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Abstract
The eigenvalue problem of electrons in a biased double-well heterostructure driven
by a laser field is studied. The closed-form solutions for the quasienergy and the
Floquet states are obtained with the help of SU(2) symmetry. A remarkable f{eature is
found to be that of the occurrence of the quasienergy crossing, which implies that the
coherent tunneling of electrons between two wells can be suppressed almost completely
through the choice of the field parameters. Such a coherent destruction of tunneling

should be observed in experiments by using free-electron laser facilities.

1. Introduction

The interesting effects have recently been discovered in the study of interaction of electrons
in s\ymmet.ric double-well heterostructures with laser fields. Among these are the coherent
destruction of tunneling {L,2], the exact level crossing [3], the induction of a static dipole
moment (4], and low-frequency generation [5]. The observation of such effects can be fulfilled
in quantum-well heterostructures due to their large dipole moments (10 — 103 large than
that of molecular systems) and adjustable small splitting between levels [6]. The intensities
required can be obtained by using a frec-electron laser which produces intense 20 — us square
pulses that are tunable in the region of 6 — 170 cm~'. This means that only the low-lying

states of the system are involved in the consideration.
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It has been shown that the low-lying states of a double quantum wells can be described
approximately as a two-level system [7]. Such a system, as well known, is of great practical
importance in physics. Hence, there is a considerable growing interest on it. Very recently,
the present author find that the problem can be transformed into the study of a first-
differential equation or a Neumann-Liouville expansion, and gives out general closed-form
solutions of the evolution operator with the help of SU(2) symmetry (2,7,8]. In this paper, by
applying our method, we will study the quasienergy spectrum resulting from the interaction
of an electron in a biased quantum double-well heterostructure under the influence of a laser

field. The Hamiltonian we considered here is
we .
H(t) = -2—0z + u[Ep + E coswi]o, , (1)

where o, and o, (as well as &, used below) are the Pauli matrices. (wo/2)o; is the unpertured
Hamiltonian of the system with eigenvalues (E, = —wo/2 , Eg = wo/2) and eigenvectors
(la >, |8 >), u is the transition dipole between two levels, Ey is a constant field for
breaking the symmetry of the double-well, and £ and w are, respectively, the amplitude and
the frequency of the driving laser field. This model was studied recently for the special case
of weak leterlevel coupling and high-frequency driving field (wo/w << 1) [9]. Here, we focus
on the general case in which the ratio wp/w can be arbitrarily large or small.

The rest of this paper is set out as follows. In Sec. II, we give a brief presentation for
the derivation of the eigenvalue equation of the evolution operator, from which the closed-
form solutions of the quasienergy and the Floquet states are obtained (Sec. III). These are

followed by a discussion and conclusion in Sec. IV.
II. Eigenvalue Equation

In this and next sections, we outline the procedure to describe the derivation of the quasienergy
and the Floquet states for the pertodically driven two-level s&stem.

Since the Hamiltonian (1) is periodic in time with period 7 = 27 /w, Floquet’s theorem
asserts that the wave functions of H(t) can be written as [¢*(t) >= exp(—iet)|$(t) > with
the time-periodic Floquet functions |$(t + 7) >= |$(t) >, where ¢ is the quasienergy. The

evolutiou operator U(t, o) of the system, defined through the Floquet function |(t) > as

6(t) >= ‘U1, to)e ™ [@(ta) >, (2)



satisfies the evolution equation
.0
‘(Tj_tU(t;tO) = H()U(t, to) (3)

with the initial condition U(to,to) = 1, here we put h = 1 throught this paper. Setting
t =to+ 7 in Eq. (2) and using the periodicity of the Floquet states, {#(t + 7) >= |¢(t) >,
we get .

[U(to + 7, t0) = e77]g(to) >=10 . (4)
Note that U(t, to) is the 2 x 2 matrix, therefore, the requirement of the non-trivial solution

for the Flo;;uet state [@(to) > leads to the eigenvalue equation
det [U(to + 1, t0) — e""] =0. ' (5)

Using the properties of the evolution operator U(t, o) = U(t, t'YU(t', to), U(¢,t0) = UT(to, t),
we can rewrite Eq. (5) as

det[U(r,0) — ™| =0, (6)
where the result U(t + 7,0 + 1) = U(¢, to) for the time-periodic Hamiltonian (1) has been
used. Thus the quasienergy can be determined from Eq. (6) directly so long as we obtain

the evolution operator in one period.
III. Quasienergy Spectrum and Wave Functions

It has been shown that the evolution equation (3) can be solved analytically in the closed-

form solution [2,7]. To do that, we introduce the unitary transformation

Us(t) = el ™
letting
U(t, to) = Us(O)Us(t, to)Ud (to) (8)
which result in Eq. (3) to be
.0
laUl(fJo) = H (YU (t, to) (9)
where
() = X{t)os + Y(t)o, (10)
3

with
X(t) = p[Eo + E cos(wt)] cos(wot) ,  Y(t) = —p[Eo+ E cos(wt)] sin(wot) - (1)
The solution of the evolution operator U(t, o) can be expressed as
Ui(t,to) = T exp(~i /:‘ Hi(t)dt) (12)

where T denotes time ordering. The use of the Neumann-Liouville expansion yields explicit

form of Eq. (12)

o0 o0 >~} o
Ui(t,to) = 3 R¥™(L,to)+ioe 3 RE™(t, to)+ioe Y RE™O(¢, to)+ia, 3 RE™(t, L),
m=0 m=0 m=0 m=0

(13)

with

Ri?m)(t,to) = (—l)m (‘ﬁ ./t‘ dl[) 0(tl - 12) .- -a(t'Zm—l - l'lm)X(tlt'l M -tZM) ] (14)

2m
R(ylm}(lyto) = (—-1)"‘ (H ‘/t( dtl) 0(!1 bl tg) PN 0(['_)"._1 - lzm)Y(tltz .- tgm) y (15)
1=1""%

2m+1

t
R£:2m+l)(t, tO) = (_1)""H ( H / dtl) 0(tl — lg) R 0(t2,,. - t2m+1 )‘Y(tltz O t2m+1) 4 (16)
=1 Yt

2m+1

]

R§2m+1)(t’t0) = (—l)m+l ( H ‘/t dtl) 0(11 - tz) .. .0(!2,,, had t2m+1)y(tlt2 .. -t2m+1) 3 (17)
i=1 o

RO(t,t0) =1, ROt t0) =0, (18)

where 0(1) = 1 for t > 0 and 0 otherwise, X (4122 ... tm) and Y(tits. .. 1) satisfy the following

recurrence formulae
X(tltz...tm) Z‘X(tlt';...tm_l)x(tm)+Y(t112...tm_l)Y(tm), (TTI Z?) N (19)

Y(tita. tm) = X(tita - b)Y (tn) = Y(tats ot )X (6n),  (m22). (20)

Substituting Eqs. {7), (8) and (13) into Eq. (6), we get the quasicnergy

€ = :1:2—:-6(1') mod(w) , (21)

where - -
O(r) = cos™! {cos(w“—iq) Z RP™)(7,0) +sin(1r%) Z Rf'")(‘r,O)} . (22)

“ o om=0 pegur)



The corresponding wave functions can also be obtained as

[$(0) >1= ax|a > +bs|B > (23)
with
ot = ‘\}3{[(;0 RE™9(r,0))" + (mz_joﬂ“"'“)(r 0)’]x
(1~ cos((ex — a)T),i, R®™(7,0) + sin({eg — a)7) .,.X-:o RE™)(r,0)]” }1/2 29
b = (5 REmD(r,0) 4 35 REm(r,0)) " x
m " (25)

[e-tesmer — (E RE™(7,0) + i Z RE™(7,0)) ] ax

m=0
From these results, we can get any evolution states for the system by means of a linear

superposition of the Floquet states |if(t) >4.
IV. Conciuding Remarks

From Eq. (21) it is clearly seen that the quasienergy spectrum is that of two discrete levels.
Note that from Eq. (22) we have always |©(7)] < 7 , therefore the quasienergy must be
in the range —w/2 < € < w/2 , or equivalently the quasienergy gap Ae = ¢4 —e. S w .
This means that the length of a “Brillouin zone” in the quasienergy space is w . We call the
range —w/2 < € < w/2 the first “Brillouin zone”. Other “Brillouin zones” can be obtained
by adding integral muitiples of w to the quasienergy.

In principle, Eq. (22) can hold exactly. However, this requires us to calculate infinite
integrals, which, obviously, is impossible. Hence to obtain an explicit expression for the
quasienergy one needs to make some approxination. Here, as an example, we consider the
situation of weak interlevel coupling, so that we can cut off the series in Eq. (22).

As the zero-order approximation, we obtain

SORO™ (7 0)~ RO(r,0)=1, 3. RP™(r,0)~ RO(r,0)=0.  (26)
m=0 m=i
This leads to ©(7) = (wo/w)r , therefore
€1 = i:‘f;2 mod(w) , (27)

i.e., the eigenvalues of the unpertured Hamiltonian.

For the first-order approximation, we have

> Eo E 1 1 2 wo ]
m ~ —1- 124 = - —_ =
mz_o RE™(r,0)~ 1+ RO(r,0)=1—p [Wo + 5 (w Ton oo 050)] [1 cos(2r w) .
) (28)
2 Ey E 1 1 2,
3 RE™(7,0) ~ R (r,0) = p { = -+ =( - ) sin(2r —2)

flopr 2w+ wp w — Wy w (29)
2w Eg + E_z Wo ]}
wlwy 2 wi-w?
Substituting Bqs. (28) and (29) into Egs. (21) and (22), we obtain the quasienergy

ad -t o — —E—z wo/uw sin wbﬁ mod(w .
Ci=ﬂ:2—WCOS {cos(-lr:)—) 2w (=~ )[ /w 5 1_(w0/w)2] ( w)} d(w) . (30)

In this expression, wo/w may be any real number. This gives us more freedom to discuss
various situations of transition process between |o > and |8 >. For example, when wo/w =
1/2, the quasienergy reads

2

w 2u E
€y = :i:z {l + (—w—)2[2Eg - —3—]} mod{w) . (31)
It is interesting to note that if £ = V6 Ey, the quasienergy becomes
€y = :{:‘:‘;— mod(w) , (32)

which is obviously independent of the magnitude of driving laser field.
Another remarkable feature we will see is that of the appearance of quasienergy crossing

in the case of ¢ << w and wp << w, where

7% wo Wl‘ 2{ 2 E? (WO/U)Z }
O(7) = cos™ {1 - —2—(:)2 Z—) [Eu ~ S Tt (wo/w)7] . (33)

This yields

o(r) = 7r—— 1 —4p2 [ (f) (é’_)z] ~ W%‘O {1 —,uz[(g)2 —2(&)2]} . (31)

W Wo

Thercfore the quasienergy becomes

ei:ﬂ: {1-;1 [(—— —2—)]} mod{w (35)



Notice that under the condition g << w, the ordinary Bessel function of order zero

Jo(‘.’.,u\/(E/w)2 — 2(Eofwp)?) can be written as

I f(EJaY — 2 Bofen) = 1 = w20 A2 (3)
we obtain that
€x = :t%o—Jo(Qy\/(E/u)? — 9(Eo/wo)?) mod(w) . (37)

This result shows that the doublet of quasienergy can approaches each other more and
nore closely with increasing the argument of the Bessel function Jo. Such a phenomenon
of quasienergy crossing means that the coherent tunneling of electrons between the biased
two wells may completely turn to that of localized motion when Jo = 0. This coherent
destruction of tunneling can be fulfilled through the choice of the field parameters.

In summary we have investig.ated the eigenvalue problem of the time-periodic driving
two-level system, focusing on the dynamic effects of an electron in a biased double-well
heterostructure under the action of a laser field. We addressed detailed algebraic structure
of the closed-form solutions for the quasienergy and the Floquet states, from which some
special cases of the ratio of the energy gap of the undriven system to the laser frequency have
been discussed. The remarkable feature was found to be that the emergence of quasienergy
crossing, which implies that the coherent tunneling of electrons between the biased two wells
cant be fully suppressed by the choice of the field parameters. Such an effect of dynamic
localization should be observable in quantum-well heterostructures by using free-electron

laser facilities.
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