barrier with a sharp cut-off
at a radius R. We put f =[(l +1)/(kR)*. Then

Q=kr[(Fin (V7 + Vi—1)-Vr=1 (4.10)

if f > 1 (below the barrier) and @ = 0 if f <1 (above the barrier). With the
penetration factor given by P = ezp(—2Q) which is appropriate for a sharp cut-off

barrier.

A more accurate calculation of P would require the evaluation of the barrier

penetration integral [20]
Q= [ hldr (411)

at several energies around the resonance energy. This is not necessary for the cal-
culation of Eq.(4.9) while it will be done for the calculation of the escape widths as
we shall see in the next section. In Eq.(4.11) b and c are the outer and outermost

turning points and
2m I(r+1)
== (V(r) = ers) + =5 (4.12)

with V(r) given by Eq.(4.1).



5 Width

5.1 FEscape width

In Eq.(4.9) T' is the total width of the resonance. In Appendix A we show that it is
approximately given by [20, 21] .

where

To = hP/T (5.2)

is the escape width which is due to the decay of the resonance by barrier penetration

and
Hr~2<W> (5.3)

is the spreading width defined in terms of the expectation value of the imaginary
potential . The spreading width and the definition of < W > will be discussed in the

next section.

In Eq.(5.2) P is the barrier penetration factor discussed in the previous section
and T is the period of the radial motion of the particle in the real potential pocket
inside the barrier[14]

b
h? Ja y(r)]
where a is the internal turning point.

Eq.(5.1) corresponds to the usual definition of the single-particle width as the
sum of an escape width and a spreading width. However one has to keep in mind
that this distinction is somehow arbitrary because the direct decay of the particle
which is represented by the escape width is modified by the coupling to other modes
of excitation of the nucleus which are described by the spreading width. Therefore

the evaluation of the escape width is very sensitive to the model used.

The definition of the escape width given in Eq.(5.2) takes into account only the
interaction of the particle with a static potential. The quasiparticle-phonon model
used instead in Ref.[22] treats the single-particle potential as a dynamic quantity
calculated within the Random Phase Approximation and we expect that the escape

widths calculated in this way would be larger than ours.




The interesting point about Eq.(5.2) is that although it is very easy to calculate it
gives results quite accurate, comparable to those obtained in Ref.[22] and in Ref.[23].
However it is important to notice that in all methods the values of the escape width
depend very much on the parameters used to define the single particle potential. Our
method is mainly sensitive to the value of the radius parameter which determines the
position of the top of the barrier. Small changes in the potential give rise to changes
in the turning points in Eqs.(4.11) and (5.4) and the overall effect can be a variation of
a factor two or more on the value of the escape width . Then the agreement between

various methods refers only to the order of magnitude.

Another advantage of Eq.(5.2) is that it can be used to estimate the escape widths
of states of very high angular momentum like the 119/, and 1mgy 2 in lead which are
interesting for the present discussion and that could not be studied with the methods
of [22, 23]. Also it allows to understand the variation of the escape width with the
resonance energy. To discuss this point we show in Fig. 2 the real plus centrifugal
plus spin orbit potentials relative to {; = 7, [y =8, l; =9 and [; = 10 respectively.
The resonance energies indicated correspond to the peaks of the [-terms shown in

Fig.4 and they are given also in Table 3.

It is easy to understand that increasing the resonance energies the barrier pene-
tration range decreases thus giving a larger barrier penetration factor P. At the same
time the period increases because the particle makes a wider orbit inside the potential.
But while the variations of P are of an order of magnitude in the case of [y = 7 and
l; = 8, the variation of T are only few percent, therefore the escape width increases
by raising the resonance energy for a given [-state. This discussion is illustrated by
the values of o, P and T given in Table 1. P was calculated from Egs.(4.6) and
(4.11) and T from Eq.(5.4). The possible values of the resonance energies given in
Table 1 for each [;-state are taken around the values given in Table 3 and they are

all below the top of their respective potential barriers as shown in Fig.2.

The interesting point is that while the low-lying resonances like the 1ki7/2 have
very small escape width, other states of higher angular momentum and higher res-
onance energy have larger escape widths although they still maintain quite strong

single particle characteristics as we shall see in the following sections.

The calculations in this section have been done by using MATHEMATICA (24].

10




Table 1: Escape and spreading widths from Eqgs.

(5.2) and (5.6)

[0 | eres(MeV) P T(10-?2sec) | To(MeV) | TH(MeV)
7 3 0.10-1073 1.67 0.44 -1073 3.36
7 5 0.38 - 1072 1.74 0.15- 1071 4.15
7 7 0.35-1071 1.91 0.12 5.04
7 9 0.15 1.96 0.50 5.49
8 4 0.30-107* 1.46 - 0.13-107° 3.88
8 6 0.78 - 1073 1.54 0.30-1072 4.75
8 8 0.71-1072 1.63 0.28 - 1071 5.42
8 10 0.36 1071 1.68 0.14 6.09
9 14 0.05 1.51 0.20 6.99
9 16 0.13 1.69 0.49 7.29
9 18 0.27 1.79 0.97 7.51
9 20 0.45 2.20 1.34 7.36
10 18 0.04 1.34 0.19 8.53
10 20 0.09 1.41 0.45 8.39
10 22 0.20 1.55 0.86 8.75
10 24 0.35 1.72 1.35 8.69

11



5.2 Spreading width

The second term in Eq.(5.1) corresponds to the spreading width. We have defined it
in terms of the average imaginary potential inside the barrier to be consistent with the
discussion in Sec.4d where we described the neutron target interaction by an optical
potential. However it is important to point out that equation (5.3) is quite generic
and that there is not an unique prescription for calculating < W >. In Appendix
A we derive Eq.(5.1) within the semiclassical approximation to the S-matrix and we
show that in order to be consistent with the approximation, the spreading width has
to be defined as the time average of the imaginary potential

= —2w. (5.5)

T

Another possible definition of the average potential giving the spreading width can
be obtained in the framework of the nuclear many body theory {25]. In that approach
the spreading width, also called damping width, is related to the imaginary part of
the self energy which appears in the definition of the Green function of an excitation
(16, 25]. The definition given in Ref.[25] is the following

I+ = ——2/p(r)W(r) d>r. (5.6)

where p(r) is the single particle density given by p(r) = l4(r)|? and ¥(r) is the single
particle wave function. In Appendix B it is shown that if one uses for Y(r) the

semiclassical form of the wave function, then Eq.(5.5) and Eq.(5.6) are equivalent.

There are two important characteristics of the spreading widths that we wish
to study , namely their dependence on the energy and on the angular momentum.
Eq.(5.5) depends on the angular momentum in several ways. One is that the classical
orbit along which we are taking the time integral of W is in fact angular momentum
dependent. We should have written ry(t) where A = [ +1/2 1s the classical angular
momentum corresponding to the quantum angular momentum (. Then the angular
momentum enters also in the centrifugal potential and as a consequence the period of
the classical orbit inside the real potential pocket and the turning points will depend
on [. The energy dependence of I'* is due mainly to the fact that the strength of Wis
energy dependent and also to the dependence of the period and of the turning points

on the resonance energy.
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On the other hand Eq.(5.6) depends on the angular momentum because of the
dependence on the single particle wave function ¥im(r) and on the energy because
both 1) and W are energy dependent. However in Ref.[25] it was argued that the den-
sity of single particle orbitals p(r) which appears in Eq.(5.6) could be taken constant
in the vicinity of the absorptive region. This assumption is justified by the fact that
the imaginary potential varies appreciably only on the surface of the nucleus where
the radial parts of the wave functions of the high spin single particle states that we

are studying in this paper are also peaked . Then according to Ref.[25] one can write

THe,) = 8 ,s/ r2dr W(r,e;) (5.7)

where 5 ~ 0.08fm™3/A is an average density of the single-particle orbitals in the
vicinity of the absorptive region. The value chosen is half the nuclear matter density.
This approximation allows us to use the Brown and Rho [18] parameterization for

the volume integral of the optical potential which appears in eq.(5.7)

(e; — Er)’

Br _4rm
- (e — EF)? + 73

r*lw r2dr W(r,es) = —be

(5.8)

According to Mahaux and Sartor (15] the values of the para.rn.eteré" in Eq.(5.8)
for the neutron-2°®Pb potential are b = 70.95MeV fm?, ry = 10.8TMeV and
Er = —5.65MeV. In Ref.(15] it was shown that the energy dependence of Wy
and Ws saturates around 40M eV, then according to Eq.(5.7) the widths I't(ey) are
constant for energies in the continuum larger than 40MeV and the single particle
effects disappear. The widths obtained from Eqs.(5.7) and (5.6) are given in Table

2a. Our values are in agreement with those given in Refs.[1, 25].

Furthermore in Table 1 we give , for several angular momenta and energies, the
spreading widths obtained from Eq.(5.5). It is interesting to notice that there is
some dependence on the energy for each fixed angular momentum but there is not
much dependence on the angular momentum for a fixed energy. However there is
a continuous smooth increase of the width increasing the energy and the widths
obtained with this method agree within 20% with the widths of Table 2a. One could
get a better agreement just by choosing a slightly different value of the constant
density of orbitals in Eq.(5.7).

The choice of the most appropriate j is discussed in Appendix C where we show

13



Table 2a: Spreading width as a function of the continuu

m energy in 2% Pb

rsf(MeV) TH(MeV) || e(MeV) [(MeV) e;(MeV) 't(MeV) er(MeV) F*(MeVM
1 3.1 11 7.9 21 9.7 31 10.4
2 3.7 12 8.2 22 9.8 32 10.5
3 4.4 13 8.5 23 9.9 33 10.5
4 5.0 14 8.7 24 10.0 34 10.6
) 5.5 15 8.9 25 10.1 35 10.6
6 6.1 16 9.1 26 10.2 36 10.6
7 6.9 17 9.2 27 10.2 37 10.7
8 6.9 18 9.3 28 10.3 38 10.7
9 7.3 19 9.5 29 10.3 39 10.7
10 7.6 20 9.6 - 30 10.4 40 10.7

the radial dependence of the imaginary potential and of the radial w

of some high spin resonance states whi

spreading widths

a constant density of orbitals.

The reason why we wish to study in detail the validity of Eq.(5.6
with Egs.(5.7) and (5.8) it gives a very simple way of esti
by relating them to the parameterizations
of Eq.(5.5) requires instead the numerical calcu
period of the radial motion, of the classical trajectory o

potential and finally of the time integral of the imagin

6 Results and Discussion

In this section we discuss th
listed in Se

First we discuss the group of reactions made at Einc

14

obtained in this way to those obtained us

c.2 and we compare them to the corresponding experimental s

ary potential.

ave functions
ch have been calculated numerically. With
those wave functions it is possible to calculate Eq.(5.6) exactly and to compare the

ing the approximation of

) is that together
mating the spreading widths
of the imaginary potential. The calculation
lation of the turning points, of the

f the particle within the real

e results of the calculations made for the reactions

pectra .

= 30MeV/nucleon and hav-



Table 2b: Spreading width as a function of the continuum energy in 1 Zr

er(MeV) rH(MeV)

1 9.7

5 10.14
10 10.67
15 11.21
20 11.74
25 12.28
30 12.81
35 13.35
40 13.88

ing the a-particle as a projectile. These reactions are easier to analyze because there
is only one initial state in the projectile to be taken into account. For a discussion of
the initial state effect we refer the reader to Refs.. [9] and [12].

Fig.3a shows the experimental and calculated spectra of the reaction

208 pp(o,3 He)?Pb at Ein. = 30MeV/nucleon. The full curve (a) is the calculated
inclusive cross section which is arbitrarily normalized to the experimental spectrum
from [7] while the full curve (b) is the breakup part of the spectrum multiplied by a
factor ten. We give also the energy distribution of the cross section corresponding to
the absorption term in Eq.(3.1) for some fixed values of the final angular momentum
namely I; = 6 — 10. For each I the contributions corresponding to j; = Iy £1/2
were summed. This is possible because the transfer probability Eq.(3.1) contains an
incoherent sum of final j;-values. We remind that for this calculation we have used

the optical potential of Ref.[16].

In Fig.3b we show again some of the calculations of Fig.3a made with the optical
model S-matrix (full curves) while the dotted curves were obtained using the semi-
classical S-matrix , Eq.(4.9) , discussed in Sec.4. The width appearing in Eq.(4.9)
is the total width but from the values of the escape and spreading widths given in

Tables 1 and 2a respectively we see that the escape widths are negligible compared
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Table 3: Resonance energies in *°*Pb

I 6 | 7] 8 [9]10
£es(MeV) || 3.2 | 4.8 | 55|12 19

to the spreading widths and therefore we shall use Eq.(4.9) with I’ = Y. We have
used Eq.(4.9) with A=0.93 for I; = 8, A=0.9 for [y =9, and A=0.85 for [y = 10.
The parameter A gives the magnitude of the S-matrix. Values of A close to one are
appropriate for a weak absorptive potential. The values of ['* are given in Table 2
and were obtained from Egs.(5.7) and (5.8). The resonance energies in Eq.(4.9) were
taken as the peak energies of the /;-resonant terms obtained from the optical model

calculation.

In Fig.3b we notice that the absolute values of the cross sections calculated with
the two different methods agree in all cases. This proves that the semiclassical S-
matrix is a good approximation to the optical model S-matrix for the kind of reac-
tions we are concerned with in this paper. According to Eq.(4.9) the single particle
resonance states have a Lorentzian energy distribution around the resonance energy.
By looking at Fig.3a we notice that for the [y =8, l; =9 and [y = 10 resonances also
the optical model calculation gives an energy distribution very close to a Lorentzian.
Therefore in all cases the Lorentzian approximation to the spectral distribution of
the single particle states in the continuum seems to be correct. Also the values the
widths obtained from Eq.(5.7) agree with the exact values implicitly contained in the
optical model S-matrix and we can say that Eq.(5.7) gives a very reasonable estimate

of the spreading widths of the single particle states.

In Fig.3c we show the spectrum of the reaction 07Zr(a, He) Zr at Eine =
30MeV/nucleon[7]). The full curve superimposed to the experimental spectrum is
our calculation of the inclusive cross section while the full curve in the lower part of
the figure is the calculated breakup. We show also the individual {; = 3 — 8 final an-
gular momentum contributions from the optical model calculation. One notices that
the big bump in the experimental spectrum can be attributed to the combined effects
of the [; = 5 — 6 final angular momenta corresponding to the population of the lho/2

and 1,3/, states in ®' Zr. The rising of the [; =5 contribution towards negative final
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energies is due to the presence of the 1h11/2 bound state which has a large probability
of being populated since in this reaction the spin matching conditions [26] require
Ji=Li+1/25 35, =1+1/2

Fig.3d refers to the reaction 84 Ni(a,3 He)®®*Ni at Ein, = 30MeV/nucleon(7]. The
notation is analogous to the previous figure and in this case the bump can be at-
tributed to the population of the [; = 4 — 5 final states.

Finally in Fig.3e we show the results of the reaction 120G6n(a,® He)'*' Sn at B =
30MeV/nucleon{7]. In this case the spectrum looks quite different from the previous
ones because it contains a large breakup contribution indicated by the dotted curve.
There is a peak at about £; = 1MeV due to thely =6 j; = 13/2 single particle state
which is the only one strongly populated. The [, =7 contribution is spread over all
final energies thus showing that the state 17152 is completely damped in *'Sn.

We turn now to the discussion of the reactions made at high incident energy.

Fig.4 refers to the reaction 207pp(°Ne,® Ne)*®Pb at Eine = 48 M eV /nucleon.
The experimental spectrum is compared to the calculated inclusive cross section. The
details of such a calculation were explained in Ref.[9] and in the previous section. The
discrepancy between experiment and calculation for energies larger than 50MeV is
due to a cut in the experimental spectrum [9]. In the lower part of the figure we show

also the contributions to the cross section of the terms /; =8 — 13.

It is interesting to notice that the experimental spectrum has three bumps at
E, ~14MeV, E, ~ 25MeV, and E; ~ 34MeV. At the same excitation energies also
the calculated spectrum has bumps and from the [;- decomposition in the low part of
the figure we notice that the bumps correspond to the maximum value of the [ = 8,
l; = 10 and [; = 11 contributions. However because of the cut in the experimental
spectrum it is not so clear that the {; = 11 state gives rise to an isolated bump. The
l; = 8 term shows two peaks. The first one corresponds to the 1k;7/; state, while the

second one around E, ~ 20MeV corresponds to the state 1k1s/2

The dotted curve shows the elastic breakup which is calculated from the first term
of Eq.(3.1). This is a very small contribution to the total inclusive cross section in
the low energy part of the spectrum and it has a maximum around E; = 50MeV.

Its effect is just to enhance the [y =10 — 11 contributions.

To our knowledge this is the first clear example of the persistence of single particle
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effects in the excitation energy region E; = 20 — 40MeV. This is possible because
in this energy range the widths of the [;-resonances are still smaller than the spacing
between them. At higher excitation energies this is not true anymore. In fact the
l; = 12 contribution has a total width of about 13MeV while the spacing between
the {; = 12 and /; = 13 maxima is about 10MeV. We remind that the widths of the
I;-resonances calculated with the optical model S-matrix depend on both the real as
well as on the imaginary parts of the optical potential and then they are the sum of
the escape plus spreading widths. The optical potential used for this calculation(9]
s different from the potential used for the previous reaction on lead[16]. The main
difference is that for final energies larger that 10MeV the real potential of Ref.[16] is
shallower than ours for about 3MeV. As a result the peaks of the [; =9 and [; = 10
terms in Fig.3a are shifted by about 4MeV with respect to the results shown in Fig.4
and resumed in Table 3, but the peak of the [y = 8 contribution in Fig.3a fits very

well the bump in the experimental spectrum.

Then from the analysis of Fig.4 we can conclude that the transfer to the continuum
inclusive spectrum of 2°Pb at incident energy Ei.. = 48MeV is still dominated by
absorption effects on single particle high-angular momentum states of the target.
This is due to various combined facts. One is that the single particle damping is not
very big for excitation energies lower than 40MeV and also the escape probability of
the particle from the potential pocket via barrier penetration is small. Furthermore
there are good matching conditions between the initial and final energies and angular
momenta of the neutron in the projectile and target respectively and this enhances

the transfer probability.

Fig.5 shows the experimental and calculated spectra of the reaction

208 pp(40 Ar 3% Ar)*PPb at Eine = 41MeV/nucleon(6, 9]. In Ref.[9] we showed that
this reaction is dominated by the transfer from the 1ds/, initial state in 490 Ar (solid
curve superimposed to the experimental spectrum). The | -decomposition in the
lower part of the figure refers to the transfer cross section from this initial state only.
As in the previous reaction the [; = 8 term (full curve) gives rise to two peaks. The
individual 1k;7/2 contribution is shown separately by the dotted curve. The second
peak in the full curve is due to the 1k;s/2 and it is higher that the first one because
in this case the spin matching condition requires ji=Li—-1/2—=75= l; —1/2. The

I; = 9 (dashed line) contribution has quite a large width and its contribution does not
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give a definite bump in the experimental spectrum, rather it is responsible together
with the [; = 10 contribution shown by the dotdashed curve, for the second bump in
the experimental spectrum. This result confirms the analysis done for the previous

reaction namely that the experimental spectra contain evidence for the population
by transfer of the {; = 10 state in 2°® Pb and **°Pb.

Fig.6 shows the calculated inclusive spectrum of the reaction N0Zr(*®Ne,l® Ne)*' Zr
at Ein. = 40MeV/nucleon. From the angular momentum decomposition in the lower
part of the figure one notices that the first bump is due to the population of the 12y3/2
and lhg/, states, while the second bump 1s due to the 17,5/, state. The experimental
spectrum for this reaction has been measured [3] and it does show two bumps at the

same energies E; = 16MeV and E; = 30MeV predicted by our calculations.

Therefore we can conclude that the resonant behavior of the transfer inclusive
spectra so far analyzed does correspond in fact to an absorption of the neutron into
states of the target which have definite angular momentum and a Lorentzian dis-
tribution around the resonance energy. We can predict the widths of these states
with good accuracy by using Eqs.(5.1), (5.2), (5.7). Our analysis predicts the persis-
tence of single particle effects in lead up to l; =10 at B, = 26MeV. However the
states {; = 11 and I; = 12 give also a resonant behavior around E, ~ 32MeV and
E. ~ 42MeV respectively as shown in Fig.4, but such energies are very close the
top of their respective potential barriers which are at 30MeV and 35MeV. Then the
treatment of these states as single particle potential resonances cannot be justified so
well and we conclude that the resonant behavior is due only to an optimum Q-value

effect. In 9! Zr single particle states are populated up to E; = 30MeV.

Finally Fig.7 shows the results of the reaction 8Ca(®Ne,® Ne)*®Ca at Eine =
48 MeV/nucleon[8]. The full curve superimposed to the experimental spectrum is the
calculated inclusive cross section. The dotted curve is the total breakup which in
this case gives the dominant contribution to the spectrum. This result is consistent
with the [;-decomposition shown in the lower part of the figure. Only the [; = 4
contribution, centered around E, = 9MeV seems to have a single particle behavior.
All the other contributions have widths larger than their spacing and we have checked
that their resonance energies are higher that the top of the corresponding real plus
centrifugal potentials. Then also in this case the resonant behavior of the individual

I;-terms does not correspond to the population of a single particle state but rather
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to an energy matching effect. The experimental spectrum does not show any isolated
bump, but just a structureless continuum with a maximum corresponding to the

maximum breakup probability.

7  Conclusions

In this paper we have studied the microscopic origin of the resonant structures
shown by several one-neutron transfer to the continuum experimental spectra. It has
been demonstrated that they are due to the population of single particle states of

positive energy and high angular momentum.

The single particle nature of the excitations has been clarified by introducing a
semiclassical S-matrix which describes the rescattering of the neutron on the target.
Near resonance the semiclassical S-matrix exhibits a Lorentzian shape with an explicit
dependence on the width. We have shown that within the semiclassical theory the
width can be written as a sum of an escape width plus a spreading width. The physical
meaning of these two terms has been discussed and we have given some prescription

to calculate them.

The spreading width has been analyzed in great detail because it gives the largest
contribution to the total width. Three different ways of calculating it have been
proposed and the numerical values obtained agree within 20%. The spreading widths
increase smoothly with the neutron energy in the continuum following the energy
dependence of the imaginary part of the optical potential. It was also shown that the

dependence on the angular momentum is negligible.

Our calculations suggest that the low energy bump shown by the spectra of the
reactions made at Eine = 30MeV/nucleon is due to the population of single particle

states of high angular momentum but low final energy-

On the other hand the results of our analysis seem to suggest that single particle
effects in lead and zirconium persist at excitation energies as high as 20—30MeV. The
reason is that states like the 1may 2 in lead or the 1j15/2 10 zirconium, have resonance
energies which are still below the top of the barrier formed by the real plus centrifugal
plus spin-orbit potentials and their escape probabilities by barrier penetration are

small. Furthermore the strength of the imaginary part of the neutron-2%8 Pb optical
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potential which depends on the mixing between the single particle states and other
modes of excitation increases up to about E; = 40MeV where it starts to saturate.
As a consequence the spreading widths below 40MeV remain smaller than the spacing
between the resonances which then can still be considered isolated. Because of these

properties the single particle resonances are preferred modes of excitation in a transfer

reaction to targets like 22 Pb and *°Zr.

This point has been illustrated by the analysis of the reactions 207 ph(P Ne,'® Ne)**® Pb

at Eine = 48MeV/nucleon, 2 Pb(*° Ar, Ar)?9Pb at Eiy. = 41MeV/nucleon(6, 9]
and 9Zr(*®Ne,'”® Ne)' Zr at Eine = 40MeV/nucleon[3]. It has been shown that the
l; = 10 final state corresponding to the lmg 2 single particle resonance centered
around &5 ~ 20MeV in 2 Pb can be populated by one neutron transfer with a prob-
ability higher than underlying states and the experimental spectrum shows a bump
in correspondence to this state, thus indicating that the single particle damping is
not complete yet. The estimated escape width for this state is about 1M eV which is
the same order of magnitude as the spreading width and one could hope to detect a
noticeable direct decay of this state by performing an experiment similar to the one
of [7]. A similar result holds for the 1j15/2 state-in 91Zr at 5 ~ 18MeV.

The fact that at E;.. = 40 — 50MeV/nucleon transfer reactions on heavy targets
dominate the inclusive cross section suggests that the description of the nucleus by
a mean field is still valid. This remark might be useful for the understanding of the
fragmentation process which is the dominant reaction mechanism at higher incident

energies.

All the above remarks hold true because, in the reactions we have described, the
background due to breakup is small. This is due to the fact that the initial bound
state energy of the neutron in the projectile is large, of the order of 10 — 20M eV,
and the incident energy per nucleon is of the same order of magnitude such that the
energy matching condition gives a most favorite final energy which is in the range
of persistence of single particle states. In the case of the reactions on '*°Sn and
4874 instead, the most favorite final energies do not correspond to any single particle

resonance state of the targets and the spectra are dominated by the breakup.

The results would again be different for a.reaction having a projectile with a
loosely bound neutron like !*Be or if the incident energy were much higher[11]. In

those cases also the inclusive spectra would be dominated by the direct breakup
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Appendix A

In this appendix we derive Eq.(5.1) given in section (5.1)

First we give the definitions of S3; and A which appear in Eq.(4.7)

exp(2iSa;) = Aexp(2iY). (A.1)
Ss, is a WKB integral defined as

S = [ (Pldr (4.2)

where

%T;—L-(V(r) AW (r) = €res) + 51—*2;1—)\ (A.3)

T

v (r) =

In Eq.(A.2) a and b are the inner and outer turning points which appear when the

real potential has three turning points. Also

A = ezp(2ImSs;) = ezp (% / b W(r(t))dt) (A.4)

where W(r(t)) is the imaginary part of the potential which appears in Eq.(A.3).

If the imaginary part of the potential is small one can expand the exponential in
the above definition of A and then get

Ax1+2W (A.5)
also
ATV =1-W (A.6)
where
V=l bW t))dt (A7)
W= [ W .

The step between Eq.(4.8) and Eq.(4.9) is made by expanding about the resonance

position cos(2¢) = —1 + a(e; — &rs)? - The expansion coefficient « is given by

8532 ? (T 2
= — — —_ A.8
a 2( aef ) IE/—Cre.l 2 h) ( )
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Then Eq.(4.9) is obtajned from Eq.(4.8) if one defines a width I" as

r=\/2‘( VI‘P) (A.9)

1-4
VAay/T =P
where P is the barrier penetration factor defined in section (4.3).
Now since p < 1 we expand V1 =P and use also the approximated forms of A

and /A given above which are valid when the imaginary potentja] is small. Then we
get for I

Q

]
/l\‘

[\V]

gl

+
o} Ny
N

<W>= —ﬁw (A.11)

the minus sign in the above equation is correct sipce in this paper we use a negatjve
strength for the imaginary potential.

24



Appendix B

In this appendix we show the equivalence between Eq.(5.5) and Eq.(5.6). We
start from

I = —Q/p(r)W(r) &r. (B.1)

where p(r) is the single particle density given by p(r) = |¥(r)]* and ¥(r) is the single
particle wave function which depends on the quantum numbers [ and m as well as on

the single particle energy. In the following we omit those indices for brevity. Let

w = 120y @) (B.2)

r

and let us take for the radial wave function ¢(r) its semiclassical form

C T
= —s1 — B.3
o(r) ﬁszn(Re S32 + 4) (B.3)
where S, is the WKB integral defined in Appendix A and the normalization constant

C is defined in terms of the classical period as

2m 1
2 _ ol B4
P = 2 (B.4)

then we insert these values in Eq.(B.1) and take out of the integral a factor 1/2 which
is the average value of the sinus function. Nexf we perform the angular integration
which gives one. We approximate also the local momentum 7y ~ muv/h where v is the
average velocity inside the potential pocket, in this way we can change the variable
of integration from dr to dt = dr/v and we finally obtain

SN 4 GO\ ®5)

T

Appendix C

We discuss now under which conditions it is justified to approximate Eq.(B.1) by

taking a constant value for the density of orbitals p(r) ~ 5 outside the integral. In
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Table 4: Spreading widths from Eq.(5.6) with the exact wave functions.

nucleus | I; | €res(MeV) | THMeV)
3 4.02 1.90
08Py | T 6.82 2.01
8 6.22 3.12
NZr 6 8.62 10.17
7 17.8 11.14

Fig.8 we show the radial dependence of the imaginary part of the optical potential
used for 28 Pb which according to Eq.(4.2) is a sum of a volume and a surface term
with the energy dependent strengths calculated at ey = 6.8MeV. Fig.9 shows instead
R(r) = |¢(r)/r]? for three resonance states in ***Pb, the 2h11/2, 1ki7/2 and 1ljig/2 -
R(r) is the modulus square of the radial part of the wave function Eq.(B.2) normalized
such that [ |¢(r)|?dr = 1. One notices that while the 2h,;/; state has a node and it has
its main peak inside the nuclear surface, the 1k,7/2 and 171372 state are instead peaked
at the surface where also the imaginary potential gives its main contribution. In this
case the radius of the nucleus is R = 7.2fm. Therefore it seem reasonable to take the
density of orbitals constant outside the integral when we are in a region of continuum
energies where the shell model predicts only states of high angular momentum whose
wave functions have no nodes and are peaked at the nuclear surface. For the three
states discussed here we calculated the spreading widths from Eq.(B.1) with the exact
wave functions shown in Fig.9 and the resulting values are shown in Table 4. They
are smaller by about a factor 1.85 than the values given in Table 2. In Table 4 we
give also some values of ['* calculated for ®'Zr. In this case the agreement with the

values obtained from Eq.(5.7) is very good.

Unfortunately it is rather difficult to get convergence in the numerical solution of
the Schrédinger equation for states of angular momentum higher than those discussed
here, otherwise one could always calculate Eq.(B.1) exactly. Then we suggest that
if one is interested only in an estimate of the spreading widths having in mind that
their most important characteristic is the energy dependence, Eq.(5.7) can be used
together with an appropriate density of orbitals and with a good parameterization of

the volume integral of the imaginary part of the optical potential.
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Finally we notice that the value of the resonance energies are different than those
given in Table 3, this is because the values given here come from the solution of the

Schraédinger equation while those of Table 3 correspond to the peaks of the l-resonant

terms of the transfer probability Eq.(3.1).
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Figure Captions

Fig.1. Energy parameterization of the optical potential strengths for *°Sn (full

curves) and ® N1 (dashed curve).

Fig.2. Resonance particle states for 2°°Pb in their respective potentials given by the

sum of a Woods-Saxon plus spin-orbit term plus centrifugal potential.

Fig.3a. Inclusive spectrum of the reaction 2*®Pb(a,® He)?* Pb at

Eine = 30MeV/nucleon[7). The curve (a) is our total cross section, the curve
(b) is the breakup multiplied by a factor 10. The other curves are the individual

l; = 6 — 10 contributions to the absorption as indicated on the picture.

Fig.3b. The same as Fig.3a . In this case the dotted curves correspond to the

calculations made with the semiclassical S-matrix.

Fig.3c . Spectrum of the reaction ©Zr(e,? He)*' Zr at Ein = 30MeV/nucleon[7].
The full curve superimposed to the experimental spectrum is our calculation of
the inclusive cross section while the full curve in the lower part of the figure
is the calculated breakup. The individual {; = 3 — 8 final angular momentum

contributions are also shown as indicated in the lower part of the figure.

Fig.3d. ®Ni(a,® He)®Ni at Ei,. = 30MeV/nucleon[7]. The notation is analo-
gous to the previous figure and in this case the bump can be attributed to the

population of the I; = 4 — 5 final states.

Fig.3e. Results of the reaction 2°Sn(a,® He)'?'Sn at Ein. = 30MeV/nucleon[T].
The full curve superimposed to the experimental spectrum is the calculated
inclusive cross section. The breakup contribution is indicated by the dotted

curve. The [y =4 — 7 contributions are also shown.

Fig.4. Inclusive spectrum of the reaction 2°7Pb(** Ne,'® Ne)**®*Pb at

Eine = 48MeV/nucleon[9]. The full curve superimposed to the experimental
spectrum is the result of our calculation. The dotted curve shows the calculated
breakup while the curves labeled /; = 8 — 13 show individual contributions to

the absorption cross section of several final angular momenta.
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Fig.5. Inclusive spectrum of the reaction 298 Pb(*° Ar3® Ar)*®Pb at

Eine = 41MeV/nucleon[9]. The full curve superimposed to the experimental
spectrum is the result of our calculation for the cross section due to transfer
from the 1dsj initial state in Ar. In the lower part of the figure the dotted
curve shows the contribution of the 1k17/'2 final state. The solid curve is the
total contribution due to Iy = 8. The second peak is due to the 1ky5/, state. The
dashed line is the contribution of [y =9 and the dotdashed line is for [y = 10.

Fig.6 . Calculated inclusive spectrum of the reaction ©Zr(**Ne,'” Ne)* Zr at
Ein. = 40MeV/nucleon. The final angular momentum decomposition is shown

in the lower part of the figure .

Fig.7. Results of the reaction ¥Ca(**Ne,' Ne)BCa at Einc = 48 MeV/nucleon(8].
The full curve superimposed to the experimental spectrum is the calculated
inclusive cross section. The dotted curve is the total breakup. The final angular

momentum decomposition is shown in the lower part of the figure .

Fig.8. Radial dependence of the imaginary part of the optical potential from
Eq.(4.2) with the strength appropriate to €7 = 6.8MeV.

Fig.9. R(r) = |¢(r)/r|* for three resonance states in 299 Pb, the a) 1ki7/2 b) 171372
and c) 2h11/2. R(r) is the modulus square of the radial part of the wave function
Eq.(B.2).
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