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function of J/ψ transverse momenta and compared with theoretical predictions using different
double-parton-scattering cross-sections.

© 2019 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.



Contents

1 Introduction 2

2 ATLAS detector 3

3 Event selection and reconstruction 4
3.1 W± selection 4
3.2 W± + J/ψ event selection 5

4 Signal and background extraction 6
4.1 Inclusive W± sample 6
4.2 Separation of prompt and non-prompt J/ψ 6
4.3 W± + J/ψ backgrounds 7
4.4 Detector effects and acceptance corrections 7
4.5 Double parton scattering 9

5 Systematic uncertainties 10

6 Results 11
6.1 Fiducial, inclusive and DPS-subtracted cross-section ratio measurements 11
6.2 Differential production cross-section measurements 13

7 Conclusion 14

1 Introduction

The associated production of prompt J/ψ mesons with W± bosons provides a powerful probe of the
production mechanism of charmonium in hadronic collisions, allowing tests of quantum chromodynamics
(QCD) at the boundary between the perturbative and non-perturbative regimes. The ATLAS Collaboration
has previously presented two analyses of J/ψ mesons produced in conjunction with vector bosons: the
associated production of prompt J/ψ +W± in

√
s = 7TeV data [1] and the production of prompt and

non-prompt J/ψ + Z in
√

s = 8TeV data [2]. This paper presents a new measurement of the ratio of the
cross-section for associated production of prompt J/ψ + W± to the inclusive W± production cross-section
with W± → µν and J/ψ → µ+µ+ at a centre-of-mass energy of 8 TeV, exploiting a four-fold increase
in integrated luminosity over the previous measurement [1]. The analysis strategy closely follows the
methods of the earlier papers. Prompt production refers to a J/ψ meson that is not the product of a weak
decay of a b-hadron while non-prompt production occurs when the J/ψ meson is produced at a secondary
vertex, such as from a B meson decay. The J/ψ events that are produced from radiative decays of heavier
charmonium states (such as χc → γJ/ψ) are not distinguished from directly produced J/ψ mesons, as
long as they are produced in the initial hard interaction.

Despite being studied for many decades [3–9], the production mechanism of J/ψ mesons in hadronic
collisions is not fully understood. The main models for perturbative calculations of heavy quarkonium
production (QQ̄) in hadronic collisions differ in whether the system is produced in a colour singlet (CS)
state or a colour octet (CO) state [10–14]. The CS model requires two hard gluons in a colour singlet in the
initial state, or one gluon splitting into QQ̄ where one of the quarks radiates a hard gluon. The CO model
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allows the QQ̄ system to remain in a colour-octet state and then generate the final colour-neutral meson via
low-energy non-perturbative matrix elements. The cross-sections for hadronic production of quarkonium
can be predicted using the non-relativistic QCD (NRQCD) framework where the relevant matrix elements
need to be determined from other processes [11, 12, 15]. Associated prompt J/ψ + W± production has
been presented as a clear signature of CO processes [16], although other authors argue that higher-order CS
processes will dominate [15]. The process W± → W± + γ∗ → J/ψ +W± may contribute, but the focus for
this measurement is a comparison to the CO processes [17]. The production rate measured by ATLAS at
7 TeV, while having large statistical uncertainties, was an order of magnitude larger than the CO prediction
of Ref. [16].

This paper reports a measurement of the ratio of fiducial and inclusive cross-sections for associated prompt
J/ψ + W± production to the cross-section of inclusive W± production in the same W± kinematic region.
The fiducial measurement for J/ψ +W± is defined in a restricted kinematic range for the muons from J/ψ
decay, and is specific to the ATLAS detector, while the inclusive result is determined by correcting for the
detector’s kinematic acceptance to muons. These cross-section ratios are presented for J/ψ transverse
momenta in the range 8.5 < pT < 150 GeV and rapidities satisfying |y(J/ψ) | < 2.1. The inclusive ratio is
also quoted differentially as a function of the J/ψ transverse momentum.

Single parton scattering (SPS) occurs in a given pp collision when the J/ψ meson and W± boson are
produced from one parton pair, while double parton scattering (DPS) occurs when the J/ψ meson and
W± boson are produced from two different parton pairs. The cross-section ratio for SPS is obtained
after subtracting the estimated DPS fraction, and is compared with a theoretical prediction of the
next-to-leading-order CO contribution.

2 ATLAS detector

TheATLAS detector [18] at the LHC is amultipurpose particle detector with a forward–backward symmetric
cylindrical geometry and a near 4π coverage in solid angle.1 It consists of an inner tracking detector
surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field, electromagnetic (EM)
and hadron calorimeters, and a muon spectrometer. The inner tracking detector covers the pseudorapidity
range |η | < 2.5. It consists of silicon pixel, silicon microstrip, and transition radiation tracking detectors.
Lead/liquid-argon sampling calorimeters provide EM energy measurements with high granularity. A
steel/scintillator-tile hadron calorimeter covers the central pseudorapidity range |η | < 1.7. The endcap
and forward regions are instrumented with liquid-argon calorimeters for both EM and hadronic energy
measurements up to |η | = 4.9. The muon spectrometer surrounds the calorimeters and is based on three
large air-core toroidal superconducting magnets with eight coils each. The field integral of the toroids
ranges between 2.0 and 6.0 Tm across most of the detector acceptance. The muon spectrometer includes a
system of precision tracking chambers and fast detectors for triggering.

A three-level trigger system was used to select events. The first-level trigger is implemented in hardware
and used a subset of the detector information to reduce the accepted rate to at most 75 kHz. This was

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upwards.
Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis. The pseudorapidity

is defined in terms of the polar angle θ as η = − ln tan(θ/2). Angular distance is measured in units of ∆R ≡
√

(∆η)2 + (∆φ)2.
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followed by two software-based trigger levels that together reduced the accepted event rate to 400Hz on
average depending on the data-taking conditions during 2012 [19].

3 Event selection and reconstruction

The analysis uses 20.3 fb−1 of pp collision data at
√

s = 8TeV collected during 2012. Events were selected
using a non-prescaled single-muon trigger that required at least one muon with |η | < 2.4, transverse
momentum pT > 24GeV, stable beams, and fully operational subdetectors.

The muon reconstruction begins by finding a track candidate independently in the inner tracking detector
and the muon spectrometer. The momentum of the muon candidate is calculated by statistically combining
the information from the two subsystems and correcting for parameterised energy loss in the calorimeter;
these muon candidates are referred to as combined muons.

In some cases a track in the inner detector is identified as a muon if the extrapolated track is associated
with at least one local track segment in the muon spectrometer. In such cases the information from the
inner tracking detector alone is used to determine the momentum. For analyses studying low-mass objects,
such as J/ψ mesons, the inclusion of these segment-tagged muons provides additional efficiency for
reconstructing low-pT muons [20].

3.1 W± selection

Table 1: Selection criteria for the inclusive W± sample, where µ is the muon from the W± boson decay.

W± boson selection
At least one isolated muon that originates < 1 mm from primary vertex along z-axis

pT (trigger muon) > 25GeV
|ηµ | < 2.4

Missing transverse momentum > 20GeV
mT(W±) > 40GeV
|d0 |/σd0 < 3

Table 2: Definition of the fiducial region for the J/ψ cross section measurement, where µ1 is the highest-pT muon
from the J/ψ decay, and µ2 is the second-highest-pT muon from the J/ψ decay.

J/ψ selection
2.4 < m(µ+µ−) < 3.8 GeV

8.5 < pJ/ψT < 150 GeV, |yJ/ψ | < 2.1
pµ1

T > 4 GeV, |ηµ1 | < 2.5{
either pµ2

T > 2.5 GeV, 1.3 ≤ |ηµ2 | < 2.5
}

or pµ2
T > 3.5 GeV, |ηµ2 | < 1.3

4



An inclusive W± sample is defined by applying the W± boson selections listed in Table 1. Candidate muons
from W± decays are required to be combined and to match the muon reconstructed by the trigger algorithm.
The primary vertex is chosen as the reconstructed vertex with the highest Σp2

T of associated tracks and
must have, at minimum, three associated tracks with pT > 400MeV.

Calorimetric and track isolation variables are defined by calculating the sum of transverse energy (ET)
deposits in the calorimeter cells and track pT respectively within a cone size ∆R = 0.3 around the muon
direction. The energy deposited by the muon is subtracted from the calorimetric isolation variable, and
only tracks compatible with originating from the primary vertex and with pT > 1 GeV (excluding the
muon itself) are considered for the track isolation. A correction depending on the number of reconstructed
vertices is made to the calorimetric isolation to account for additional energy deposits due to pile-up
vertices.2 For the muon to be considered isolated, the two isolation variables defined above must both be
less than 5% of the muon pT.

Transverse impact parameter significance is defined as |d0 |/σd0 , where d0 is the impact parameter, defined
as the distance of closest approach of the muon trajectory to the primary vertex in the xy-plane and σd0 is
the uncertainty on the impact parameter.

The W± boson transverse mass is defined as

mT(W±) ≡
√

2pT(µ)Emiss
T [1 − cos(φµ − φν)]

where the variables φµ and φν represent the azimuthal angles of the muon from the W± boson decay and
the missing transverse momentum Emiss

T respectively. The Emiss
T is calculated as the magnitude of the

negative vector sum of the transverse momenta of calibrated electrons, photons, hadronically decaying
τ-leptons, jets and muons, as well as additional low-momentum tracks that are associated with the primary
vertex but are not associated with any other Emiss

T component [21].

3.2 W± + J/ψ event selection

If an event has two additional muons then the J/ψ selections listed in Table 2 are also applied to define the
associated J/ψ + W± sample. The J/ψ candidates are required to have a vertex < 10 mm from the primary
vertex along the z-axis and must be formed from either two combined muons or from one combined muon
and one segment-tagged muon and at least one muon must have pT > 4GeV. A vertex fit is performed to
constrain the two muons to originate from a common point.

To distinguish prompt J/ψ candidates from those originating from b-hadron decay (non-prompt), the
pseudo proper decay time is used:

τ(µ+µ−) ≡
~L · ~p J/ψ

T

pJ/ψT

·
m(µ+µ−)

pJ/ψT

where ~L is the 2-D displacement vector of the J/ψ decay vertex from the primary event vertex, and ~p J/ψ
T

and m(µ+µ−) are the transverse momentum and invariant mass of the J/ψ candidate, respectively. Prompt
J/ψ candidates should have a pseudo proper decay time consistent with zero (within resolution).

2 Pile-up arises from multiple proton–proton collisions that occur in the same bunch crossing.
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4 Signal and background extraction

4.1 InclusiveW± sample

A signal sample of W± → µν Monte Carlo (MC) was used to verify the overall modelling of the
signal+background in the inclusive W± sample. The backgrounds W± → τν, Z → µµ, Z → ττ, diboson,
tt̄ and single top were also modelled with MC simulations. Most of the MC samples were generated using
Powheg-Box [22–24] for the hard scatter and showered using either Pythia 6 [25] or Pythia 8. Samples
of W or Z bosons decaying into electron, muons or taus were generated with the Powheg-Box next-to-
leading-order (NLO) generator, interfaced to Pythia 8 [26] with the AU2 set of tuned parameters [27]
for the underlying event and the CT10 leading-order (LO) parton distribution function (PDF) set [28].
Processes involving tt̄ and single top were generated with Powheg-Box using the CT10 PDFs, interfaced
to Pythia 6.427 with the P2011C underlying-event tune [29] and the CTEQ6L1 PDF set [30]. Diboson
samples were produced with Herwig 6.520.2 [31] with the ATLAS AUET2 underlying-event tune [32]
and CTEQ6L1. Alternative samples are used to evaluate the systematic uncertainties: Alpgen 2.13 [33]
with Herwig 6.520.2 parton showering with CTEQ6L1 for W+jets and Z+jets, including Jimmy [34]
for multiparton interactions, MC@NLO 4.06 [35] with Herwig 6.520 parton showering for t̄t, and
AcerMC [36] with Pythia 6.426 [25] and CTEQ6L1 for single top. All simulated samples were processed
through a Geant4-based detector simulation [37, 38] with the standard ATLAS reconstruction software
used for collision data.

For the multijet background, a standard data-driven technique called the ABCD method [1] is used. Four
independent regions (A, B, C, D) are defined in a two-dimensional plane using mT(W±) and Emiss

T together
with the uncorrelated muon isolation variable. Regions A and B are required to have Emiss

T < 20 GeV
and mT(W±) < 40 GeV, while regions C and D are required to have Emiss

T > 20 GeV and mT(W±) >
40 GeV. In regions A and C (B and D) an isolated muon (non-isolated muon) is required. The multijet
background in signal region C is determined from NC = NA × ND/NB, where NA, NB, NC , and ND are
the background-subtracted event yields in regions A, B, C and D respectively.

After accounting for all background events (which contribute an estimated 12% of the original yield with
Z → µ+µ− and W± → τ±ν making up 80% of the background), a total W± yield of (6.446 ± 0.035) × 107

events is found. The absolute luminosity scale is derived from beam-separation scans performed in
November 2012. The uncertainty in the integrated luminosity is 1.9% [39].

4.2 Separation of prompt and non-prompt J/ψ

The associated prompt J/ψ +W± yield is measured using a two-dimensional unbinned maximum likelihood
method to the J/ψ mass and pseudo proper decay time in the region 2.4 GeV < m(µ+µ−) < 3.8 GeV and
−2 ps < τ(µ+µ−) < 10 ps. The pseudo proper decay time for the prompt signal is modelled as a double
Gaussian distribution while a single-sided exponential function is used for the non-prompt signal. The
prompt background component is modelled as a double-sided exponential function and the non-prompt
background is the sum of a single-sided and a double-sided exponential function. The lifetime fit takes into
account resolution effects by convolving the exponential functions with a Gaussian resolution function. The
J/ψ mass distribution is modelled with a Gaussian distribution for both the prompt and non-prompt signal
and a third-order polynomial is used for both the prompt and non-prompt combinatorial backgrounds. To
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improve the stability of the fit, the mean and width of the J/ψ mass distribution are fixed to the values
derived from fitting a large inclusive J/ψ sample.

After the fit is performed, the sPlot tool [40] is used to extract per-event weights according to the parameters
of the fit model. These weights are used to generate prompt signal distributions for other variables such as
the W± transverse mass, the J/ψ transverse momentum and the azimuthal opening angle between the W±

and the J/ψ.

The results of applying the two-dimensional mass and lifetime fit to the J/ψ candidate events are shown in
Figure 1, giving prompt signal yields of 93± 14 (stat) for |yJ/ψ | < 1 and 102± 17 (stat) for 1 < |yJ/ψ | < 2.1.
Two rapidity ranges are used to account for the difference in muon momentum resolution between the
barrel and endcap regions of the detector.

4.3 W± + J/ψ backgrounds

The same backgrounds considered for the inclusiveW± sample are used for the associated prompt J/ψ+W±

sample. In addition, background from Bc → J/ψµν is also considered. Using MC, the expected yields
are found to be consistent with zero (3.7+1.9

−3.4 events). A significant background arises from simultaneous
production of a W± and a J/ψ from different pp interactions in the same bunch crossing, where the
two production vertices are not distinguished. The probability that, when a W± is produced, a J/ψ is
also produced nearby, can be estimated statistically. The average number of pile-up collisions occurring
within 10 mm of a given interaction vertex is determined to be 2.3 ± 0.2 and is found by sampling the
luminosity-weighted distribution of the mean number of inelastic interactions per proton–proton bunch
crossing. This number is combined with the pp inelastic cross-section and the prompt J/ψ cross-section [2]
to give an estimate of the pile-up contribution as a function of the pT and rapidity of the J/ψ in the
associated production sample. The fraction of pile-up events is determined to be (10.5 ± 1.2)% of the
candidate events.

The desired signal topology is prompt J/ψ +W±, where the W± boson decays to µ±ν. Production of
prompt J/ψ+W± with a different decay of the W± boson, or of prompt J/ψ+ Z , are treated as backgrounds.
Background from prompt J/ψ +W± with W± → τ±ν is determined using MC. An inclusive MC sample
of W± → τ±ν events is used to determine the probability of an event to pass the W± → µ±ν selection,
yielding a background of (2.3 ± 0.1)% of the candidate events. Background from prompt J/ψ + Z
events is calculated using the measured value of σ(pp → J/ψ + Z)/σ(pp → Z ) in the 8 TeV ATLAS
data [2]. This ratio is scaled by the probability of Z → µ+µ− and Z → τ+τ− to pass the W± → µ±ν

selection in inclusive MC samples, giving a total background of (9.5 ± 0.5)% events. The J/ψ + Z
background is subtracted as a constant fraction in the pT differential distribution since the measured ratio
of σ(pp→ J/ψ + Z )/σ(pp→ Z ) to σ(pp→ J/ψ +W±)/σ(pp→ W±) is consistent with being flat as a
function of pJ/ψT .

4.4 Detector effects and acceptance corrections

The efficiency for reconstructing muons varies depending on the pT of the muon, with efficiencies of 65%
for 3 GeV muons increasing to a plateau efficiency of 99% for muons above 10 GeV. The nominal relative
momentum resolution for muons is < 3.5% up to transverse momenta pT ∼ 200 GeV [41]. To correct
the measurements for reconstruction efficiency, a per-event weight is computed using muon efficiency
measurements extracted from large inclusive J/ψ → µ+µ− and Z → µ+µ− data samples and applied
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Figure 1: (a) J/ψ candidate mass and (b) pseudo proper decay time for the rapidity range |yJ/ψ | < 1 and pT
range 8.5 < pJ/ψT < 150 GeV; (c) J/ψ candidate mass and (d) pseudo proper decay time for the rapidity range
1 < |yJ/ψ | < 2.1 and pT range 8.5 < pJ/ψT < 150 GeV.

as a function of the pseudorapidity and pT of each muon from the J/ψ decay. In addition, a per-event
weight is applied to correct the J/ψ rate for muons that fall outside the detector acceptance. Although
inclusive J/ψ spin-alignment measurements find a near isotropic distribution [42–44], this may not apply
to the spin-alignment of J/ψ mesons produced in association with a W boson, due to the different relative
contributions of the J/ψ production modes. Consequently, a variety of extreme polarisation states of the
J/ψ are considered for the acceptance correction. The method for accounting for the muon reconstruction
efficiency and acceptance is discussed in detail in Ref. [2].

After correcting for the J/ψ daughter muon efficiency and acceptance, ratios of cross-sections for associated
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prompt J/ψ + W± production to inclusive W± production are measured in a single W± → µ±ν fiducial
region defined as |ηµ | < 2.4, pT (µ±) > 25 GeV and pT (ν) > 20 GeV both differentially in pJ/ψT and also
integrated over pJ/ψT . These measurements will be discussed in Section 6. Using MC, the efficiency for
reconstructing inclusive W± → µν is found to depend linearly on the pT of the W± boson (pWT ). A linear
correlation is also found between the values of pJ/ψT and pWT for the associated production sample in data.
These two effects lead to a correction to the differential cross-section ratio based on the pT of the prompt
J/ψ candidate. To apply the correction, the average pJ/ψT is determined for each bin in the differential
distribution; this gives a corresponding value for the average pWT and hence the average efficiency for that
bin. The efficiency for the inclusive W± sample is held constant at its average value, giving efficiency
corrections from 0.93 ± 0.02 at low pJ/ψT to 0.78 ± 0.04 in the highest pJ/ψT bin.

4.5 Double parton scattering

The measured yield of prompt J/ψ + W± includes contributions from SPS and DPS processes. The DPS
contribution can be estimated using the effective cross-section (σeff) measured by the ATLAS Collaboration,
as well as the double-differential cross-section for pp→ J/ψ prompt production (σJ/ψ) [2]. Based on the
assumptions that the two hard scatters are uncorrelated, the probability that a J/ψ is produced by a second
hard process in an event containing a W± boson is given by

Pi j
J/ψ |W± =

σ
i j
J/ψ

σeff
,

where σi j
J/ψ

is the cross-section for J/ψ production in the appropriate pT (i) and rapidity ( j) interval
and σeff is the effective transverse overlap area of the interacting partons. Since σeff may not be
process-independent, it is unclear which value of σeff to use for prompt J/ψ + W± production, so
two different values are considered: σeff = 15 ± 3(stat.)+5

−3 (sys.) mb from W± + 2-jet events [45] and
σeff = 6.3 ± 1.6(stat.) ± 1.0(sys.) mb from prompt J/ψ pair production [46]. These two values of σeff are
chosen since they are the two ATLAS measurements closest to the J/ψ +W± final state. The latter value is
close to those inferred in Refs. [47, 48] from the earlier ATLAS measurements of J/ψ + W± and J/ψ +
Z production [1, 2]. With these assumptions, it is estimated that between (31+9

−12)% (σeff = 15 mb) and
(75 ± 23)% (σeff = 6.3 mb) of the inclusive signal yield is due to DPS interactions, where the uncertainties
in the inclusive W± yield, the J/ψ cross-section and σeff are propagated to the DPS fraction.

The distribution of the azimuthal opening angle ∆φ(J/ψ,W±) between the directions of the J/ψ and W±

is sensitive to the contributions of SPS and DPS. The DPS component should not have a preferred ∆φ
value, while the SPS events are expected to peak at ∆φ ≈ π due to momentum conservation. The estimated
DPS yield can be validated with data, assuming that the low ∆φ(J/ψ,W±) is exclusively due to DPS
interactions. Figure 2 shows the measured ∆φ distribution with the estimated DPS contribution using the
two different values of σeff . Both values of σeff are consistent with the data at low ∆φ. The normalized
∆φ distributions with and without correcting for efficiency and acceptance are consistent with each other
within the statistical uncertainties
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Figure 2: The sPlot-weighted opening angle ∆φ(J/ψ,W±) for prompt J/ψ+W± candidates, uncorrected for efficiency
or acceptance, compared with the sum of the expected pileup and DPS contributions. The data is not corrected
for J/ψ + V backgrounds which contribute ∼10% and have a shape similar to the overall distribution. The DPS
contribution is shown for the two values of σeff = 15 mb and σeff = 6.3 mb, as described in the text. The peak at
∆φ ' π is assumed to come primarily from SPS events.

5 Systematic uncertainties

Almost all systematic uncertainties associated with the reconstruction of the W± boson and the integrated
luminosity cancel out in the ratio of the two processes J/ψ + W± and inclusive W± production in the same
fiducial region. The remaining relevant systematic uncertainties are discussed below.

The choice of functions used to fit the mass and pseudo proper decay time is a source of systematic
uncertainty. Three alternative models for the mass fit are studied: introducing a ψ(2S) mass peak into
the fit model, letting the mean of the J/ψ mass peak float, and using exponential functions to model the
background. The maximum difference between the nominal model yield and the yields from the alternative
fit models is taken as a systematic uncertainty. Alternative pseudo proper decay time models are studied,
but are not found to make a significant difference to the prompt J/ψ yield.

The reconstruction efficiencies used for the muons from J/ψ decay are derived from data as a function
of pT and η as discussed in the previous section. A systematic uncertainty is determined by randomly
varying the efficiency in each pT–η interval 100 times using a Gaussian distribution of width equal to
the uncertainty in the efficiency in that interval. The RMS spread of the extracted yield is taken as the
systematic uncertainty. The uncertainty due to the pile-up background estimation is also considered.

The J/ψ vertex is required to be within 10 mm of the primary vertex along the z-axis, which can affect the
pseudo proper decay time distribution. The impact of this is determined by taking the difference in yields
between the nominal value of 10 mm and a value of 20 mm, after correcting for pileup contributions, and
including it as a systematic uncertainty.

The uncertainty on the fractional background from prompt J/ψ + W± with W → τ±ν is determined
by propagating the statistical and systematic uncertainties on the numbers of selected W± → τ±ν and
W± → µ±ν events in the inclusive MC samples. The background correction for prompt J/ψ + Z
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contamination incorporates the uncertainties on the selected Z → µ+µ−, Z → τ+τ− and W± → µ±ν

events in the same way, and combines this with the full uncertainty (statistical and systematic) from the
σ(pp→ prompt J/ψ + Z )/σ(pp→ Z ) measurement [2].

The uncertainty on the difference in the reconstruction efficiency between the inclusive W± sample and the
prompt J/ψ +W± sample takes into account the spread of pJ/ψT in each bin and the uncertainties in the
linear fits for the reconstruction efficiency as a function of pWT and for pWT versus pJ/ψT .

A nominal uniform spin-alignment is used; however, five different spin-alignment scenarios are considered,
following the procedure adopted and described in detail Ref. [2], leading to a systematic uncertainty due to
the unknown spin-alignment. A summary of the systematic uncertainties is given in Table 3.

Table 3: Systematic summary, as a percentage of the measured inclusive cross-section ratio of J/ψ + W± to W±.

Source of Uncertainty Uncertainty [%]
|yJ/ψ | < 1 1 < |yJ/ψ | < 2.1

J/ψ mass fit 8.7 4.9
Vertex separation 12 15
µJ/ψ efficiency 2.0 1.6
Pile-up 1.1 1.4
J/ψ + Z and J/ψ +W±(→ τ±ν) 3.5 4.8
Efficiency correction 2.3 2.3
J/ψ spin alignment 34 28

6 Results

After applying the selections described above to the data, the signal extraction and cross-section ratio
measurement is performed in the range of J/ψ transverse momentum 8.5–150 GeV and in two J/ψ rapidity
intervals, |yJ/ψ | < 1 (central) and 1 < |yJ/ψ | < 2.1 (forward). Results are extracted in the two rapidity
regions (due to the different dimuon mass resolution) and also combined into a single rapidity range.

The final prompt J/ψ +W± signal yields after the application of the J/ψ acceptance and muon efficiency
weights are 222 ± 37(stat) for the central region and 195 ± 33(stat) for the forward region, where the
estimated pile-up contributions are removed.

The total cross-section ratio is calculated for three different measurement types: fiducial, inclusive and
DPS-subtracted. The explanation of each of these methods follows, and the corresponding cross-section
results are presented below and in Tables 4 and 5.

6.1 Fiducial, inclusive and DPS-subtracted cross-section ratio measurements

Due to the restrictive η and pT selection applied to the muons from the J/ψ, a fiducial measurement is made
that is independent of the unknown J/ψ spin-alignment or the effects of the J/ψ acceptance corrections
(see Table 2) and is given by
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Rfid
J/ψ =

σfid(pp→ J/ψ +W±)
σ(pp→ W±)

· B(J/ψ → µµ) =
1

N (W±)

∑
pT bins

[Neff (J/ψ +W±) − Nfid
pile-up],

where Neff (J/ψ +W±) is the background-subtracted yield of W± + prompt J/ψ events after corrections
for the J/ψ muon reconstruction efficiencies, N (W±) is the background-subtracted yield of inclusive W±

events and Nfid
pile-up is the expected number of pile-up background events in the fiducial J/ψ acceptance. It

has been verified that the efficiency to reconstruct a W± is the same for the inclusive W± sample and for
the associated J/ψ +W± sample. The result is

Rfid
J/ψ = (2.2 ± 0.3 ± 0.7) × 10−6,

where the first uncertainty is statistical and the second is systematic.

The fully corrected inclusive production cross-section ratio, which accounts for the unknown J/ψ
spin-alignment and the J/ψ acceptance, is given by

Rincl
J/ψ =

σincl(pp→ J/ψ +W±)
σ(pp→ W±)

· B(J/ψ → µµ) =
1

N (W±)

∑
pT bins

[Neff+acc(J/ψ +W±) − Npile-up],

where Neff+acc(J/ψ + W±) is the background subtracted yield of prompt J/ψ + W± events after J/ψ
acceptance corrections and efficiency corrections for the J/ψ decay muons, and Npile-up is the expected
number of pile-up events in the full range of J/ψ decay phase space. The result is

Rincl
J/ψ = (5.3 ± 0.7 ± 0.8 ± 1.7) × 10−6,

where the first uncertainty is statistical, the second systematic and the third is from the spin-alignment
uncertainty.

Additional measurements are made by subtracting the estimated DPS contribution in each rapidity and pT
interval from the inclusive cross-section ratio.

RDPSsub
J/ψ = (3.6 ± 0.7+1.1

−1.0 ± 1.7) × 10−6, [σeff = 15+5.8
−4.2 mb]

and
RDPSsub
J/ψ = (1.3 ± 0.7 ± 1.5 ± 1.7) × 10−6, [σeff = 6.3 ± 1.9 mb]

where the first uncertainty is statistical, the second systematic and the third is from the spin-alignment
uncertainty. A comparison is made with J/ψ + W± theory predictions, extended from the original
predictions at a centre-of-mass energy of 7 TeV [13] to the fiducial region of this analysis at 8 TeV by the
same authors. The predictions use a colour-octet long-distance matrix element (CO LDME) model for J/ψ
production, the parameters of which are extracted by simultaneously fitting the differential cross-section
and spin alignment of prompt J/ψ production at the Tevatron [14]. These theoretical calculations include
only SPS production. They are normalised to the W± boson production cross-section, calculated at
next-to-next-to-leading order using the FEWZ program [49] and corrected for the ATLAS W± selection
requirements in Table 1 (5.511 nb). The predicted ratio is (0.428 ± 0.017) × 10−6 [50, 51].
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Table 4: The fiducial and inclusive (SPS+DPS) differential cross-section ratio in two regions of yJ/ψ .

Fiducial [×10−6] Inclusive [×10−6]
yJ/ψ value ± (stat) ± (syst) value ± (stat) ± (syst) ± (spin)

|yJ/ψ | < 1.0
1.0 < |yJ/ψ | < 2.1

0.98 ± 0.22 ± 0.35
1.19 ± 0.25 ± 0.35

2.85 ± 0.52 ± 0.44 ± 0.96
2.40 ± 0.47 ± 0.40 ± 0.68

Table 5: The DPS-subtracted differential cross-section ratio in two regions of yJ/ψ for two different values of σeff .

DPS-subtracted [×10−6] DPS-subtracted [×10−6]
with σeff = 15+5.8

−4.2 mb with σeff = 6.3 ± 1.9 mb
yJ/ψ value ± (stat) ± (syst) ± (spin) value ± (stat) ± (syst) ± (spin)

|yJ/ψ | < 1.0
1.0 < |yJ/ψ | < 2.1

2.05 ± 0.52 +0.54
−0.49 ± 0.96

1.55 ± 0.47 +0.51
−0.46 ± 0.68

0.94 ± 0.52 ± 0.72 ± 0.96
0.38 ± 0.47 ± 0.73 ± 0.68

6.2 Differential production cross-section measurements

The inclusive differential cross-section ratio, dRincl
J/ψ+W±/dpT, is measured for |yJ/ψ | < 2.1 in six J/ψ

transverse momentum intervals across the entire range of 8.5 < pJ/ψT < 150 GeV, as shown in Table 6 and
Figure 3. These measurements are compared with the SPS theoretical values provided by the CO model in
conjuction with the estimated DPS contribution. For σeff = 15 mb, this combined prediction consistently
underestimates the measurement in all pT intervals, while for σeff = 6.3 mb, the summed SPS and DPS
contribution underestimates the measurement in the higher pT intervals, possibly because colour-singlet
processes are not included in the prediction.

Table 6: The measured inclusive (SPS+DPS) cross-section ratio dRincl
J/ψ+W±/dpT for prompt J/ψ for |yJ/ψ | < 2.1.

The estimated DPS contributions in each interval are listed for two possible values of σeff .

pJ/ψT [GeV] Inclusive prompt ratio [×10−7/GeV] Estimated DPS [×10−7/GeV]
value ± (stat) ± (syst) ± (spin) σeff = 15+5.8

−4.2 mb σeff = 6.3 ± 1.9 mb

(8.5, 10)

(10, 14)

(14, 18)

(18, 30)

(30, 60)

(60, 150)

12.6 ± 3.3 ± 2.4 ± 5.5
3.8 ± 1.0 ± 0.8 ± 1.3

1.70 ± 0.50 ± 0.21 ± 0.39
0.52 ± 0.17 ± 0.12 ± 0.09

0.156 ± 0.054 ± 0.021 ± 0.016
0.012 ± 0.006 ± 0.005 ± 0.001

5.3+1.5
−2.1

1.64+0.46
−0.64

0.33+0.09
−0.13

0.048+0.013
−0.019

0.0021+0.0006
−0.0008

0.000032+0.000009
−0.000012

12.7 ± 3.8
3.9 ± 1.2

0.77 ± 0.23
0.114 ± 0.034

0.0049 ± 0.0015
0.000076 ± 0.000023
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Figure 3: The inclusive (SPS+DPS) differential cross-section ratio measurements and theory predictions presented in
six pJ/ψT regions for |yJ/ψ | < 2.1. NLO colour-octet SPS predictions are shown, with LDMEs extracted from the
differential cross-section and spin alignment of prompt J/ψ mesons at the Tevatron [13, 14]. The DPS contribution
is estimated using (a) σeff = 15+5.8

−4.2 mb and (b) σeff = 6.3 ± 1.9 mb and the method discussed in the text. The data
points are identical in the two plots.

7 Conclusion

The ratio of the associated prompt J/ψ plus W± production cross-section to the inclusive W± boson
production cross-section in the same fiducial region is measured using 20.3 fb−1 of proton-proton collisions
recorded by the ATLAS detector at the LHC, at a centre-of-mass energy of 8 TeV. The result is presented
initially for muons from J/ψ decay in the fiducial volume of the ATLAS detector and then corrected
for the kinematic acceptance of the muons in the fiducial region. This correction factor depends on the
spin-alignment state of the J/ψ produced in association with a W± boson, which may differ from the spin
alignment observed in inclusive J/ψ production. Measurements of the azimuthal angle between the W±

boson and J/ψ meson suggest that single- and double-parton-scattering contributions are both present
in data. The measured prompt J/ψ + W± production rates are compared with a theoretical prediction
at NLO for colour-octet prompt production processes. Due to uncertainty in the value of the effective
double-parton-scattering cross-section σeff , two different values are used for comparisons of theoretical
predictions with data. A smaller value of σeff brings the predicted cross-section ratio closer to the measured
value; however, neither value of σeff is able to correctly model the J/ψ pT dependence, possibly because
colour-singlet processes are not included in the prediction.
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