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Abstract

Collective field theory is applied to the fractional quantum Hall effect in double-
layer electron systems. Collective variables are electron density of each layer and
its conjugate phase variable. In order to study the inter-layer electron hopping, we
reconstruct collective field theory to make it applicable to the system without particle
number conservation. It is shown that in the absence of the inter-layer hopping, the
(mmm) Halperin state has a gapless mode which appears as a result of spontaneous
breakdown of the SU(2)-diagonal symmetry. It dispersion relation changes from w ~
|k| to |k[*2, because of shielding of the Coulomb repulsion. It is also shown that the

Josephson(-type) phenomena occur in the presence of the inter-layer hopping.
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1 Introduction

There are various approaches for theoretical study of the fractional quantum Hall
(FQH) effect{l]. The well-established concept in this phenomenon is that the ground
state of the FQH system has the properties of an incompressible quantum liquid.
Laughlin formulated the system as a 2-D quantum-mechanical model of N spinless
fermions with charge —e in perpendicular magnetic flux density B, interacting with
each other by the Coulomb repulsion. The essence of Laughlin’s theory([2] consists in
the following variational wave function of this system;
N 2
Ui, ) = [H(z-—z,-)'"] e T (1.1)
i<j
where m is an odd positive integer due to the Fermi statistics of electrons. Here we
use complex coordinates, 2,7 = z £ iy, and ¢ = \/g is the magnetic length. This
state may be a unique ground state of the system which exhibits the above-mentioned
properties, if the filling factor of the Landau level v = 2%02% (A = the area of the
2-D system) takes the magic number; vy = ;:; This particular number is associated
with the quantized value of the Hall coefficient in the unit of 5,;

After the discovery of the peculiar type of the off-diagonal long range order
(ODLRO) existing in the state (1.1)[3], it is found that the concept of the bosoniza-
tion, which is possible only in one or two space dimensions[4], plays an important
role in the FQH effect. In this context, the FQH effect is a kind of condensation of

bosonized electrons[3, 5]. Now it is well-known that a 2-D system of N bosons cou-

pled to a U(1) Chern-Simons (C-S) gauge field with the coefficient -} gives a model
describing the FQH effect, and it has been studied from various points of view[8].
One of the recent interests in this field is the (F)QH effect in the double-layer
(DL) electron systems(7]. In order to assign the state in the FQH system, only one
parameter, v, is required in the SL case, while in the DL system we have more param-

eters, such as d and Ag,g other than the two filling factors in each layer. These new

parameters parameterize the nature of interactions in the DL system. The parameter
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d is the interlayer distance, which is of the same order as ( in recent experiments.
On the other hand, Agas represents the tunneling amplitude between layers. More
concrete definition will be given later. Due to these parameters, the DLFQH systems
have much richer structure than the SL systems, and many interesting phenomena
appear, such as the occurrence of even-denominator filling factor, the instability of
the Hall state{8, 9], the superfluid-like properties, i.e., the appearance of a gapless
mode[10, 11] and the Josephson(-type) effect[12, 11, 13, 14], etc.

Wave functions which describe Hall states in the DL systems have been proposed

by Halperin![15], and their explicit form is

B i 174 02
N1 Nt N1 NI R e L2

- TE-=)] H(z},—g;)m]_[n (zl_fg,)}.e—zu'ﬂ'v):,ﬂr,
u<v d<f vl del

In Eq.(1.2), the superscripts 1 and | represent the upper- and lower-layer indices,
respectively. Since the inter-electron interaction depends on the layer index because
of the interlayer distance, the Halperin state with rather wide values of (Imn) can
be realized as a unique ground state of the system[8]. The value of three integers [,
m and n (! and m are odd) will be determined, depending on the parameters d and
Agas, by the filling factor of each layer; v = 2r¢2%2 . A is the area of each layer.?
The total filling factor v of the DL system is defined by v = v! + v}. The Halperin
state Uymn is incompressible if the following magic fillings arc realized;

m-—-n 1

L l—n 1 I+m—2n
2:1/0, v =

=y = v=———-=1 (13)

]
v
Im —n?

“Im—-n T im—n?

In the above expression, we assume Im # n? for simplicity, but the case with Im = n?
will be more interesting to study. Detailed arguments will be developed in the main
text.

The picture of the condensation of bosonized electrons still holds in the DLFQH

effect. Throughout this paper, we will take this viewpoint to analyze the DL electron

10riginally, this wave function was proposed to incorporate real spin degrees of freedom.

2We assume that each layer has the same area.



system. Strictly speaking, this point of view is essentially based on a certain pertur-
bative assumption. It is expected that the DL electron systems in strong magnetic
field have rich phase structure besides the FQH state[16]. But the bosonization pro-
cedure chooses ("by hand”) some particular type of ground states in the DL system,
such as the Halperin state. However, in spite of this rather strong postulate on the
ground states of the model, many interesting phenomena appear in this approach,
and we will analyze the DL system in this framework.

This paper is organized as follows. A microscopic model of the DLFQH system
will be given in Section 2. In order to represent the DL systems, we introduce a new
quantum number called pseudospin. Then we consider a system of the bosonized
electrons which carry pseudospin and couple to C-S gauge fields. Starting from this
microscopic model, we will derive an effective theory of the DLFQH system in the
present paper. Our strategy is using the collective variables[17], which are introduced
in Section 3. Among these collective variables, the phase variable plays an essentially
important role in this framework of the FQHE, just as in the case of superconduc-
tivity. Compared with the previously proposed formulation of effective theory of the
(DL)FQH system, such as a Ginzburg-Landau (G-L) type description[3, 5] or a topo-
logical gauge theoretic approach[18], the present approach will give a plain description
of the FQH effect, because the collective variables are observable quantities and they
give clear physical picture. Especially, the collective-field approach will be system-
atically constructed from the microscopic model{19], and then in this formalism the
relationship between the microscopic theory and the effective theory is quite clear.
However, there is some difficulty in direct application of the collective-field approach
to the DL system with the tunneling effect, which stems from the non-conservation
of the electron number in each layer. This will be explained in Section 3.

In Section 4, study of the no-tunneling DLFQH systems will be given[20]. An
effective theory is derived in terms of the collective variables(21, 22]. Ground states

and excitations are explicitly obtained by solving the effective theory. Special atten-

tion is paid to the [ = m = n state, for there appears the Nambu-Goldstone boson
as a result of the spontaneous breakdown of the SU(2)-diagonal symmetry[10, 11].
Shielding of the Coulomb repulsion changes its dispersion relation from w(k) ~ |I:| to
R,

Section 5 will be devoted to the discussion on the DL system with the tunneling
effect. Collective-field formalism is reconstructed in order to take account of the non-
conservation of the particle number. The difficulty, which is explained in Section 3, is
resolved by extending the space of states. Collective-field realization of the tunneling
Hamiltonian is explicitly given.

In Section 6, in the framework of the effective theory obtained in Section 5,
Josephson effect in DLFQH systems will be examined. Possibility of Josephson(-
type) phenomenon was first suggested by Wen and Zee{12], and later it was studied
by semi-classical analysis of a field-theoretical model of DLFQH system by Ezawa
and Iwazaki[11, 13]. At present, however, there is controversy about it and it is not
settled if it realy occurs. Discussion in Section 6 shows that Josephson(-type) effect
occurs.

Section 7 will be devoted to discusssion and conclusion. Some technical calcula-

tions are summerized in Appendices A and B.




2 Model

In this section, we will give a model of the DLFQH system[23, 11} in both the
quantum-mechanical and the second-quantized languages, which is the starting point
for the later discussions.

We will represent electrons (effective mass M, charge —e) in the DLFQH system by
(spinless) bosonized particles® in a two-dimensional ("single”-layer) surface, carrying
an additional internal quantum number which corresponds to the layer index, @ =T, |.
Hereafter we shall call this pseudospin, s* = 1. Electrons with up (down) pseudospin
lic in the upper (lower) layer. If there is no process with pseudospin-flip in the system,
then the total pseudospin is conserved. We will take SU(2)-diagonal (SU(2)4) as a
symmetry group associated with this conservation (the conservation of the number
of 1 electrons minus that of | electrons). This symmetry is realized in the case that
the distance between the upper and lower layers is large and the superposition of up-
and down-pseudospin states is negligible. Then the symmetry of the DLFQH without
interlayer hopping systems is U(1) ® SU(2)4 associated with the conservation of the
total number and the total pseudospin, which means the conservation of the number
of electrons in each layer.

The C-S gauge fields required on the bosonization of electrons in the DL system are
introduced by gauging the above U(1) @ SU(2)s symmetry. In the following, we will
take the basis U(1); @ U(1), rather than U(1) ® SU(2)q and denote the associated
C-S gauge fields as C; (a =1,]). Suppose that the Aharonov-Bohm (A-B) phase,
ei'"“b”, which appears through the exchange of electrons with pseudospins s* and b,
is given ("by hand”) as

Il n

(m®) = . (2.1)

nom

Because of the single-valuedness, 1 must be an integer, and especially [ and m are
s I Y

3In this paper we will neglect the degrees of freedom of (real) spin of clectrons in DL systems.

both odd due to the Fermi statistics. We take a sign convention that they are all
positive. Note that there are a priori no grounds that [, m and n are all the same
integer. When {m # n?, the C-S action, which corresponds to the above A-B phase,

is

Ses / dtd®zLes

(Tn_l)ab 2 v ~a b
= _Z_tlw—h/dtd 2 CL0,CY. A (2.2)
ab
The case with {m = n? will be discussed later.
Then the quantum-mechanical Lagrangian of non-interacting 4 (bosonized) elec-
trons {7%|a =1,{,1=1,---,N*} is
M 2a.q ca—a sa a —a =2 a —=a
Ly = 2-4- (z,-z,- + z,-) +Ze{z,—A;(:i,:‘»)+:,-A;{:,.,:'-)}
a,

+ 3 {mCu(e, 7 + HCHL T + Ci=t T} + Los
ayi
- Y 7l'—"12171""6(2)(,2? - z;’), (2.3)
(a,8)#(b.7)
where $,; = Yoop D) and Taiseg) = Lai Log(l — 6%6;). Ax (k = z,y) is
the electromagnetic vector potential representing external uniform magnetic field B
perpendicular to the plane and we adopt the symmetric gauge; A,(z2,7) = ;}BE. Sta-
tistical charge of (bosonized) electrons is taken to be —1 independent of pseudospin,
and the C-S flux attached on each (bosonized) electron is antiparallel (the " —z" direc-
tion) to the external magnetic field (the "+2” direction). The second line of Ly (2.3)
is a topological term which corresponds to the winding angle and provides statistical
properties for (bosonized) electrons. The last term of Ly (2.3) represents the hard-
core repulsion between (bosonized) electrons. The C-S gauge fields can be integrated
out, and this model is expressed solely in terms of the electron coordinates {7}'}. To

this end, we explicitly solve the Coulomb gauge conditions dC2 + 9C? = 0 and the

4The only exception is the hard-core repulsion-originating from the requirement of statistics{24].

See the last term of Eq.(2.3).



Gauss law constraints, which appear from the variation of Ly (2.3) with respect to

C8(z,7). The result is
m® 1

Coz,7) = —ihY. . (2.4)

b.j ST

Therefore we obtain the following quantum-mechanical Hamiltonian;

No 532
2h° g N
HSY == 3 S22 DD + —he, (2.5)
a=T1,| i=1 M 2
where N = N! 4+ N! is the total number of electrons and w, = % is the cyclotron

frequency, and covariant derivatives are defined by

(a.1) ab —a
m 1 z
Df = -5 ————t-5
t t &~ 2z - zb + 42’
J i J
(a,1) ab a
. _ m i b2
D = 7+ —_— - 2.6
: ' sz 2 -z 4 (24)

where 9¢ = % and Ef:;i) =31 - 6%4;;), and we have regularized the singularity
which appears when coordinates of two electrons coincide.
This model (or its modified version) is exactly soluble[25], and the ground state

is given by the following (bosonized) Halperin-type wave function;

Bl (7, o T TR (2.7)

N1 . Nt . o N N . Ly e

= @ |- |- | T =] | TEIT | - =) RPN W
u<v d<f u=1d=1

where f(Z) = f({Z!}) is an arbitrary anti-holomorphic function. The filling factor v
of the DL system is given by the sum of that of each layer v* = 271'(2%; v=uvl4ui
In the presence of the inter-electron interaction such as the Coulomb repulsion, the
Halperin state ®;mn with f(Z) = 1 describes an incompressible state if ¥ has the
following magic filling;

1 m—-n 1

l—n
W, v i

_ I+m—2n _
Timomz = v= Im—n? v (28)

Im — n?
In most of cases, however, the above microscopic model is not well suited for

analytic studies of the FQHE other than numerical simulations of finite number of
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electron system. Therefore we will construct an effective theory for further analysis
of the DLFQHE in this paper.
First, let us translate the quantum-mechanical model Ly (2.3) into the second-

quantized form,

a

72
EO = Z {¢at(ihao + CS)QSQ + ﬁ Z(ngba)t('l)ak(bn)}
k

wh? ab cat sbt b 1a :
—Z—M_m @197 9°¢" + Les, (2.9)

ab
where ¢° is a non-relativistic bosonized electron field operator with a pseudospin s°
and ¢° is its hermitian conjugate. The nontrivial equal-time commutation relations

(ETCR’s) among them are
[°(2,), ¢"(§,0)] = 6 - 627 ~ §). (2.10)

Covariant derivatives are defined by Df = & — £C¢ — %eAk (k = z,y). This model
is equivalent to the following Bogomol'nyi-type Lagrangian density([26, 24, 23, 11],

which we denote Ly again;
2K
L=y |

hw,
¢*H(ihdy + C3)9" - TJ—(D‘W)*(DW“) - %cb“%“} +Les,  (211)

where covariant derivatives are given in the complex notation; D?¢* = (0 — %Cf.‘ +

r%)qﬁ“. Solving the equations of the C-S gauge ficlds as in the above quantum-

mechanical model, C¢(z,Z) = —ihzbﬂ;fd?w M(L_f—)lj-, we obtain the following
second-quantized Hamiltonian density
2K? RWe ot .a .
Ho =2 [V(D“aﬁ“)‘(D“aﬁ“) + 5ot ) (2.12)

where

i3]

Daza—zﬂ/(ﬂwMJF— (2.13)

2 z—w 40
This Hamiltonian is the starting point of our discussion. We will rewrite it in terms
of the collective variables in subsequent sections, and study the ground state and

excitations.



Before finishing this section, let us consider the case lm = n?. Most interesting
case is { = m = n, for the Halperin wave function describes a Hall state at specific

filling factor in this case. Then, the A-B phase takes the following form;

m m

(m®) = , (2.14)

m o m

with m a positive odd integer. Therefore only one C-S gauge ficld Cl+ C) with
the C-S coefficient ﬁn- couples with electrons. In this case the quantum-mechanical
Hamiltonian or the second-quantized Hamiltonian density is given by the formal re-
placement of m® with m in Eq.(2.6) or (2.13), respectively.
When | = m = n, the condition that the Halperin state ®,.,.,, is a Hall state
determines only the total filling;
v= l (2.15)

m

State with any value of (v!,!) with v! + v! = n’l', is a Hall state. Correspondingly to
this situation, the SU(2)q symmetry is spontancously broken. Then some interesting
phenomena, such as the Josephson(-type) effect, are expected to be observed in this
case, especially in the presence of the interlayer tunneling. More detailed discussion

will be given later.

3 Collective-Field Approach

Ginzburg-Landau (G-L) type theory for the FQHE has been proposed, and it es-
sentially corresponds to the (semi-)classical analysis of Ly given in Section 2 or its
counterpart of single-layer cases3, 5, 23, 11]. The G-L theory gives a fairly good
phenomenological description of the FQHE, but it has some unsatisfactory aspects.
Especially, its relationship to the microscopic theory is not so clear. We will not take
this approach here. Alternatively, we will use the collective-field variables to describe
the microscopic model of DLFQHE, and construct an effective theory in terms of

them({19]. They are observable quantities and then the physical interpretation will
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be very clear. This is one of the reason for develping the collective-field approach
to the DLFQHE. In this section, we will give a brief review of the usual collective-
field method[19], and enumerate some problems in application of this method to the
above-setting model of the DLFQHE.

When one has a quantum mechanical system with N bosons and wants to con-
struct an effective theory of it, it is sometimes very useful to rewrite the mMicroscopic
theory using the following collective variables[17]; the density variable

N
p(i) =389 (F - 7). (3.1)

i=1
Formally, this rewriting is a point canonical transformation and, at least in principle,
it can be performed without any ambiguity. In high-density thermodynamic limit,
the quantity +p(7) is expected to be smooth and well-defined. Since the system is
bosonic, the original N-body wave function &(7, - - - ,7n) of the particle coordinates
{7} can be translated into the wave functional ®[p] of the collective coordinates p(7).
Then the microscopic Schrédinger equation is replaced by a functional differential
equation with respect to the density variable p(7). Especially, if the system has fluid-
like properties, this collective-field approach is very useful. As the (DL)FQH system
has fluid-like properties, this method is expected to be promising for study of the

FQHE.

As we have set up the model of the DLFQHE in the bosonized form, the collective-

field approach is applicable[20, 27]. Collective variables are the density variables
Ne
P(z,2) = 36Dz - =) (32)
i=1

and the phase variables 9%(z,%) = ~z'6p,,f*z:). No extra variables are needed (at least
up to this stage), because our model Hamiltonian H(?M (2.5) is expressed completely
in terms of only the electron coordinates {7%}. Then we could follow the usual steps for
constructing the collective-field theory of the DLFQHE from the quantum mechanical

model HZY (2.5) by means of the above-mentioned point canonical transformation.

11



But this prospect is too optimistic. We have so far neglected interactions. While inter-
electron interaction like the Coulomb repulsion can be handled in a straightforward
manner, the interlayer tunneling effect leads to two difficulties coming from the fact
that the number of electrons N¢ in each layer is not conserved in the presence of this
effect.
1. The particle-number-nonconserving system is untractable in the framework of
the quantum mechanics. Then we do not have an adequate quantum-mechanical
Hamiltonian including the interlayer tunneling.
2. Simple relation between the microscopic variables {7} and the collective variables
p°(z,%) like Eq.(3.2) does not hold. Then we do not know how to introduce the
collective variables in our model with the tunneling.

The first point is easily conquered by using the second-quantized language. In
this lauguage, the interlayer tunneling effect is effectively described by the following

hopping Hamiltonian density; ®
; FAN
Hiop = = —5 (916" + ¢!1¢1), (3.3)

where Agag corresponds to the energy difference between the symmetric and anti-
symmetric combination of the states | T) and | 1).

The collective-field approach starting from the second-quantized system has also
been well established, as far as the space of states is restricted onto the one with
a fixed particle-number(22]. It is known to be equivalent to the above-mentioned
approach starting from the quantum-mechanical system{27]. In this case collective

variables are the following density and current operators;

/}“(277) = ¢ﬂi(z“z),¢ﬂ(z’g)’

5Strictly speaking, this hopping term should be given in terms of the original electron field

operator before bosonization. If so, the hopping Hamiltonian may be accompanied with the line
integral of the C-S gauge field. This point will be discussed later and here we will take naively

Eq.(3.3) as a hopping Hamiltonian.

jiz7) = —ig™(2,7) - 0¢°(5,7), (34)
jo2,7) = —ig™(z,7) 06°(2.7).

From now on, the hat symbol is attached to the collective-field operators to distinguish
them from their eigenvalues. The relation between the current operators and the
phase variables 9°(z,7) is determined by the commutation relations, which will be
discussed later.

To describe the system with pseudospin flip (3.3), we will introduce additional

collective variables as follows;

pez,z) = ¢°1(z,7) 0(2,7),
jeb(z,3) = —igl(z,7) - 0%(2,2), (3.5)
j;b(z’z) = _Z¢at(z|7) : aqﬁb(z,E)

These operators form closed commutation relations, which are listed in Appendix

A. As discussed later, we can find the p-realization of them. In fact, if the inverse

operators of the density 7! are well-defined, then these operators (3.5) are not
Zab s

independent of each other; ie., j75's are given by

=2 = D,
B:,7) = e i) (36)
The existence of the inverse operators 5%~ ! is physically plausible, since eigenvalue of
the density operators is positive, except for the particular configuration p°(z,z)=0.
Then we regard only 7% and j‘f’; as independent collective field operators.

Hint for solving the second subtlety consists in how to construct the space of
states with variable particle number. Then we will first summarize the construction
of the space of states with fixed particle number in the following section. Detailed

discussion on the case with pseudospin flip will be given in Section 5.




4 Analysis for Non-interacting DLFQH Systems

In this section, we will write down an effective theory for the non-interacting DLFQH
system with Hamiltonian density (2.5) or (2.12), in terms of the collective fields. This
model corresponds to the strong-magnetic-field limit or low-mass limit of the DLFQH
system without interlayer tunneling. In this case, there are two equivalent approaches
as discussed in Section 3. One starts from the quantum-mechanical system (2.5), the
other from the second-quantized system (2.12). We will take the latter one because it
gives bases for the later discussions. This is an extension of the case of the single-layer

FQHE, which has been previously studied[20].

4.1 Collective Fields and Hamiltonian

Let us rewrite the eigenvalue problem of Hy (2.12) in terms of the collective fields,
ﬁ“,jj, and 5—2‘1 in Eq.(3.4). These variables satisfy the following equal-time commuta-

tion relations, which are closed and well-defined,

[#(z.2), P, @)] = 0,

[72z2) bw, )| = ~6%0. (i7(2,2) 69z — w)) = 6%4j2(2,2) 8.6z ~ ),
[72(2.2), (Mw,m)| = —6%8. (i32(2,2) 6Dz — w)) ~ 6%ij2(2,7) D.6P (= - w),
7(2,2), Mw,w) | = 673, (i72(2,2) §D(z — w)) — 6°ij2(z,7) 9.6D (= — w),
(5222, w0, )] = —6%ip(2,7) 0.6z — w)

2z ), )] = —6%ip(2,2) 3.6P(z — w). (41)

From the above relations, it is obvious that only the density variables can be simulta-
neously diagonalized. If the model is formulated only in terms of the density variables
and derivatives with respect to them, we say that the model has p-realization. The
above commutation relations are a basis for determining p-realization of the operators

which appear in the Hamiltonian.

The non-interacting Hamiltonian (2.12) with Im # n? is casily rewritten with the

above collective fields;
Holj2,j% 5% = [ dzHo(2,7)

2 ac ~af . =) AC e ~
_ Z %/d?z {5’5“(37}') —ij’;(z,f) _an /dzf 14 (~w~)/’ (fvf) + L[h)a(z,f)}

—~ 2 z-¢& 42
1 e o me o P D)W T
X m'{Uz(zsz)“;T/dw_T—‘*?ﬂ (=7)
+ Y %/d% 7°(2,7). (4.2)

a
Hereafter we neglect, as a regularization, the divergent terms originating from the
ordering of the operator products at the same spatial point. Of course, the non-
interacting Hamiltonian with I = m = n is given by the replacement of m® with m
in the above equation. We must obtain p-realization of Eq.(4.2) as the next step.

Before doing so, we will consider the space of states in the p-realization.

4.2 Construction of the Space of States

In this subsection we will set up the space of states realized in p. When the system is
not linked to the external reservior and there is no interlayer hopping, the numbers of
electrons N® = [ d%z p°(z,%) in each layer a are separately kept constant.5 Then the
relation between the particle coodinates {7} and the collective coordinates p*(z,%) is
given by Eq.(3.2); p%(2,7) = 20N, 6@ (2 —22), and it is easy to find the p-realization of

the state. Actually it relates to the quantum-mechanical wave function of N bosonized

8In order for the system to realize the (bosonized) Halperin state ®;,,, with Im # n? as an
incompressible ground state, we should choose each value N by fine tuning. Theoretically this
value is determined by the consistency condition that the resulting expectation value of the density
p% with respect to ®,,, is equal to the average density pg, = %; (p%) = p3,. The result is
N¢ = Vg—i%r. When | = m = n, this fine tuning is unnecessary except for the tuning of the total

number; N = NT 4+ N! = —’";i,—ﬁ-; In this case each N° is fixed arbitrarily by hand.
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electrons in the DL systemn;
O(r}, -, Fh L ) = ! pY) (4.3)
1> YN T yINE ’ P"(::):Z;zl‘s(gl(:_::‘). ’

But there is one more thing we have to consider. We must investigate the measure
of the space of states. The inner product must be invariant under the change of
variables: {7%} — {p%(z,%)}, and then the measure of the functional space of ®{p!, p']

is nontrivial;

N N

<\I/|q)> = /(HdQZl)(HdQZé)\IJ(FIv'"ﬂFj\II;Fllv"'vF}lvl)'q’(ﬁv"'*r}wl;f‘ll\'”1F1‘\'1)
u=1 d=1

= /D/J‘DPl TG ile', 0] - Tt 01T - @[ot, p), (4.4)

where the additional weight factor JS)QN, [p!, p!] corresponds to the Jacobian associ-

ated with the above change of variables. The physical meaning of this factor is the
entropy of the system. In order to find the explicit expression of JI(&)N, [p', p!], we will
review the above argument in the second quantized formalism.
The state |®) corresponding to the N-boson wave function ®(71, - - -, F}v, LR Ffvl)
is given in the second-quantized language by
NT Nl
@) = [(TT eI 2D @, sty i) [,
u=1 d=1 (45)
Here, a totally symmetric basis of the Hilbert space of (N1, N!)-boson states is con-

structed by ¢4 as

=1 O =l —
717"'»TN13T17""77[\,'1> _H
a

e [Hqs“f(:r,ff)} 10}, (4.6)
Nel o

where the normalized vacuum |0) is defined by ¢%(z,%)|0) = 0. This basis state is an

eigenstate of the density operator p°(z, %) with eigenvalue ©N° 6(z — z2);

N
P2 | L ) = PG = A A ) @D
=]

Then, from Eq.(4.3), the relation between the state |®) in (4.5) and the wave func-

tional ®[p!, p!] of p* is obtained as follows;

i

N'T N'l
@) /(H P T Pz @t o]l il )
u=1 d=1

a[", p') - INT N, (48)

where .

INTNY = H\/% [/d23¢“1(z,’z‘)]!\ 10). (4.9)
Note that ®{p', !] is the operator-valued functional acting on |[NT; N!), and is of
the same form with respect to its arguments as the wave functional @[pT,pl]. The
operand of ®[p!, p!] consists of only || NT; N1}, which is unique up to the normalization
because N1, N! are fixed.

The calculation of the Jacobian factor is performed as follows. The inner product

of the states |®) and [¥) is

1l

(T]®) (NL N[BT, pY - @', M INT; N Y
/’DpTDpl Yol pl]- 3o, pt] (4.10)

x(NUNYTTIT6(e%(2,2) — °(2,3)) INTGNY), - (411)

Il

where the functional measure is Dp* = [], dp®(2,%), and the delta-function in the
integrand is defined with respect to this measure; { Dp® [], 6(/)“(2,3) - ﬁ“(z,?)) =1.
Compareing Eq.(4.4) with Eq.(4.11), the Jacobian is given by

‘];\:)T)Nl[pT7pl]

It

(NENYTTTTE(0%(2.2) = (2, 2) IV V)

H/('ﬁldzz;’) {[215(,;ﬂ(z,-z-)—)lvjaa(?)(z—zf))]. (4.12)

a i=1

This is calculated in the leading order of large-N*¢ as;
a _ a - d?z p*(:,7) oy gﬂ;ﬁl
JI(\(I)I)NI[pTypl]:’ [Hé(/dz‘zP (z2,Z7) - N )] € Lo [ #ertearios S ;o (413)

where pl, = % is the average density in the layer a[22].

17



Then we will determine the inner product of the functional space of @[p!, p!] as
(¥[2) = [(Dp)o 50" TT 51T 0!, o), (4.14)
where the measure is defined by
(Dp)o = HH dp(z,7) - [Ha (/d%p"(:,s) - A)] , (4.15)
and the weight factor e is given by
Solo'ol= =% [ &= {52 log (2. 7) — st log o}, (416)

which corresponds to the entropy of the system.

4.3 p-Realization of the Current Operators

As we have finished constructing the space of states, the remaining problem is to find
p-realization of the current operators and the Hamiltonian (4.2), which acts on the

wave fuctional ®[p!, p!]. Since
722, 7) [N, NN =0, (4.17)

A’f;(z,?),q)) = [}g,;(z,f),‘b[ﬁT,ﬁl]] [INT,N!). Then we only have to calculate the
commutator [ ¢:(2,2), [p, [)‘]] and this is easily performed by using the commuta-

3
tion relations (4.1) (see Appendix A). The result is

[z 00 21 = =) G ol ) s

This is the operator relation acting on [NT;N1) and it gives p-realization of the

current operators acting on the wave functional ®[p!, p!];

)0 =) G, ()
b6p*(2,7)

Consequently the original eigenvalue problem [ d2z H,(z, Z)|®) = Ey|®) is rewrit-

1]

53(7)(2»7) — —ip®(z,

ten to that of the wave functional ®[p!, p!]:
Ho[9°, 5] - @[p', p!] = Eqy - @[p!, p'], (4.20)
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where Hy is defined by Hy[92, p°] = Hy[p®@9°, p°00%; p°]. Hy is the same functional
with respect to its arguments with Eq.(4.2). This equation (4.20) can be regarded
as the Schrodinger equation of the wave fuctional ®[p', pl] as well as the operator

relation acting on ||[NT; N1).

4.4 Effective Theory of Non-interacting DLFQH Systems

Now the set up of the problem has been completed and all we have to do is to
solve the eigenvalue problem (4.20). There are two directions for further strategy.
For simplicity, let us discuss only the case Im # n?. The similar arguments can be
applied for the case | = m = n through the replacement of m® with m.

The first one is of course the direct analysis of the above eigenvalue problem. We
will call this Approach 1. Actually we can obtain the exact ground state with energy
eigenvalue Ey = %hwc, by solving the following equations([20];

(a%—;%@/dﬁw’i—g%jL%)@[pl,p‘]:0, (4.21)
which correspond to the condition that all electrons in each layer lie in the lowest
Laudau level (LLL). The general solution to this condition can be easily obtained as

®[p', o] = ¢lp!, p'] Bimalp', p!], where

Dimalp!, ] = 62,,_,,“T“"fd*zcﬂwp“(z,frlogl:—wlvb(w,w)‘6—4—;7 TR e G e (4.22)

and ¢[p', p!] is an arbitrary functional satisfying 86—[),,%599[/)1,/)1] = 0. It is easily
verified that @lmn[pr,pl] corresponds to the (bosonized) Halperin state (2.7), by sub-
stituting the relation (3.2). The expectation value of the density p*(2,7) in this state
can be calculated and the result shows a uniform distribution of electron with den-
sity given by the magic filling 2—':%[28]. The degrees of frecdom of ¢[p!, p!] represent
vortex excitations. For example, the state with N¢ vortices of vorticity m¢; at &

(a=T1,l,i=1,---,Ng) above the Halperin state is given hy
ool pl] = eXe Ty, [ et 2210 E ) (4.23)
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which turns out (generalized) Laughlin’s quasi-hole wave function after substituting
the relation (3.2)[28].

Then we can say that this Approach 1 is essentially equivalent to the microscopic
quantum-mechanical theory through the relation (3.2); p%(z,7) = ©¥, 6@(z — z¢).

The second prescription which we will call Approach 2 is developed as a (semi-
)classical field theory in terms of the expectation value of the collective variables. To
obtain the theory, we will reformulate Approach 1 as follows. Since the functional
space in Approach 1 has a nontrivial inner product (4.14) with (4.15) and (4.16), then

we will define the new functional space as
B!, pl] = il p)p! pl), (4.24)
5o that the inner product is given by the usual one;
(@l2) = [(Dp) [T, 1] ] '), (4.25)

where the measure (Dp), is defined by Eq.(4.15) again. According to this unitary

transformation, the p-realized operator O[9%, p°] is also transformed as
O[ﬂa,pa] = e%&t[p',p‘] O[lya,pa] e—%So[PT,pI] =0 [ﬂa _ %(logp“ +1),p% . (4.26)

In this space the hermiticity of the operator O is the usual one. Hereafter we will
denote the expectation value with respect to the inner product (4.25) as (- ), while the
one with respect to the inner product (4.14) will be denoted as (- ). Note that the
expectation value (O} is real, while (O) = ((O)) is not always so. 9%(z,7) = —iﬁ
is such an example. In this space of p-realized states, the eigenvalue problem (4.20)

is rewritten as follows;
Ho[9°, 0] - ®p', 0'] = By - ®[p!, p']. (4.27)

Of course the direct analysis of this equation is completely equivalent to Approach 1.
Approach 2 is developed by taking the expectation value of Eq.(4.27). In addition

we will apply the mean-field type approximation such that a n-point function of the

20

coilective variables is replaced by the corresponding product of 1-point function of
them. This prescription will be valid as a zeroth-order approximation when the system
under study has fluid-like properties, and plays an essential role in our formalism.
Then (Ho[9%, %) is replaced by Ho[(9%), (p%)] in this formalism. In the following,
when there is no possibility of confusion, we will also denote (p*) and (9%) as p* and
94, respectively. Then we will regard (Ho) as a Hamiltonian of "classical fields” p*
and 9¢, and we will treat it variationally, i.c., search for the stationary point with
respect to p®(z,7) and 9°(2,%) to calculate the (variational) ground state. Since the
measure (4.15) of the functional space involves a electron-number constraint in each

layer, then the resulting effective Hamiltonian is defined as follows;

HE[9°, 0% 0] = (BLo[0°, p]) + 3~ A% (/ & p(2,7) — N“) (4.28)
2h* —a hwe
alyva Z/dQZ p*(2,2)L (2, 2)L%2,2) + <—;)— + A“) /sz p*(z,7) = 3 AIN°,
where the LL operators L*’s are

a 3 ab b = =
19p°(2,2) +i09%(2,7) = ) mT/dQu) (v, ) + =
: z

L%(z2,%) (4.29)

T2 (52 —w e
and A%’s are Lagrange multipliers which impose the constraints of the electron number
in each layer, which are involved in the measure (4.15). We will regard Eq.(4.28) as
an effective Hamiltonian for non-interacting DLFQH systems (with "classical fields”
p*(2,%) and 9¥(z,7%)). By searching for a stationary point of this effective Hamiltonian,
we can obtain the variational ground state. In this paper, we call this (type of)
prescription the effective theory for the DLFQHE.

The effective theory of DLFQHE has been derived from the microscopic quantum-
mechanical Hamiltonian. Also we can show, by practical calculation, that the expec-
tation values of the collective-field operators calculated in Approach 1 are equal to
those of the classical solution obtained in Approach 2. Then it is quite clear how the
microscopic theory and the macroscopic effective theory are related.

As an example, let us examine the ground state of Hg//. Since Hg/! is positive
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definite, the ground state satisfies
L*(z,7)=0. {(4.30)

These equations correspond to the LLL constraints (4.21). Let us find a solution with
a constant density; p*(z,z) = p2, = EA:. In this case, L%(z,Z) = idv%(z,3) — Q%
where Q¢ = ¥, m®pb — 2—”1[7, and Eq.(4.30) leads to the equation of 4(z,7), (00 +
98)9°%(2,7) = 0.

When 9%(2,z)’s are non-singular, the solution is given by Q* = 0, i.e.,

p%(2,2) = 2:;—0[2, and 9¥°(z,Z) = constant, (4.31)

and the number of electrons in each layer must be fixed as N¢ = ugﬁ. (See footnote
6.) This is just the same result as obtained in Approach 1, then this state certainly
corresponds to the Halperin state.

When 9°(z,z)’s are singular, they take the following form;
#(2,7) = [ &€ p3(6,8) Slog(z - ). (4.32)

'The quantities p%(z,%)'s correspond to the density of vortices in the layer a. The LLL

constraint (4.30) requires these to be spatially uniform, a constant-density solution;

P23 =70 = = S mh, + s (4.33)
Then vortices are condensed in this state, and this state clearly corresponds to the
first hierarchy state above the Halperin state[29]. Noting that in order for this state
to be realized, the number of electrons in each layer is fixed according to Eq.(4.33);
Ne = l/gﬁl—, -3 Zjl-vj’l(m‘l)“bm'{,j, where m{;’ is the vorticity in the layer a as in

the previous discussion. 7

"The state with a single vortex appears as a solution with nou-uniform density. But since we
have taken the large-N limit in our formalism, we cannot see the effect of order ,—1\- correctly. Then
solutions to Eq.(4.30) cannot well describe the state with a single vortex.

22

4.5 Effect of the Coulomb Interaction and Excitations

In the rest of this section, we will calculate the dispersion relation of the density
fluctuations above the Halperin state. In the discussion given so far, we have neglected
the inter-electron interaction. But since this calculation becomes more meaningful
in the presence of such an interaction, we will take it into account below. As the
inter-electron potential depends only on the positions of electrons, the corresponding
interaction Hamiltonian in terms of the collective fields is given simply as V[p!, pl],
and the formalism developed in this section can apply without any modification.

We will consider the Coulomb-type interaction, whose explicit form is

Veotomsl) = 32 % [z (52,2) - 72) - Uz = ul) - (F(w,w) - ),

e? 1
dme |z —w|’
e? 1
UMl —w)) =UN(lz ~w]) = —-

4me /Iz — w2+ &2

where d is the interlayer distance. 7*’s are the density of uniform background of

Il

Uz — w|) = UtY(|z — w)) (4.34)

neutralizing positive charge in the layer a. In the case without interlayer tunneling,
they are equal to the average density p2 of electrons in each layer; p* = p?,. This
interaction stabilizes the Halperin state and makes it a unique ground state. The
fluctuations above the Halperin state are described by

a a

a = _ a a = - a __ N . VO
P(2,7) = pg, +6p%(z,Z), with p? = A= o
9(2,7) = 98+ 69%z,7), (4.35)
where
/d2zépa(z,z)=/d2zw(z,7) =0, : (4.36)

and 9§ is an arbitrary constant. Our strategy is based on a semi-classical treat-

ment, ie., we "re-quantize” the classical field theory (4.28), regarding ép* and 6°
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as mutually conjugate dynamical variables. By diagonalizing the quadratic part of
the Hamiltonian, we obtain the excitation spectrum(27]. To this end, we rescale the
fluctuation variables in order to adjust the order of N;

6p(2,2) = VNayp(z,7),
1

69%z,7) = T &(z,7). (4.37)
The commutation relations are
[7°(2.2), €(w,m)] = 5 60z - w), (4.38)

and otherwise commute. Their Fourier transforms are defined by

af, = 1 Il p—ikz—ik? a
M(22) = 33 [KemeF gy

kA0
1
f“(z,'z‘) — “ﬁ‘elk2+lk“pa‘ (439
& 7 : :
(a8 pb] = ih6® .

Rewriting the Hamiltonian,

H:;g{hopping[ﬁa7 pa; /\a] = Hgff[gav Pa§ /\a] + ‘/Coulomb[pa]w (440)
in terms of these variables, we obtain the following result;

€ a a a hwc a
Hill s opping[9, 0% 27 = const.+Z—Q—N (4.41)

1 1 .
LD G Y SR kg
a k#0 ab k£0

where the constant term originates in the ordering of operators, and the “spring

constants” K°(k) are given by

) R (k?)? n? WE\Jugg ~
Kob(k) = g E) vSué’ﬁlﬁ +m®y/ et O U (|R)), (4.42)

aM Ae? + 2ne?

where

nab — Zygmacmbc
c

1 P(m—n) +n2(l - n) 2lmn —~ (I + m)n?
Im —~ n? - (4.43)

2mn ~ (I +m)n? M2l —n)+ n(m —u)
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The first term of A is a kinetic energy and the second is a "mass term”. The third
term corresponds to the effect of the hard-core repulsion and the fourth does to the

inter-electron interaction. In the case of Eq.(4.34),

2 -
e 2m (1 ey Ria

U(|k]) = — e~ 4.44
(R = iz (4.44)
By diagonalizing K, the eigenvalues Muw3 (k) are obtained as follows;
o\ 2 -
hk? 2Am —(I+mn RE* I4m~2n w, - ~
20y — Wer 2 4.45
wi() <2M) Im—n? oM + lm —n? 4rh (%D (4.45)

2(m — n)? + m(l — n)? + 2n*(l —n)(m —n) ,
2(lm — n2)? We

. 2
(I — m)? hk?  n(2lm — (I 4+ m)n) 2, We Pt
Um—n22 ™20 " Sim—nzy e T it UKD

1
2

- 2
4(l — n)(m — n) hk?  n(20m — (1 + MmNy 5 We (T
AR . —kU™(|k

+ (Im — n2)2 oM 2(lm - n?)  * * (I&l)

The + mode is essentially associated with the U(1) symmetry and the — mode with
the SU(2)4. In the case | = m where the symmetry between the upper- and lower-
layer ("inversion symmetry”) is explict because of vanishing the total pseudospin
NT = N, the + mode corresponds to (q;,pkf), defined by qg = %(qé + qé) and
p% = 7‘5(1)}; :tpé), respectively. For |k} ¢ < 1,

-, 2

hk? l4+m—-2n w, - - -
2 ~ [ — B2 (UNED + UTYR 4.46
WA (k) <2M+“’C) T g (UORD + UtgRD) (4.46)

- 2

Rk? (I —n)(m —n) [+m-2n w, ~ -~ -

2(k) ~ | =k* (UT(Jk]) — UM (JED) .

<o (QM + im-n2 ) T n? 4rh ( (&) ( I))

Please notice that when d — 0, the effect of the inter-electron interaction to the —

mode vanishes. Especially let us consider the long-wavelength limit, |1:| — 0. When

limg o 1;2(/“”(]1_5” = 0, which is satisfied by Eq.(4.44), we obtain

l+m-2n1 ¢ .

—— k| + - -, 4.47
Im — n2 2h47r€| I+ (447)

2

(L= n)(m —n) 2 _mad
c o) = G onim-—n) L - Sl IR
w_(k ~0) m =t et T T b T

wylk ~0) = w.+
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where w, = 'g—:j Except for the case [ = n or m = n, wy(0) > 0. This means

the rigidity of the ground state in the DLFQH system against the long-wavelength
density fluctuations, that is, the incompressibility. The resulting perturbed ground
state |G) is defined by —= {\/Am')q% + mp%} |G) = 0, with the energy
fhw,. This state gives (G]6p®|G) = (G|é9°|G) = 0. This means that within the
above perturbative consideration the unperturbed uniform ground state (the Halperin
state), p*(z,%) = p%,, is still stable under such density fluctuations. That is, in our
theory, any phase transition will not occur by the Coulomb repulsion.

In the case | = m = n, the same calculation as above leads to the vanishing
of w_(0). This corresponds to the fact that the pseudospin SU(2)q symmetry is
spontaneously broken. Corresponding Goldstone mode in this case is 69" — 69, The
— mode has a linear dispersion,;

wd e? 1

(k~0) =y 288 o
w-{ 0) M 4rme2n(?m

R+ - (4.48)

Actually the above behavior might not be observed. The reason for this is as
follows. The linear dispersion in the long wavelength limit has its origin in the differ-

ence between the inter- and intra-layer Coulomb repulsions. The tree-level Coulomb

repulsion is often shielded in realistic systems due to the density fluctuation, and

then the dispersion relation may be modified. For example, let us consider the quan-
tum correction to the exchange of scalar photons in the RPA-type approximation
(summing bubble diagrams) and suppose the contribution of a bubble diagram to be
independent of pseudospin, which we denote as Il in the momentum space. Il —
finite constant as k — 0. Then the screened Coulomb repulsion is given by

e? 2

T
(F) = cim

e (1=8" Ikl (4.49)
In this case the dispersion relation of the — mode in the infrared limit deviates from
the linear behavior, and is given as follows;

md €2 1 1 ~ 3
o (k~N=4/c—m—— |k 4. .
-( ) M Ame 11 2r02m K[> + (4.50)
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By the existence of the Nambu-Goldstone mode, it is expected that at low energy
this mode will govern the dynamics of the DLFQH system, and will generate some
interesting phenomena like superfluids, especially when the tunneling between layers

is present. This point will be discussed in Section 6.

5 Collective-Field Approach to DLFQH Systems
with Interlayer Tunneling

In Section 4, we studied DLFQH systems without interlayer tunneling and determined
the effective Hamiltonian in terms of the collective fields. Now we have reached the

stage for considering effect of tunneling, and construct an effective theory of the

DLFQH system.

5.1 Interaction Hamiltonian

As discussed in Introduction, there are two types of interactions in the DL electron
systems. One is the inter-electron interaction and the other is the interlayer hopping
due to the tunneling effect. The inter-electron Coulomb repulsion (4.34) respects the
SU(2)q4-pseudospin symmetry and is expressed only in terms of 5 as discussed in
Section 4. As the number of electrons N in each layer a is conserved, the formalism
developed in the preceding sections works without any modification.

However, when the interlayer tunneling is present, the situation is drastically
changed, as discussed briefly in Section 3. In this case N* cannot be conserved
any longer.® In the following we will develop the perturbative analysis around the
Halperin-type ground state ®,,, regarding the interlayer tunneling effect as a per-

e

turbation. Therefore we should take 7° to be the magic density of ®ima; P* = 527 in

the case with Im # n2, and then if the resulting (perturbative) ground state in the

80f course, the fine tuning of the total number N of electrons is still required; N = vg 527 with

Im # n? andN:#mfl withl=m =n.
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presence of tunneling has also the magic density, the analysis is consistent. Actually

only the Halperin state with [ = m (v! = v! = ﬁ in this case) satisfies the con-

sistency condition and the state with [ # m becomes unstable due to the tunneling

effect. In the case [ = m = n, we will also take the above self-consistency requirement

IN _ 1]

and expect that the following choice is correct; p* = 3% = 55

for cach layer.
We will describe the interlayer tunneling effect by the interlayer hopping Hamil-
tonian (3.3). Then the new collective fields are required to express it; ™, 7“ and JE

which are given in Section 3. Then the explicit form of the hopping Hamiltonian is

~a A 2. . - s
Higgli] = =222 [ 2 {311(2,2) + 31,

vy

)} (5.1)

and the total Hamiltonian is given by Eqs.(4.2), (4.34) and (5.1);
Htotal[}g)j‘?“; ﬁab] = HO[JAf,]A% f}a] + VCoulomb[ﬁa] + Hhop[/}“b]~ (52)

ETCR's among 5* and ]A'j; are given in Appendix A.

In the next step, we must express the total Hamiltonian (5.2) in terms of the
collective fields p®. To this end, we must first reconstruct the space of states which
contains all the (N+1) spaces of electron numbers = (N, N!) with N = N 4+ N}

fixed. It will be discussed in the following subsection.

5.2 Construction of the Space of States

When there is no tunneling effect in the DL system, we can treat each layer separately
and have only to take their (tensor-)product, as discussed in Subsection 4.2. But
in the presence of tunneling, we must consider the whole state with the only total
number of electrons fixed. In this case pseudospin s? becomes dynamical, and the
quantum-mechanical wave function has the following form; ®(7s{; - - - ; Fxs%), which
is totally symmetric under an exchange of coordinates (7, s¢). We want to find the

corresponding wave functional of the collective variables. The collective fields (3.5)

satisfy nontrivial commutation relations (see Appendix A) and then the state is still
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expressible only by the (eigenvalue of) density variables p°, ®[p!, pt]. In order to
find this p-realization of the state, we write down the state in the sccond-quantized

formalism as in the discussion in Subsection 4.2;

N
[0) = 3 [T @) (st i iwsiy) [t 7wst). (5.3)
{s*} i=1
where ’ T8ty FNs‘;\,) is a totally symmetric basis, defined by
1 N
N a ) a;t T
Irlsl, 77N51\4) 7 [gda (z, ,)] [0). (5.4)
Then noticing that this basis is the eigenstate of j*;
N
P(2,7) | Fistseos Twsly) = 508 6Bz~ z) - | Fisgi sy ), (5.5)
i=1
we should set the relation between the quantum-mechanical wave function ®(7 s§ - TSYy)
and the wave functional ®[p, p!] as
@(Flslll; cee FNS‘[IV) < @[/)T’ /)l} /)"(:,?):Z:’i‘ §omi 8z, (56)

Using this relation, the state |®) (5.3) is translated into the wave functional ®[p', p!]

as follows;
N
|®) = Z/(HdQZ.')@[/)T,/)L]~‘Fls?;---:riv.s&,)
{s:.‘} i=1
= B[p", 5] - IN), (5.7)
where
AY
[N) = 3 (WCwi)7 - [INL N — NT), (5.8)
N1=0

From the first to the second line in Eq.(5.7), we have used the relation
1 N
2 = -} — 2 gaty . =
{Z;)/(I:Id zi)|r151»"'77'/\'3N) = _\/ﬁ (Xa:/d ¢ t(/«M)) [0,
and performed the binominal expansion to rewrite it by the symmetric basis (4.9).
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Corresponding to the above construction, the functional space of ®[p!, p!] is also

modified, especially, Jacobian factor in the inner product,

(#]9) = Z/ V(7T ns) - Blisti o vsh)
= /DPTDPIJN[P P']-Wpl o] 3", pl]. (5.9)

From Eq.(5.8), the Jacobian factor in this case is given as

N
JN[P“Pl] = Z IVCNI . Nl N Nr[p P] (’510)
NT=0

This means just the composition of the entropy of each layer with the Gibbs correction,
which is a natural result. The explicit calculation leads to the following expression in

the leading order in large-NV;

Inlpl,pl] = Z NCnt - [Hé (/d"/) N")} Lo B Bepraiog gD
NT=0
~ (/d2 {0'(z,2) + (2, 9)} - N) Cem Tu S et tog B2

X/+oo dr o5 (0 (-0 2 7)) sm(N+1)§

0 ™ sin 7

(5.11)
We have used the Stirling formula. Physical meaning of the -integral can be casily
seen, i.e., from the identity

sin(N + 1) %

SlIl 5

NE:: s ((V - 27)%),

the k-integral gives the constraint

/d‘%(,;hpi) = N'_n!

N4 NV = N, (5.12)
where NT and N! are arbitrary positive integers.
We will set the inner product of the functional space of ®[p!, p!] as
(¥[@) = [(Dp) e T[T 5T - @l 1], (5.13)
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where the measure is defined by

= HHdﬂ“(z,E) -6 (/ d*z {pI(z,f) + pl(:,?)} - N) , (5.14)
and the entropy factor is

N} (5.15)

N
Slo', '] /d2 }:p )logp*(2,%) — Flog

The constraint (5.12) will be also taken into account when it is necessary.

5.3 p-Realization of the Hopping Hamiltonian

In this subsection, we will seek for the p-realization of Hpop[p™) (5.1). To this end,
we have to consider the p-realization of [ d?z p?(z,%) with (ab) = (1])or (7). It is
expected that they are determined by the commutation relations (CR’s) among the
collective fields, p*’s and ]ﬁ';’j’s‘ {See Appendix A.) The CR’s among $*’s and j’;“;’s
Eq.(4.1) and,

[ﬁ“b(z,f), ﬁ"d(w,w)] — (6bcf)ad(z,'f) _ 6adﬁd)(z,7)) 5(2)(3 - w), (5.16)

form a closed, well-defined algebra. Using this fact, we will first find the p-realization
of j¢ and p'!, 51 only from Eqgs.(4.1) and (5.16). In fact, the former has already
been given in Eq.(4.18). The CR’s between p®’s and ]h'f’; will be used to check the
consistency of the resulting p-realizations.

Let us decomposing the operation of f d?z 5**(z,7) on the state |®) (5.7) into two

parts,

/ dZZ/B“"(z z)|)

= [ 2,000 ]IV + 0,3 [ eI (57)

Using the relations
[N = [ @52 ), (5.18)
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the second term on the right hand side of (5.17) is rewritten as Thus we obtain the p-realization H,wp[ﬁ“,p“] of the interlayer-hopping Hamiltonian

2 (5.1);
a0 [ = (=2 V) = [ p=218), (5.19) !

N A . TP
Hiopl?®, 0% = — 2 s“/dlzn“(z,ff{ue"’ (”""‘)“’“*”)}- (5.24)

The former commutator will be calculated using the commutation relations (5.16) 2

with (ab) = (11)or (11) and ¢ = d. The result is Before finishing this subsection, we will examine the properties of flhop (5.24)

[ﬁ”(z %) q)[/}‘ Pl]] - F[f)‘ /31] ) e—mﬁ—;ﬁm—f‘? (1)[[)1 f)l] by operating it to some explicit wave functionals <I>[p1,p1] in order to verify our
PR proposition for I:Ih,,p. Let us consider its operation on the Halperin wave functional
(1,2, 80 31] = Gl p)- e Fem mem alplpl. (5:20)

Bnlp!, ] (4.22). Explicit calculation shows

The functionals F[p', 5!, G[p!, '] are undetermined at this stage. They are deter- . .
Hhop . (I)lmn[/ﬁy p ] (525)

mined as follows by the full CR’s and dimensional analysis, which still containes one A
~ - ;AS / dzz p]‘(z’f)e——(l—-n)faﬂw Ioglz-w|~p‘(w,iﬂ)+(m—n)fd2w log |z —w}-p! (0, W) (blmn[/ﬂ , pI]

free real parameter «;

A - . -
Al o _ — ;AS /d22 [)1(27—2")6+(l_n)f1{2w log]z~w|-p‘(w,w)—(mfn)fd w log |z—w!|-p! (w, @) (}[m”[f)T’pll-
Flp',p'] = ep'(z32),
Glp' M o= _l_ﬁl(z 7). (5.21) This result is easily translated into the microscopic description through the replace-
a

ment (3.2) and we obtain the following expression;
The value of o can be determined by another requirement that p'! and p!1 should be

" . . . . .. [ ) T T
mutually hermitian conjugate. This requirement is rather subtle due to the nontrivial Hpop * Qumn (1,7 i 1o \ Tyt (5.26)

A NT N_x t_ lym-n N! N_I [ Z'[ l—n
- _ SAS {z Hdﬂl\zu ZdJ +Z Hu-l'zd ul ..q)l"m(zllyu_72}\“;‘211’__.’2}\“).

measure of the space of states ®[p', p!], and after some calculation it is found that

. L . . . . 2 bl | AT E 2] L H?il |24 — ZH'"'"
a = +1. (Some detailed calculation is given 1n Appendix B.) Finally, we will take
the sign of a to be +1, as explicit operation supports. (See the following discussion) Therefore the operation of Hpp to the Halperin state imn is to exchange the layer
From the above relations, we obtain the operator relation of [ d2z p**(z,%) acting index (i.e., attached statistical flux and magnitude of associated zeros) of electrons,
on ||N) as follows; which means the hopping of electrons. Then Hhop gives the desirable result for the

P 5 7 o [ g R I . Halperin state. Similar calculation for the excited states above the Halperin state

./ 2 7(2,7) Ol P -/d 2727 {1+e e EH.J)} Qo) (5:22) also supports Eq.(5.24).

This leads to the p-realization of fd?z p*%(z,7)’s which acts on the wave functional As shown above, Eq.(5.24) has desirable properties describing the interlayer tun-

@[pT,pl]; neling of electrons in the DLFQH system. In the following section, we construct an
, ] effective theory of the DLFQHE based on the above arguments.

[ [ (e i)

= [epe- {1 + e*"("““f‘*””“ﬂ)} L (5.23)
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5.4 Effective Hamiltonian of DLFQH Systems

In this subsection, we will summarize the arguments given so far, and write down
the effective Hamiltonian of DLFQH systems with the interlayer tunneling in the
collective-field language.

The total Hamiltonian is given in terms of the collective coordinate p* as follows;
Htotul[rgav pa] = Ho[ﬂﬂv pa] + VCoulomb[pa] + H':op[oa)pu]- (527)

The explicit forms of Hy, Veouoms and I:Ih,,,, are given by Eqs.(4.2), (4.20), (4.34) and

(5.24), respectively. The Schrédinger equation of the wave functional ®[p!, p!] is
Htotal{ﬂavpa]'(b[p]vpl] = E(D[vapl] (528)

The effective Hamiltonian in the same sense as in Subsection 4.4 (Approach 2) takes

the following form;

Hfoftil[ﬁ“,p“;/\] - Hiotat[9°, p°] ¢3Skl 4 /\(Z/dgzp“(z,f) — N)

fl

1
Htotal Ve + E(]nga + 1)1pa] + A(Z/dzzpa(:v?) - ]\T)’

where X is a Lagrange multiplier giving the total-number constraint appearing in the

measure (5.14). Using this effective Hamiltonian, we can perform a (semi-)classical

analysis of the DLFQH systemns. Perturbatively stable ground state is the Halperin

state with | = m, ®,,,,., and Agas term changes the dispersion relation of — mode.
These are results for the case Im # n?. It is expected, however, that more inter-
esting phenomena will appear in the case | = m = n. Then we will focus on that case

in the following section.

6 Josephson Effect in DLFQH Systems

In this section, we will consider the case | = m = n. As explained in Sections 2 and

4, as the interlayer tunneling effect is switched off, there exists only one C-S gauge
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field C‘]‘ +C;£ associated with the total number of electrons, and the Nambu-Goldstone
mode associated with the spontanecously broken SU(2)4-pseudospin symmetry, 91 —9!,
appears. Any ®,,,,m with arbitrary (N1, NV!) is energetically-degencrate ground state,

as long as N1 4+ Nl = L A The actual state will be a linear combination of all
g m 2n¢

(N1, N') states with an equal weight. As the interlayer tunneling effect is switched
on, the density < p® > and the phase < 9 > of each layer tend to be equal. That is,
the coherent state will be generated. Since this Nambu-Goldstone mode is a phase
of electrons and can of course couple to the external electromagnetic field, then this
state may support a Josephson(-type) effect just as in the case of the superconduct-
ing state[30]. In fact, as the interlayer tunneling effect breaks the SU(2)4-pseudospin
symmetry explicitly, the Nambu-Goldstone mode acquires a gap of order Ag,s. But
in our perturbative treatment, Ag4¢ is considered to be small (compared to other typ-
ical energy scales, such as the Coulomb energy and the cyclotron energy). Then due
to the low energy theorem, this mode may remember some properties of the Nambu-
Goldstone boson and dominate the low energy dynamics of the system. Therefore we
may still expect a Josephson(-type) effect by this mode[12, 11, 13]. We will examine
this phenomenon in detail in the collective-field formalism constructed in the previous
sections.

Now we introduce the following basis for later discussion;
1
) = 02 £pl(e), M=) = 5 (91() 2 94(2)). (6.1)

In the above expressions and hereafter, we will often abbreviate the arguments of
variables. The p-realized Hamiltonian acting on the wave functional ®[p!, p!] in this

case is given by
Hiotal[ﬁawpa] = H0[0a> Pa] + ‘/C'oulomb[pa] + Hhop[‘ﬂav pa] + H / dZZ /)_('Z)3 (62)
and the effective Hamiltonian is

e a a 2h2 @ T ¢
o o'iN = 7% [T )
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In order to describe the interlayer tunneling effect, we use the hopping Hamiltonian
(3.3) of bosonized electron ¢°. As mentioned in footnote 5, in the original sense, we
should express this term by the fermionic field operators ¥®. The relation between
two operators ¢ and ¥° is as follows;

Po(z) = e Fhm GV gy

met oo : H

_ GZbef“ Pb(“’)fﬂ,)(&“%) - ¢%(x), (7.1)
where y(z) represents a path starting from z to the base point (e.g. infinity). Then
the hopping terms are accompanied by the line integral of the pseudospin-SU(2), C-S

gauge field;
(@) () = ¢V (z) e F (RGO gy e (7.2)

However, this modification will not affect the case of our particular interest of [ =
m = n, because the pseudospin-SU(2), gauge field is a decoupled pure gauge in that
case, and then the difference between 1!y! and ¢'T¢! is only a trivial c-nunber phase
factor. For the case Im # n?, it is also verified that the above line integral does not
affect the discussion on the variational ground state and the dispersion relation of the
excitations.

We succeeded in constructing the space of states in the presence of the interlayer
tunneling effect, realizing Hpop (3.3) in p, and formulating the collective-field theory
for the full DLFQH system. We believe that the expression ﬁ,mp (5.24) describe
correctly the properties of electron tunneling. On the other hand, in the state with
some vortices like (4.32), there might occur the tunneling of these vortices through
the naive considerations. But when operating H;w,, to ®[p!, p!] with (1.23) explicitly,
we will find that it is only the hopping of clectrons, and not of vortices. This is
because the distribution of vortices in the state (4.23), {€}, is inserted by hand, i.e.,
the degrees of freedom of vortices are not prepared as dynamical variables in the space

of states with the location of {£7} fixed. In order to treat them dynamically, we have
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to make a duality-type transformation([20];
olp!, o] = /(Dﬂreg Dpy) e Lo [ 20200405, 01 1) CE[0L 00y pb]s (7.3)

where 97, (2)’s and ﬂging[z; pY]’s represent the regular and singular part of the phase
variables of electrons; 9¢(z) = 97,,(2) + ¥%,,[2; p¥], respectively. p{.(z)'s represent
the vorticity-density defined by p§(z) = —5-€90,8;9%,,[2; p%]. Actually, even if we
carry out the above transformation, the phenomenon of tunneling of vortices is not
allowed, as pointed out by Wen and Zee[l4], due to the consistency of the theory
originating from the Dirac’s quantization condition. More detailed discussions about
this point will also be given elsewhere.

Based on the p-realization of the total Hamiltonian, we wrote down the effective
theory for the full DLFQH system, and investigated some properties of the system
with [ = m = n. The dispersion relation of the long-wavelength density fluctuations is
calculated within the perturbative assumption. The effect of the interlayer tunneling
affects only the mode associated with the SU(2)4-pseudospin symmetry, and the
Nambu-Goldstone mode ¥~ acquires a mass of order Agag. The dispersion relation of
this mode exhibits a local minimum at a finite wave vector k,,;,. It may be considered
that this is a sign of the collapse of the %—Hall fluid of pseudospin-symmetric states,
but the more careful treatment, in which the LLL constraints are taken into account,
will be required as mentioned above. In the end we studied the Josephson(-type)
effect. As long as based on our formalism, the interlayer tunneling effect generates
the Josephson coupling energy, and inevitably leads to the phenomenon just like
the Josephson effect when the phase difference between layers is present. In this
phenomenon the coherence of the (mmm)-Hall state plays a key role just as in the

superconducting state. The critical current is determined by J, = eAz"Spo where

po = #22@7 and the frequency in the ac effect with a voltage drop V; is 2.

Finally, we will give some comments about the bosonization procedure, which we
supposed throughout this paper. As discussed in Introduction, it is considered that

this prescription is based on some perturbative assumption. If we want to overcome
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this point, a fermionic description of the (DL)FQH system will be required by all

Appendix

means. In this case the collective-field formalism may be difficult to apply to the

full (DL)FQH system, but it is possible to write down the effective theory of low-

A ETCR’s among the Collective Fields

lying bosonic excitations above the ground state, such as density waves, by using the
collective variables[32]..It is considered that this is also a perturbative mode! but may In this appendix A, we will give the equal-time commutation relations (ETCR’s)

involve a little more informations than the present model, because this may link the between the collective-field operators; 5% and j’;"’ defined by (3.5). The fundamental

Hall state with different (Imn)[8, 11]. This arguments will be developed elsewhere. ETCR’s of ¢® and ¢°! are given in Eq.(2.10), then we obtain the following relations,
[5(z,2), 5w, )] =

(6b°ﬁ“d(z,7) - 6“dﬁ°b(z,7)) §2(z — w),
(7% (2.7), 5w, )| =

L~ () 2 (=) /. .
—6% U:f?)(z’?) a 25(2)(z —w) - 89, (J:(d;)(z’?) 6z~ 'lU))
=) . 1 .
—6%(1 9 p(2,2) +555(2,2) ) = (2,2
{ (19 7°22) + Jiw(2,2) ) 55 (2:9)
(=) . 1 .
el S N L e (= ad (= | s@, _
é (1' d p (Z,Z) +]z('z’)(zsz))ﬁa(z’f)]z(?)(“v")} 6 (" ’lU),
[72(2,2), j¥(w, @) ] =

—6%3%(2,7) 8,60z — w) — 6%i0; (j24(2,2) 6Pz - w))

- {6“ (i—f)c(z,i) +]§(z,7)) F(—i—?—)}ﬁb(z,f)
- 8 (i0p"(2,2) +32(2,9)) ———p‘,(i 57 () } 63z — w),

[7%(2,2), 5 (w, @) ] =
Za = ad 7o = ;~a = 50 p i
(8 jety(2,7) = 6% jstey(2,2)) 67z — w) = 67 0p"(2,2) 2 67(z —w]A)
These relations are closed within the collective-field operators {3, j%%} and well-
defined, because the existence of the inverse operators ( 7)1 is physically plausible.
From the above relations, the maximal commutative set is only {$*}. Then we may

realize in p the all ETCR composed of the collective-field operators.

The subset {$%, 72-}, which is required in the case without the interlayer tunneling
P07 q

46 a7



effect, also forms a closed, well-defined algebra;

(2,2), p(w, E)J =0,
- (*

“a <\ o o a ) ‘ta = ab "a - &)
[]z(?)(za Z),]f(;)(’lﬂ,‘ll})] =-~4 b o z (U;(?)(zvz)é(z)(z - IU)) -6 bz‘]:(?)(sa:) a :6(2)("7 - w)a

<(2,2), 5w, ) | = —6%3, (i58(z,7) 80 ©)) = 6%32(,7) 0.6z — ),

From these relations, we obtain the following p-realization of the commutator with

respect to the current operators ]A'f,;;

. =) 6
(2 2), @80, Y] | = ~iptz,7) 5 b
[z 2), 0060, 3] = ~ip(e,2) 5 T
This operator relation will be used in Section 4.
In addition, since jf,”;’s satifies the relations (3.6), the minimum mformation in-

volved in (A.1) other than (A.2) consists of only the following;

[#02), 2 (0,9)| = (5% - 5o ez 5y,

[0"z2), 41w, )] = (0'z2) = 3(2,2)) 6Dz ~ ), (A4)

~a AN —_ a acy be = ab; ~ = =)
[T (2,2), 5w, )] = (5% — Vst D8z — ) — %ipte(2, ) 5 65 _ ),

where (bc) = (1])or (11). From these relations, the commutator of P or jf”- will be

realized in p as
I b $ R R
[6G.2), 0051, 0] = jo(z, 7). ot iy [l ), (A.5)

and
3 — AT A . _ et (=) 6 1o
[]f(by)(%z)vq’[/?npﬂ = —ip2,7) e OGS m‘ﬂpl‘ﬂl]- (A.6)
During the above calculations, we used the hermitian condition (')t = 51 which
seems to be nontrivial due to the unusual inner product of the space of states. This
point will be discussed in Appendix B. These equations will give a basis for deter-

mining the p-realization of ! and A'1 in Section 5.
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[ (z.2), 2w, 9)) = —sipn(e ) G e, (A2)

B p-Realization of p and pit

In this Appendix B, we will address the p-realization of the interlayer hopping term
in the functiona) Space constructed in Section 5. Especially we will focus on the
hermitian condition of the hopping operators At and il

At first, we will prove the p-realization of the commutator with respect to pll
and g1, Eq.(A.5). We will find the following expressions through the first relation of
(A4);

FIph, ) -« o1 st g

o' pY, (B.1)
G[ﬁT,ﬁll . e+6pr(6:,7)_6p1(6:,?) q>[p“f’/}1].

[6"(z,2), a3, 51

[41(z,2), (a1, )]

Il

Il

The functionals F[p!, '] and G[p, '] are undetermined at this stage. They will be
determined by using dimensional analysis and the second relation of (A.4) up to two

arbitrary parameters a,f(a# B);

FI' ') = ail(z,2) + 8!(2,7),  Glpl, ) < {80'(22) +apt(z, )}
(B.2)

Suppose that the p-realization of the commutator with respect to the current operators

1
(a - p)?

jf,; is taken to be Eq.(A.3) still in this full case. If we can consistently choose o and
B so that the equations (A.3) and (B.1), (B.2) fulfill the last relation of (A.4), then
the complete p-realization of the full ETCR’s (A.1) will be determined. After some
algera, we will find 8 =0, but a(# 0) still remains arbitrary;

s s
[p*Tl(z’?)’ @[p‘T’ﬁll] — aﬁf(z,f) e & (x,?)+6pl(z,7j q)[f,l’/‘)l]’ (B3)

[61(z,2), o[p", 4]

Il

1 ] _ ] .
Ef’l(z»?) . e+6p =9 seliem q)[/}lvpl]'

The value of a cannot be determined only by the ETCR’s(A.1), and another require-
ment is needed. We will consider as such a requirement the hermitian condition;
(/3“)f = p!. This condition is evident in the second-quantized formalism, but be-

comes nontrivial in the functional Space. constructed in Section 5 due to the unusual
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inner product (5.13). From this condition we will obtain o = L i.e. a = %1 as shown
below. The sign of a should be taken as +1, because the relation between « = b and
a # b in the p-realization of p® is logically more natural in that choice. Thus we will
obtain the p-realization of the ETCR with respect to p*’s to be Eq.(A.5). From this,
we will easily obtain Eq.(A.6), by using the relation (3.6).

The residual problem is to prove a = ,‘J— by the hermitian condition. In the

functional space constructed in Section 5, this condition is express as follows;
()51} (2, 2)8") = (p11(2,9)8|#"), forV|®),|'). (B4)

The bracket is taken with respect to the inner product in Eq.(5.13). Let us calculate

the left-hand side of the above equation explicitly.

& s
@151z 2)0) = [(Dp) e FRTpT] - aple” #Tem BT @/[pl, o) (B.5)

T %
/(Dp) F[pT,pl] . {84"‘55(,,7) FUTES) @[pl’pll} . ‘i"[pt,[)l]‘

Il

Here we perform the integration by parts. Since the functional measure in this space
is given by Eq.(5.14), then this seems to require a nontrivial calculation. But the
total-number constraint involved in Eq.(5.14) implies the exclusion of the zero mode
from the integration variable, then the behavior of the surface term may be rather
mild as compared with the case without the constraint. Therefore this will make the

naive partial integration well-defined. I is given as follows;
§ ] [} &
L', pl] = ' &ea wlem {a,,r(;,g)cswm‘l} ¢ BTem TRl

(s =
X 14 (“7:) eS[p'.pl].

~ apl(z.%
ap'(2,%) 2(5.3)

(B.6)

In this calculation, we regularize all 63)(z = 0) terms as in the main text. Then the

right-hand side of Eq.(B.5) reduces to (5!!(z,7)®{®') when « =

QI
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