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ABSTRACT

We investigate the relativistic Coulomb fragmentation of *7Au by
heavy ions, leading to one-, two- and three-neutron removal. To re-
solve the ambiguity connected with the choice of a specific minimum
impact parameter in a semiclassical calculation, a microscopic approach
is develloped based on nucleon-nucleon collisions (”soft-spheres” model).
This approach is compared with experimental data for 7Au at 1
GeV/nucleon and with a calculation using the "sharp-cutoff” approxi-
mation. We find that the harmonic-oscillator model predicting a Poisson
distribution of the excitation probabilities of multiphonon states gives a
good agreement with one-neutron removal cross sections but is unable

to reach an equally good agreement with three-neutron removal cross

sections.



1 Introduction

Experiments with relativistic heavy-ion beams have accumulated evidence for the
population of two-phonon giant-dipole resonances (GDR) both directly via the ob-
servation of neutron [1, 2] or vy-decay (3, 4] and indirectly via the measurement
of neutron-emission cross sections [5]. Theoretical descriptions of these processes
were based on a semiclassical approach [6]. In the present communication we re-
view some specific aspects of semiclassical Coulomb-excitation calculations: First,
we discuss the differences between perturbation theory and a harmonic oscillator
model in calculating two-phonon-GDR excitation cross sections. We then show how
one can avoid the ambiguity connected with the choice of a specific lower integra-
tion limit in the semiclassical calculation when integrating over impact parameter.
This is done by performing a Glauber type transparency calculation. To check the
validity of our calculations, we compare our results to measured 1n- to 3n- removal
cross sections from %7 Au bombarded with several projectiles at relativistic energies
[5]. The key question that we try to answer is whether our improved calculations
are able to solve the puzzle contained in the fact that In- removal cross sections
could be reproduced reasonably well, whereas 3n-removal cross sections (which are
dominated by 2-phonon GDR excitation) were underestimated. This amounted to
a deficit in the 2-phonon GDR of roughly a factor of two [5]. Similar deficits were
observed also in the exclusive experiment (see Ref.[7] for a detailed discussion of this

subject).

2 Semiclassical descriptions of relativistic Coulomb

excitation

Two different approaches have been used in the literature to describe the excitation
probabilities and cross sections in relativistic Coulomb excitation, namely first- and
second-order perturbation theory [8, 9, 10], and a harmonic oscillator model [6,
11]. As we will show in more detail below, the two models represent two extreme
assumptions: in perturbation theory, the multi-phonon excitations are assumed to be
completely independent from each other, whereas in the harmonic oscillator model
they are assumed to be coupled up to infinite order. Our choice of one of these

extremes will be guided by comparison with experimental data for 7 Au.



2.1 Perturbation theory

If first-order perturbation theory is valid, one can show that the excitation of a GDR-

state with energy F yields for the differential excitation probability the expression

[6]

P(E, b) = w - % N(E, b)o.(E) , (1)

where b is the impact parameter, 0. (E) is the photo-nuclear cross section for a
photon with energy E, and N(F, b) is the number density of equivalent photons
with energy E£. A semiclassical calculation yields [6]

Za .(c

N(E, b) = 2 —)2 z? [[&'12(1:) + % Kg(x)] , (2)

v

where * = Eb/~vhv, v is the projectile velocity, K, (K;) is the modified Bessel
function of order zero (one), o = 1/137 is the fine structure constant, and Z is the
charge number of the projectile (target) for target (projectile) excitations.

To calculate the probability to excite a double-phonon state, i.e. a state com-
posed of two GDR-states, one can use second order perturbation theory. Apart from
a small interference term, the excitation probability of a state with energy F is a
simple product of the probability to excite an intermediate state with energy E’ and
the probability to go from this state to the final state, summed over all intermediate
states. A drawback of this method is that for small impact parameters b, for which
the probability is large, the loss of probability for one-phonon excitation due to the
two-phonon (and higher order) excitation is not accounted for, i.e. unitarity is vi-
olated. This problem can be eliminated by incorporating higher-order corrections,
but a proper treatment of this procedure depends strongly on the model assumed
for the nuclear states. As a conclusion from the above considerations, we expect

perturbation theory to overestimate single-phonon excitation probabilities.

2.2 Harmonic-oscillator model

A simple and transparent result is obtained under the assumption of a harmonic vi-
brator model. In this case, the excitation probability of multiphonon states is given
in terms of a Poisson distribution of the probabilities obtained in first order pertur-
bation theory. This is shown in the appendix of this article. In this approximation

the excitation of the one-phonon state is modified to yield



PO(E, b) = P(E, b) exp{ - P(E, b} . (3)

The exponential on the right hand side takes care of the flux of probability to
higher order excitations. Of course, the harmonic vibrator model is only a rough
approximation to the nuclear states. To obtain Eq.(3) it is implicitly assumed (see
appendix) that all states contribute equally to the unitarity condition. In other
words, even a multiphonon state with an energy equal to, e.g., five times the one-
phonon GDR state is considered to take out flux (although very small) from the
probability to excite the one-phonon state. Such pure high-lying states are however
very unlikely to exist. Thus, while the second order perturbation theory is expected
to overestimate the excitation probabilities, the harmonic vibrator model is likely

to underestimate them.

The excitation of the double-phonon state in the harmonic vibrator model is

given by

PE(E, b) :% /dE’ P(E - E', b) P(E', b) exp{ ~ P(F, b)} (4)

where the integral is over the energies of all 17 intermediate states. An extra
assumption is used here: the excitation operator (the dipole operator) does not
connect the intermediate states due to spin and parity selection rules. The double-
phonon states are considered as L™ = 0%, 2% states [8], the ground-state and the
GDR-state are L™ = 0% and 17, respectively. Moreover, direct excitations of the
double-phonon state are neglected since they are accomplished by means of quadru-
pole excitations, which are much smaller than the dipole ones (monopole states are
not accessible with Coulomb excitation). But, besides these assumptions, we note
that Eq.(4) goes beyond the validity of the harmonic oscillator model. As shown
in the appendix it is fundamental for the proof of Eq.(4) that £ — E' = E' for
all intermediate states, as in a harmonic oscillator. This is not the case when one
assumes that the giant dipole resonance is a mixture of several states the envelope
of which is a broad bump around a centroid energy. It should be considered as a
good approximation to the harmonic oscillator only when the width of the giant
resonance states are small compared to its centroid energy, and when F ~ 2F'.

Another argument used frequently to support the use of the Poisson distribution
for the calculation of the excitation probabilities for multi-GDR states in nuclei is
the so-called equivalent photon picture. This is based on the fact that, due to the

requirement that a pure Coulomb excitation can occur only when the nuclei do



not penetrate, the matrix elements for Coulomb excitation are exactly proportional
to the matrix elements for photo-nuclear excitations. The probabilities and cross
sections can always be written as a product of a factor and the photo-nuclear cross
sections, independent of the multipolarity of the excitation. The proportionality
factor is conveniently denoted as the equivalent photon number. One has to keep
in mind that this is only a terminology, useful for pedagogical purposes. Moreover,
the direct relationship between the Coulomb excitation and the photo-nuclear cross
section is only valid for first-order processes. Higher-order processes will depend
on the intermediate nuclear states, and consequently on the model used for the
purpose. One might realize a bunch of virtual photons hitting a target, out of
which n of them are taken randomly and sequentially excite the nucleus. Such a
hypothesis, which may be used to justify Eq.(4), is at best pedagogical. The number
of virtual, or equivalent, photons with the energy of a giant resonance obtained by

the factorization procedure is only a few (or even less than one). A statistical

argument is therefore not valid.

Despite the above criticisms semiclassical calculations using one of the ap-
proaches mentioned are useful as simple and transparent models. A choice between
the two is hampered by the fact, however, that the usual way of semiclassical calcula-
tions involves a more or less free parameter, namely the minimum impact parameter,
the choice of which can yield agreement with experimental data for either model.

In the following we use a prescription that avoids this free parameter.

3 Calculation of neutron-removal cross sections

3.1 Sharp-cutoff approximation

In the semiclassical approach the total cross section for relativistic Coulomb excita-
tion is obtained by integrating the excitation probabilities over impact parameter,
starting from a minimum value. It is assumed that below this minimum value the
interaction is exclusively nuclear, whereas above pure Coulomb interactions occur
("sharp-cutoff” approximation). It has been found that with this approximation the
Coulomb cross sections are very sensitive to the parameterization of the minimum
impact parameter {1, 3, 5, 8]. One commonly used parameterization at relativistic

energies is that of Benesh et al. [12], fitted to Glauber-type calculations of total
reaction cross sections and reading



bECY =1.35- (A2 + A;° —0.75 - (AP + A%)) fm, (5)

which we refer to hereafter as "BCV”. In ref. [12] a detailed study has been
made concerning the parameterization procedure of the minimum impact parameter.
It was also found that the nuclear contribution to the neutron removal channels
in peripheral collisions has a negligible interference with the Coulomb excitation
mechanism. This is a very useful result since the Coulomb and nuclear part of the
cross sections may be treated separately.

Another parametrization is that of Kox et al. [13] which reproduced well mea-

sured total reaction cross sections of light and medium-mass systems:

1/3 41/3

P t
S S 1.9) fm (6)
YEE

pEoz — 11 (A}D/S + AP+ 1.85A

We have used this parametrization previously [5] and found reasonable agreement
with the measured data for 1n cross sections. It should be noted, however, that the
Kox parametrization of total interaction cross sections has been derived mainly from
experiments with light projectiles and that its application to heavy systems involves

an extrapolation into a region where no data points are available.

3.2 Competition of nuclear and Coulomb processes

It is well known that at relativistic energies and grazing impact parameters nuclei are
partly transparent to each other and that it is much better to replace the sharp-cutoff
approximation by a smooth transition from purely nuclear collisions at b << b,,;,
to pure Coulomb collisions at b >> b,,;, [11]. Such a ”soft spheres” model can be

derived from Glauber theory and can be incorporated in our semiclassical calculation

by rewriting the number of equivalent photons, Eq.(2), as
Z%a scy2 9 [1r0 |
NE b = S5 () « [[xl(x)—i-?lxo(x)] (7)

< exo{ —owy [ds [ ) pit -},

where R = (b, z) with z being the coordinate along and b perpendicular to the
beam direction. The quantity oyy is the nucleon-nucleon cross section, and p,,

are the ground state nuclear densities of projectile and target, respectively. The



parametrization of the nuclear densities has been taken from the droplet model [14]
in accordance with Shen et al. [15].
Since we are dealing with nucleus-nucleus collisions at energies of the order of

one GeV /nucleon, we adopt a value of o) = 40 mb in our calculations.

3.3 Coulomb dissociation of 197Au

In the following we will apply the soft-spheres approximation to the case of °"Au
where inclusive 1n— to 3n— removal cross sections have been measured by Aumann
et al. [5]. Apart from the exponential function at the right hand side of Eq.(7)
which accounts for nuclear transparency in near-grazing collisions, the calculation
is identical to the one described in [5].

As input to our calculations we will use the experimental photo-neutron emission
cross sections from Ref. [16]. A Lorentzian fit to the (v, zn)-data is used to parame-
trize the GDR in "Au. The parameters are an excitation energy of 13.72 MeV, a
width of 4.61 MeV, and a strength of 128% of the dipole sum rule [16]. The Lorentz
parameters for the isoscalar (isovector) GQR are taken as 10.8 (23.0) MeV for the
excitation energy, 2.9 (7.0) MeV for the width; we assume 95% exhaustion of the
respective sum rules [17]. With these parameters we calculate the excitation cross
sections do(E)/dE for one- and two-phonon dipole- and quadrupole-excitations.
The respective neutron emission cross sections are given by o, = [ %Eglfm(E)dE,
where f..(E) is the probability to evaporate z neutrons at excitation energy E. For
excitation energies below 27 MeV, f..(F) is taken from the experimental (v, zn)-
data [16], and for higher energies from a statistical decay calculation with the code
HIVAP [18]. Since the three-neutron emission threshold in gold is above the energy of
the GDR state, this channel is fed mainly by the two-phonon excitation mechanism,
while the 1n cross section is dominated by the excitation of the GDR.

In Fig. 1 we plot the one- and two-phonon excitation probabilities for gold-
gold collisions at 1 GeV/nucleon as a function of the impact parameter using the
harmonic-oscillator model (Eqs.(7) and (8)). The solid curve is the result of the
soft-spheres model. We observe that this model gives an excitation probability
which is a smoothly increasing function of b up to a maximum value, after which
it decreases exactly as the sharp-cutoff approximation (dashed curve). For this
latter approximation, we have taken b2 from Eq.(5). We expect that the BCV
parametrization of b,,;, should yield similar results as the soft-spheres calculation

since it was derived in fitting the complementary process, the nuclear interaction,
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Figure 1: Excitation probabilities of one-phonon (a) and two-phonon (b) GDR states
in 1%7Au due to relativistic Coulomb excitation by a gold projectile at 1 GeV /nucleon,
as a function of the impact parameter. The full (dashed) curves are obtained using
a "soft-spheres” (”sharp-cutoff”) model as described in the text.

calculated also with Glauber theory.

In Fig.2 we examine how well we can reproduce experimental 1n- and 3n- removal
cross sections with our model. Again, the solid curve denotes the soft-spheres cal-
culation using the harmonic-oscillator model. This calculation is in good agreement
with the 1n cross sections. The dotted curve, which is from a sharp-cutoff calcu-
lation with 62¢Y from Eq.(5), deviates only insignificantly from the soft-spheres
result, as expected. This remarkable agreement tells us that for practical purposes
we can avoid the extra numerical complication connected with the use of Eq.(7) and

BCV in sharp-cutoff calculations in the earlier work [11, 19].

corroborates the use of b
It also indicates that, contrary to our previous choice [5], the use of 6527 is physically

less justified.
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Figure 2: Experimental 1n- and 3n- removal cross sections for *” Au bombarded with
relativistic projectiles (from Ref.[5, 19]) in comparison with theoretical calculations
from this work (solid curve: "soft- spheres” calculation with the harmonic-oscillator
model; dashed curve: same for perturbation theory; dotted curve: ”sharp-cutoff”
calculation with the harmonic-oscillator model using 625Y from Eq.(5)). '
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The dashed curve in Fig. 2 denotes a soft-spheres calculation with perturbation
theory used to calculate the excitation probabilities. As expected from the discus-
sion in Section 1, the 1n cross sections are much higher than with the harmonic
oscillator approach and deviate considerably from the data. Since our model avoids
an arbitrary choice of b,,;, as in Ref.[8], we conclude that the harmonic oscillator
model of multiple giant resonances is appropriate for the case of large-Z systems
and that the violation of the unitarity condition in the perturbation theory approach
leads to discrepancies with the experimental data far beyond the error bars.

The lower set of curves in Fig. 2 shows the results for the 3n channel using

the same models as in the upper part of the figure. We note that, as expected,



perturbation theory yields higher cross sections, which in this case are closer to the
measured data than those calculated with the harmonic-oscillator model. Since we
have chosen, however, to use the 1n cross sections as the test case, where the statis-
tical accuracy is better and the nuclear contribution can be neglected completely, we
are left with the conclusion that it is not possible to reproduce 1n and 3n cross sec-
tions (i.e. one- and two-phonon excitation) with the same model and that the lack
of two-phonon excitation probability observed previously [1, 3, 5] is not connected
with an improper choice of b,,;,. Adjusting slightly the density radius parameter
in the soft-spheres calculation to reproduce better the upper data points in Fig. 2
would worsen the agreement with the lower data points, i.e., the lower solid curve
would be pushed downwards. Including the three-phonon excitation probabilities
would not explain these discrepancies, since they are very small.

As a final proof that there are only minor differences between a soft-spheres ap-
proach and a sharp-cutoff calculation using 65%Y, we show in figure 3 the differences
that one obtains for the excitation energy spectrum of one- and two-phonon states

with the two models. The excitation spectra of the one-phonon states are indistin-
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Figure 3: The energy spectrum of relativistic Coulomb excitation to one-phonon
and two-phonon GDR states obtained in the harmonic-oscillator approach with the
”soft-spheres” model (solid curves) and with the sharp-cutoff model using the BCV
parameterization of b,,;, (dotted curves). The two-phonon spectrum is multiplied by
a factor of 10.
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guishable in both approaches. Only a minor difference between the two models is
visible for the double-phonon excitations. This is due to the stronger dependence of
the double-phonon probability on small impact parameters (~ 1/b* for one-phonon
excitation, and ~ 1/b* for double-phonon excitation). One could expect that the
spectrum would be somewhat distorted by the stronger dependence of the virtual
photon spectrum on "hard photons” which originate from small impact parameter
collisions. But, apart from a small difference in the area below the spectrum, its

form is not appreciably modified.

3.4 Nuclear-plus-Coulomb interactions

Up to now it was tacitly assumed that in a peripheral nuclear collision either a
nuclear interaction or, in the case of transparency, a Coulomb interaction may take
place. It is conceivable, however, that in the same collision both processes occur. As
an estimate of the contribution of such processes to the 1n to 3n channels studied
in the present work, we have modified our intranuclear-cascade calculations of the
nuclear processes to take into account also possible electromagnetic excitations. We
note that the only channel that needs to be studied is the one-neutron knock-out
in the intranuclear-cascade step of the collision. The *®Au prefragment formed in
this process then feeds the 2n and 3n channels by evaporation. The inclusion of
Coulomb processes proceeds in our estimate in the same way as in the soft-spheres
calculation of the total nuclear interaction probability: The impact-parameter dis-
tribution of "®Au-formation from the cascade calculation (upper part in Fig.4) has
to be multiplied by the probability of Coulomb excitation (dashed curve in Fig.1).
As a result, about 30% of the '"®Au prefragments are Coulomb excited and are thus
shifted towards higher excitation energies which are obtained by folding the nuclear-
excitation energy distribution taken from the cascade calculation with the Lorentz
curve of GDR excitation (lower part of Fig.4).

The net effect of the inclusion of nuclear-plus-Coulomb processes i1s small: on
the one hand the nuclear part of the In to 3n channels is depleted by 30%, since the
corresponding '*®Au prefragments have been shifted to a different excitation energy
distribution. On the other hand the 2n and 3n channels are fed by evaporation from
this very distribution, yielding a net increase e.g. in the 3n channel of about 10 mb
- a value that is less than the accuracy of the cross sections of Ref. [5] and also
much less than the deficit found in the theoretical cross section for the 3n channel

as compared to the experimental one of about 100 mb.
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Figure 4: (a) Upper part: Impact-parameter distribution from an intranuclear-
cascade calculation [5] for the formation of 1% Au without (dashed curve) and with
Coulomb excitation (full curve). The latter is obtained by multiplying the former
distribution with the Coulomb excitation probability (dotted curve). (b) Lower part:
Excitation-energy distribution obtained by folding the nuclear excitation-energy spec-
trum of '%6Au from the cascade calculation (histogram, approximated by the dashed
line) with the Lorentz curve representing the GDR excitation of ***Au. Note that only
30% of all nuclear events leading to '"®Au are calculated to undergo also Coulomb
excitation.
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4 Conclusion

We conclude that an obvious modification of the semiclassical theory of relativistic
Coulomb excitation, namely the transition from a ”sharp-cutoff” to a ”soft-spheres”
model, resolves ambiguities connected with the choice of a specific expression for
the minimum impact parameter necessary in previous calculations. Once this previ-
ously free parameter is fixed, one can make a decision which of two rather extreme
assumptions, namely complete independence or complete coupling of the multi-
phonon excitations, is more appropriate. Qur calculations show that the harmonic
oscillator model describes 1n-removal cross sections for the interactions of relativis-
tic heavy tons with " Au with good accuracy. The basic discrepancy, however, that
we and others have noted earlier, which lies in a good description of one-phonon
excitation and a large deficit in the calculated two-phonon excitation, persists. In
a simple estimate we have shown that this deficit cannot be attributed to a neglect
of nuclear-plus-Coulomb interactions. It is possible that a coupled-channels calcu-
lation could be able to remove this dicrepancy. More generally, a truly microscopic
description of multi-phonon excitations would be desirable, that circumvents the
problems connected with the inadequacies of the presently used harmonic-oscillator

and perturbation-theory models.

The authors acknowledge gratefully stimulating discussions with T. Brohm and
K.H. Schmidt concerning the parametrization of nuclear density distributions and

the aspect of nuclear-plus-Coulomb interactions.
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Appendix - Dipole excitations of an oscillator

We give here a proof that the dipole excitations of a harmonic oscillator are given
by a Poisson distribution of the excitation probabilities obtained in first-order per-
turbation theory. For simplicity we consider a one-dimensional harmonic oscillator

with a time-dependent hamiltonian in the form of

H = Ho+At) - ¢ (8)
= Ho+ A(t) (a_*_af)’

where A()Z is a time-dependent perturbation, e.g., the dipole field of a relativis-
tic heavy ion. In the last step of the above equation we expressed & in terms of the
creation and annihilation operators for the harmonic oscillator states. Besides the
strength of the time-dependent field, A(t) incorporates the strength of dipole excita-
tions in the harmonic oscillator model. The above perturbation links neighbouring
states only. This is important for the proof.

If the perturbation A(t) is very weak, on may use the first-order perturbation

result to calculate the excitation of dipole states, i.e.,

X = ooy = % /_Z exp {i(E; — E)t/h} A(t) dt . (9)

The problem is best solved in the interaction representation [20]. Then one can
show that the amplitude for the system going from the ground state to the n-th
state is given by

1 >
a, =< n.Texp{E /_OO V(t) dt}‘O >, (10)
where T is the time-ordering operator and

V(1) = exp {iHot [h} A(t) (a+a') exp{ —iHot/h} . (11)

Since for the harmonic oscillator only unit steps of energy E¢— E; = hw are possible,
we get V(1) = ¢ A(t) (a+a'). The transition operator commutes at different times,

and

1o )
Texp{ﬁ/_ V(t) dt} = o' Xt X7 (12)

where we used that for two operators A and B the following idendity holds: eAt8 =

et eB ¢~1ABY/2 [20]. Moreover, since exal() >=0, we get

a, =< n‘e"“T e_xz/Q‘O > (13)

14



Only the part of the expansion ex’e!

The other terms do not contribute since < n

equation above we get

0 > with the n-th term has to be considered.
n' >= 0 for n # n/. Thus, from the

(14)

The excitation probability of the n-th state is thus given by the Poisson distrib-

ution
1

P = 2 o= pr

where P = x? is the first-order probability.
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