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Abstract

The problem of two-level systems described by arbitrary time-dependent Hamiltonians is
studied analytically. A closed-form solution of the evolution operator is obtained explicitly
as a Nenmann-Lioyville expansion with the help of SU(2) symmetry. From this axact !
solution, the results for any special case can be deduced. The application of this solution
to a periodically driven two-level svstem leads to the apperance of dynamic localization,

which is demonstrated to coincide with the ouset of coherent destruction of tunneling. ,

PACS number(s): 03.65.-w, 33.80.Be. 74.30.4r. ‘

A two-level system, as well kunown, is relevant to varieties of topics in physics such as mul-
tiphoton transitions and quantum chaos in the presence of strong fields {1]; dynamics of the
two-state system in dissipative environments (2]; Landau-Zener transitions in atomic collisions
(3], molecular physics [4]. mesoscopic systems [5], and solid-state physics [6]; geometric phase
for neutron interferometry (7], magnetic resonance [8], and two-level atoms [9]; the problem of
the solar-neutrino puzzle (10]; the question of self-trapping in disordered semiconductors {11];
to name but a few. In these studies, particular attention is devoted to the evolution operator,
which plays an important role in quantum theory. Very recently, the present author find that
the problem can be transformed jnto the study of a first-order differential equation, and gives
out a general closed-form solution for the evolution operator [12]." In this paper, we address our
another novel approach for this question. We find that this problem can also be solved exactly
and explicitly as a Neumann-Liouville expansion with the help of SU(2) symmetry. As the re-
sult, the general solution of the evolution operator is obtained as a closed-form expression, from
which results for any special case can be deduced. To illﬁstrate the validity of our method, we
present two examples, both of which are of importance in quantum physics.

The time-dependent Hamiltonian of a two-level system can be written as

(1)

a e~ iw(t}
H(t):( 0 )

b(t)e®  _q(t)
where a(t), b(t), and w(t) are real functions and an inessential diagonal term in the evolution
Hamiltonian was omitted.

The evoll;tion operator U(t, to) of the system, defined through the evolution state J$(t) > as
[¥(t) >= U(t, to)[1:(to) >, satisfies the evolution equation

z'g—tU(t,to) = H(t)U(¢, t0) @

with the initial condition Ulto,to) = 1, here we put A =1 thr.oughout this paper.
By introducing
Ut to) = Us(O)Uy(1, to) Uik (£5) (3)
with

t
lg(t) = w00 ou)=/ al )t . (1)



where . ( as well as 7; and o, used below ) is a Pauli matrix, we obtain

l—a—U[(t, to) =

2 HIOUi(L o) 5
with the initial condition Uy(tg,t0) = 1 , where
Hi(t) = U0 [ ~ 1 2] 00(t) = X(t)o. + Y1), (6
with
X(t) = b(t) cosfw(t) — 260(t)] ,  Y(¢) = b(t)sin[w(t) — 26(2)] . (7

The solution of the evolution operator Uy(t, t5) can be expressed as

Ur(t, to) = Texp(-—z_' /e: Hl(t')dt’) , (8)

where T' denotes time ordering. The use of Neumann-Liouville expansion {13] yields explicit form
of Eq. (8)

Urlt,to) = 3 R™(t,10) , ()
m=0 .
where
ROt t) =1, (10)
m et
R™(t,t0) = (=i)™(T] [ dt))6(ty — t2)0(ts — t3) -+ 8(tmer — tm)
e (11)
'}Il(tl)HI(t’l)"'H[(tm) ) (m#o) ’
with 8(t) =1 for ¢t > 0 and 0 otherwise. Direct calculations show. that
Hi(b)Hi(t) - Hi(tn) = X(tity -+ tw) + 1Y (titz - - t)os itm =21,
(12)
= X(tity - tm)or + Y(tita - tn)oy , fm=2+1,
where X(4ity- -+ 4n) and Y(¢,¢; - - - ) satisfy the following recurrence formulae
Xt tm) = X(tity b)) X(tm) + Yttt b)Y (tn),  (m22), (13)
Y“l'l"'tm)zAY(tltZ"'tm—l)}l—(tm)— Y(tlt2"'tm—l)-\’(tm) ' (m 2-’)) . (ll)

[t should be noticed that the Pauli matrices are not involved in Eqs. (13) and (14).

By defining
2m g
RU™(t,t) H/ dt,)o (8 — t2) - O(tamer — tam) X (b1t -~ tam) (15)
I=t Ve
2m .y .
2m m _
R )(t,to)=(——1) (,=1/:o dt,)o ty — t2) -+ Otam—1 tg,,.)Y(tltz “tam) (16)
2m+1 .
R£2m+!)(t,to) = 1)m+l( H / dt,) _ tg) B(t'zm t'zm+1)X(t1f2 t2m+1) s (1()
=1 Yt ’

2m+1

t
ROmHI (2, 10) = (-1)™*( H /' dt)8(ty = t2) - - B(tzm — tamsr)Y (titz+tamya) , (18)
=1 0

ROt te) =1, R‘;”(t,to) =0, (19)

Eq. (9) can be transformed into the following form

Ut to) = 3. RE™(t,t0) +io, S R (t,t0) +ioz 3, RE™I(t,to) +i0, Y RI™I(t, ) .

m=0 m=0 m=0 m=0 (20)

Obviously R{™(t,t0) and Rg"‘)(t,to) are also real functions. Considering the unitarity of the

evolution operator Uy(t,%0) , Eq. (20) can be rewritten as more compact form

—
Uit to) = &0 - 8 10 (21)
with
? = (0-57 Uyy U;) 1 (22)
Bt to) = —-—(”—" Z RE™ V(4 40), Z RE™1(t, ), Z RU™(¢, to)> , (23)
’ ’ blu[¢ t to ] m=0
o(t, to) = cos™ (}: RE™)(¢, to) . (24)
=0
Thus, we obtain the final result for /(t,%o) as
—_
U(t,to) = e~ o9i0i T+ @ (1) giaabito) . (25)

In practical calculations, it might be convenient to use the formulae

X(tity e tm) = (ﬁ b(t,)) cos(li (— D [w(t:) t()]) (26)
=1 =1

m m

Y{titsetn) = (-1)“(Hb(t‘)) sin(3°(—

() — 20(20]) (27)



which can be derived from Eqs. (13) and (14) straightforwardly.

The above results are for the most general time-dependent Hamiltonian (1), and thus the
solution of the evolution operator for any special two-level system can be deduced from them.
Here we present two exaraples to illustrate the validity of our method. First of all, we consider

a special and simple case w(t) — 20(¢) = @, « a constant. Thus we have

RO™ (2, 10) = %;.ril)_;([: ars(t))™" RI™(t,t) =0, (28)
RE™(¢ 1) = ((2;_1)::_;' (/': dt’b(t'))2m+l cosa, (29)
REme1,t) = o ([ aes) ™ siner. (30)-
These result in
Pt to) = —(t, to) (cos a, sina, 0),  @(t,to) = /" dt'b(t') . (31)

Substituting this equation into Eq. (25) yields the explicit expression of the evolution operator
Ut to)

U(t,to) = emios [y dta(t)) milos cosataysina) [, ) o, [0 dea(e) (32)
This solution describes the resonant transition between two states, and can be widely applied to
different fields.

Another example we want to show here is that of a periodically driven two-level system
which undergoes multiple crossings (14,15]. In this model, a(t) = AcosQ, b(t) = W, and
w(t) = 0, where W is a coupling constant, A4 and  are, respectively, amplitude and frequency
of driving fields. This two-level system can be realized by coupling two propagation or two
polarization modes of an optical ring resonator as done by Spreeuw et al.. By means of this optical
ring resonator, they ohserved Landau-Zener transitions, Rabi oscillation with non-rotating-wave
approximation signatuce, and Autler-Townes doublets [14]. Therefore it is meaningful to provide

a general theoretical analysis for this problem.

Without loss of generality, we put ty = 0, and let the initial state [¢(0) > be [(0) >=

1 0
(0) = |l >. Then we tind that the probability P(t) for the system staying in |2 >z= at
1
time ¢ is
[’([) — (Z R(,Qm“](t.O)). + (Z Rgz"ﬂ'l)(t-n))- . (;”

m=0 m=0

In the following discussion, we focus on the situation of high-frequency driving fields, assuming

that W << Q. In that case, as the first-order approximation of W/, we get

& W in(2mQt
> RE™I(2,0) = RO(E,0) = ~Wh(24/t — = 3 J,,,.(ZA/Q)%'—) . (Y
m=0 m=1

1 — cos{(2m — 1)Qt}

2 B, 0) = BN(2,0) = 25 3 Jim1(24/9) C—

m=0 m=1

(35)

where J,, is the ordinary Bessel function. These results are valid only in a small time region
because the first term in Eq. (34) grows with time linearly up to infinity, unless the ratio 24/Q
is a root of Jo. This means that higher-oredr corrections of (W/Q2)™, {(m > 1) are of importance,
and should be included in the calculation. By the use of Eqs. (17), (18), (26) and (27), and
through a long but straightforward calculation we obtain
fj RE™0(2,0) = —sin[W Jo(24/9Q)t] — B(t) , (36)
m=0

i RE™(8,0) = W{cos[WJ.,(2A/a)t] fj Jam-1(24/Q) Zeos{(2m - 1)] +D(t)}, (37)

m=0 _—ﬁ- m=1 2m —1
where it can be shown that at the initial time ¢t = 0
i 2
B(0)=0, D(O)=-3" Sam-1(24/ V5=, (38)
m=1
and at time ¢ # 0 and Jo(24/0) #0
IB(t)l < |sin(W Jo(24/0)t]] , (39)
= 2 cos((2m — 1)t
[D()] < |cos(W Jo(24/ 1] 3 Jom-1(24/9) ﬁ[;()—nil"—_—l—l-—w . (40)
ma=] =
Thus the probability P(t) reads
P(t) = {sin[W Jo(24/Q)] + B(t)} +
(41)

2 cos[(2m — 1)01]

2
e +D()} .

(%)I{COS(WJo(?A/Q)t] ))f: Jam-1(2A4/9)
m=1

Obviously, if Jo(24/8) # 0, the first term sin*{W.Jp(2.4/0)¢] in Eq. (41) will dominate the
dynamics for P(t) due to the facts W << Q and (39). Therefore we can rewrite the probability
P(t) approximately as

P(t) = sin®(WW.Jy(24/9)¢] (42)



This implies that the condition Jo(24/0) # 0 is of significance for the observation of the particle
staying in |2 > at time ¢. The inverse situation is more intriguing. If the 24/9 is a root of Jo,
the probability to find the particle in |2 > vanishes almost entirely. This feature shows that,
in striking contrast to our intuition, the particle can not tunnel to {2 > from the initial state
|1 >. It will remain localized in {1 > at the whole time of driving process if Jo(24/8)) = 0. This
phenomenon of dynamic localization is believed to be relevant to the coherent destruction of
tunneling found by Grossmann et al. [16], and coincides with recent analysis for a similar model
given by Kayanuma [17].

In summary, we have investigated the evolution behavior of two-level systems described by
arbitrary time-dependent Hamiltonians. By means of the te;:hnique of the Lie algebra SU/(2), we
obtained the closed-form solution of the evolution operator. From this general and exact result,
the solutions for any special case can always be deduced. The application of our approach to a
periodically driven two-level system yields the apperance of dynamic localization, which coincides
with the onset of coherent destruction of tunneling. Since the two-level problem has very strong
backgrouhd on physics, our method presented in this paper will have potential applications to
different fields.
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