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ABSTRACT

We use the semi-analytical program RCFORGV to evaluate radiative corrections to
one-photon radiative emission in the high-energy scattering of pions in the Coulomb field
of a nucleus with atomic number Z. It is shown that radiative corrections can simulate a
pion polarizability effect. The average effect is a7 = —(7¢ = (0.20 4 0.05) x 10~*3cm3,
for pion energies 40-600 GeV. We also study the range of applicability of the equivalent
photon approximation in describing one-photon radiative emission.
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1 Introduction

Pion electric @ and magnetic 3 Compton polarizabilities [1]-[4] characterize the induced tran-
sient dipole moments of pion subjected to external oscillating electric E and magnetic H fields.
The polarizabilities can be obtained from precise measurements of the gamma-pion Compton
scattering differential cross section. They probe the rigidity of the internal structure of the
pion, since they are induced by the rearrangement of the pion constituents via action of the
photon electromagnetic fields during scattering. For the ym interaction at low energy, chiral
symmetry provides a rigorous way to make predictions. This approach [5, 6] yields a, = -3,
= 2.7 + 0.4 (in units 107 cm?).
The radiative scattering of high energy pions in the Coulomb field of a nucleus [7]:

m(p1) + Z(p) = m(p2) + Z(p') + 7(K'), (1)

determines the ym Compton scattering:

m(p1) + (k) = m(p2) + (k') (2)

The y7m scattering was measured [8, 9] with 40 GeV pions at Serpukhov via the Primakoff
radiative scattering process (1). The incident pion scatters from a virtual photon, characterized
by 4-momentum k = p—p’; and the final state gamma ray and pion are detected in coincidence.
The pion electric polarizability o, was deduced in a low statistics (~ 7 000 events) experiment
to be:

Gr = —fBr = 6.8 £ 14,000 + 1.2, (3)
It was assumed in the analysis that &, + 3, = 0, as expected theoretically [5]. This result
differs from the chiral prediction by more than two standard deviations. The experimental
situation points to the need for much higher quality data and more attention to the systematic
uncertainties arising from different measurement and analysis techniques. A new Primakoff
experiment is planned at FNAL [10].

In the lowest order, the process of the radiative scattering of the pions in the Coulomb
field of a nucleus is described by Feynman graphs of Fig. 1: ! 1a) the QED interaction of the
pointlike pion with the electromagnetic field of the nucleus; 1d) the two-photon interaction of
the pion, including the structure effects described by the polarizabilities of the pion. In the
next order of a, there are contributions from the QED processes presented in Fig. 1(b,c). The
double bremsstrahlung process (1c):

m(p1) + Z(p) = m(p2) + Z(p') + (k1) + v(k2), (4)

and the one-loop diagrams (1b) with the virtual photon, both contribute to the measured
cross section of the reaction (1).
The total cross section for the radiative scattering process (1) can be written in the form:

do_tot — daBorn + dapol + da,rc' (5)

Here, doBo™ corresponds to scattering of a pointlike pion in the Born approximation, and
the following terms give the contributions of the structure effects (linear terms in the pion
polarizability) and the radiative corrections. The radiative corrections are important for high
statistics experiments, and are needed to extract the Compton cross sections from data. The
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Figure 1: Feynman graphs for radiative scattering of pions on Coulomb center: a) the Born
approzimation; b) the one-loop QED corrections; c) the double photon bremsstrahlung; ) the
structure effects - pion polarizabilities.

experimental data can be interpreted in terms of polarizabilities, only after accounting for the
radiative corrections.

The theoretical investigation [11}-[13] of these radiative corrections (RC) was undertaken
initially for the analysis of the experiment [8, 9] of JINR (Dubna) and IHEP (Serpukhov).
It was shown that the detailed properties of the gamma detector are important; such as
the photon detector threshold, energy and position resolution, and the two-photon angular
resolution. For the setup of Antipov et al. [8, 9] at 40 GeV, the radiative corrections were
estimated to affect polarizability determinations at the level of ~ 3% [13].

In this note we present a study of the radiative corrections to the process (1) at higher
energies and for higher Z targets. Our calculations were carried out with the semi-analytical

program RCFORGYV [14].

2 The semi-analytical program RCFORGYV

The analytical formulae for the RC to the inclusive spectra of the scattering of a spinless point-
like particle by a Coulomb center with emission of a hard photon were obtained in {11, 13].
The contribution of the QED one-loop corrections (Fig. 1b) and of the double bremsstrahlung
from pions (Fig. 1c) were calculated exactly without any approximation and for m, # 0. The
calculation of the Feynman diagrams was carried out using the program SCHOONSCHIP [15],
which allows the relevant algebraic manipulations and analytic transformations. The other

In Fig. 1, only one of the full set of needed diagrams is presented.




important contribution from higher order processes corresponds to the QED rescattering pro-
cesses in which the scattering pion interacts with the electromagnetic field by exchange of two
virtual photons. The calculations of the rescattering cross section lead to the analytic results
presented in [12].

These formulae were incorporated into the Fortran code RCFORGYV [14]. The RCFORGV
program calculates more than 100 contributions from the 43 Feynman graphs, that are needed
to describe the pion scattering by nuclei: 3 diagrams in the Born approximation, one graph
for the structure effects (polarizability), and 39 diagrams for the radiative corrections. The
numerical calculations in the RCFORGYV program are performed by the Monte Carlo method.
Double precision numbers are necessary for the calculations of the contribution of the double
bremsstrahlung process (2). The program package RCFORGYV is set up on a IBM-3072 at Tel
Aviv University.

The semi-analytical program RCFORGYV calculates the radiative corrections of order O(a)
to the process (1) for the following cross sections:

i) for do/dw in the w-bins : w = E; — Ey;
ii) for d%0/dE,dQ@? in the points of (E;, @Q?) .

Here Q% = —(p, — p2)?, and E; (E;) are the initial (final) energies of the pions in the
laboratory system. These cross sections are needed to the analysis of planned experiments.
In RCFORGYV, it is easy to provide a variety of kinematic cuts and criteria for event selec-

tion, and to take into account the experimental geometry. The following kinematic constraints
are included in the program:

1)t = —k? = —(p; — p2 — k')? < t for the 4-momentum transfer ;
2) 0. < 0, for the pion scattering angle in the laboratory frame;

3) w > @ for the photon detection threshold;

4) 0., > 0., for the angular resolution of the double bremsstrahlung.
Here f is the maximum value of the squared momentum transfer, fixed by experimental reso-
lution in ¢. Below #, Coulomb scattering dominates [7]. Also, 8, is the maximum of the pion
scattering angle. The parameters @ and 0., are important for distinguishing double and single
bremsstrahlung. If w < @ or 0., < 0., then these two processes are indistinguishable [12].

Using RCFORGV, the cross sections at the energies 40 and 600 GeV for the radiative
scattering of m~ mesons on carbon, were calculated in the Born approximation (the Born
cross section), including polarizability contributions and radiative corrections. Numerical
calculations were performed by the Monte Carlo method, using 50 000 events for each incident
energy. The value 40 GeV was chosen to test our new program installation with results
given previously in [13]. One set of calculations was done for lead, to investigate the Z
dependence. The cross sections were calculated with kinematic constraints given in Table
1. These constraints take into account the geometry and the event selection criteria for
experiments [8] and [10]. Due to kinematics, we chose the parameters of ¢ and & larger, and
angles 8, and 0., smaller, for energy 600 GeV compared to 40 GeV.



Energy Parameters
t @ 0, 0,
GeV GeV? | GeV rad rad
40 2x107* 1 0.5 | 1.5x1072[2.0 x 1073
600 |4x107*(10.0 [7.0x1073[2.0 x 10~*

Table 1: The kinematic constraints used in the program RCFORGYV.

3 The role of radiative correction

In this section we present the RCFORGV calculations. Following [12], we define the radiative
correction factor 6(w) as the ratio of the radiative corrections cross section to the Born cross
section, as a function of the detected gamma energy w:

o) = Lol
(do/dw

)Born :

(6)

The results of the RC calculations for the radiative scattering of 40 GeV and 600 GeV 7~
mesons on carbon nuclei are presented in Fig. 2. One sees that the absolute value of §(w) is

04 |-
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Figure 2: Radiative correction 6(w) for radiative scattering of 40 and 600 GeV w~-mesons on

C? nucles.

less than 1% over a large energy range.
The polarizability cross section can be written as the sum of two terms [13]:

do™ = —(ay + Br)do® + Brdo™,




where do® and do™ give different combinations of electric and magnetic polarizabilities. We
imposed the condition &, + 3, = 0. In our analysis, we therefore determine radiative cor-
rections with respect to one polarizability value &, = —3,. To set the scale, we used the
values:

Qr = "',Bw = 3. (8)

The ratio of the radiative correction cross section to polarizability cross section is presented
in Fig. 3. This ratio changes in the interval ~ (—5;5)% as function of gamma energy w. The
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Figure 3: Ratio of the radiative correction to the polarizability cross section for radiative
scattering of 40 and 600 GeV n~-mesons on C'? nucle:.

formula (5) can be written:
do' = doB°™ 4 B, do™ + do'°. 9)
To emphasize the fact that radiative corrections can simulate a polarizability, we rewrite (9):
do'™ = doPo™ 4 (B + B)dor™, (10)

where 31¢ = do"/do™.

In this analysis, we calculate also the double differential cross section d*c/dE,dQ*. We
can transform this cross section to the center mass of the ym system, as d*a/ds;dcosf*. Here,
s1 = (p1 + k)? = (p2 + k')? and 6* are the ym energy squared, and the Compton scattering
angle. At very small —k? < f and small , < 6, we find:

d*c  Ey(s; —m2)*(1 — cost*) do

= . 11
dsidcosf* 452 dE,dQ? (11)




The ratio of the polarizability to the Born double differential cross section for different
scattering angles, as a function of sy, is presented in Fig. 4a. In this figure ratios of d?c /d E;dQ?
were taken, but the labeling is according to the CM variables s, and cosf*. It is seen that
the absolute value of the polarizability contribution increases with energy and can reach a
value of ~ 30% at backward angles. For a gamma energy w* = (s; — m2)/2,/s1 =~ 150MeV
and cosf* ~ —0.5, the contribution of magnetic polarizability to the total cross section of
reaction (1) is about 7%. At the point s; = 0.18GeV? (w* =~ 200MeV) and cosf* = —0.95,
this contribution attains magnitude of ~ 30%. In the laboratory frame, this kinematical range
corresponds to the range of detected gamma energies w ~ (0.60 — 0.90) £y, where

E1 m2

5 (1— _s—ll)(l — cos0™). (12)

w

Here, we point out that data of [8, 9] were taken in this region of w as well. These
authors showed that the preferred kinematical range to study the magnetic polarizability in
the laboratory frame is the range of final gamma energy w > 0.75E;. In the center of
mass frame, this region is defined by the inequalities: s; > 0.15GeV? and cosf* < —0.75.
One sees from Fig. 4a that for this kinematical range, the relative contribution of magnetic
polarizability to the Born cross section is more than 15%. In Fig. 4b, the ratio of the RC to
polarizability double differential cross section is shown. We see that the relative contribution
from radiative corrections to the polarizability cross section contribution is less than 5% at
backward angles for large enough values of s; > 0.13GeV2.
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Figure 4: Ratio of o' = d*c/dE,dQ? for: a) the polarizability and the Born cross sections; b)
the radiative correction and the polarizability cross sections.

We wish to determine the magnitude of the simulated contribution to the polarizability,
due to the radiative corrections. We can do this by calculating the average value of the cross
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section ratio do™/do™ for the gamma energy range w > 0.75E;. We have:

Brf = %zj: do(w;)/do™(wi), (13)

where n is the number of w bins.

For the energies 40 and 600 GeV, we obtained 85° =~ —0.20. The accuracy of our calculation
may be estimated as:

8(87) = Vnewhs, (14)
where €,y = /€2, + €2,,. Here, €. and €, are the relative uncertainties in the radiative
correction and polarizability cross section calculations. These uncertainties were calculated
by the RCFORGV program for each of w bins and we have found that over the gamma energy
range w > 0.75E; all of €, are approximately the same . This fact explains the appereance of
/7 in (14). We have obtained €, & 0.12, which gives the calculation accuracy 5(65°) = 0.05.

In Fig. 5, we show the ratio of the total cross section for reaction (1) to the Born cross
section. This is given as a function of gamma energy w, for incident pion energies 40 and 600
GeV. The histogram gives do'®* calculated by (9) with 3, = —5, and the curve corresponds
to do'® calculated by (10), with 8, = —5 and 8;° = —0.20. It is clear that both calculations
are in agreement. The value of 37¢ also agrees with the results presented in [13]. The same
analysis was done assuming that &, = 3, = 0, and we again find 37° ~ —0.20. This last result
is important, showing that the radiative corrections simulate B¢ ~ —0.20, independent of the
B value.
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Figure 5: The ratio of the total cross section to the Born cross section as a function of detected
gamma energy w.

One calculation with 8, = —5 was carried out to study radiative corrections to pion radia-
tive scattering on lead. The Born and polarizability cross sections show the Z? dependence
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expected theoretically. The ratio of radiative correction to Born and to polarizability cross
sections was practically unchanged compared to carbon. This is because 6(w) is practically
independent of Z. Only the contribution from rescattering has a Z dependence, and this is a
very small contribution to the total RC.

We now summarize the main results of our RC study. The radiative corrections simulate
a polarizability effect at the level of 87¢ ~ —0.20. This result is for pion incident energies
from 40 to 600 GeV, and for nuclei from carbon to lead. We find for pr =~ —0.20 £ 0.05 at 40
and 600 GeV, for B, from the interval (—7; —2), the relative contribution to the polarizability
from radiative corrections equals 87°/3, ~ (3— 10)%. Therefore, we give a simple lowest order
method of obtaining the polarizability from experimental data. We write the cross section as
a sum of Born and polarizability cross sections:

o™ = doBo™ 4 BPdo™, (15)

We now find the best fit 32 for do®*? using RCFORGYV, or any other convenient fit pro-
gram. This experimental 32*7 must be corrected by 87°. We have by comparison to (10), the
relationship: §5%F = 3, — Brc. Thus a value 3P = —5.20 would correspond a polarizability
B = —5. A more exact determination would require analysis of the data with RCFORGV.

4 Different Born cross section calculations

In this section, we briefly describe two methods for the Born cross section calculation. The first
is an exact calculation performed with the help of the RCFORGV program, and the second
is the equivalent photon approximation (EPA) (Weizsicker-Williams’s method) [16, 17].

The exact calculation method consists of an accurate counting of the contributions from
the all QED diagrams in the lowest order of . This corresponds to the scattering of a spinless
pointlike particle by a Coulomb center with hard photon emission. The exact calculation takes
into account the magnitude of the photon virtuality k2. The exact expression of the Born cross
section of the process (1) has the following form [12]:

d2UBorn Z2a3 tmaz (t 0
= — . 16
T = gt ), @50 1)

The explicit form of the function S°(¢) and the kinematical limits tmin,mez are given
in [11, 12]. Here we emphasize that the exact Born cross section calculation includes the
contribution of the logarithmic term ~ In(tmez/tmin) (leading logarithmic approximation),
and the additional contribution of the next term which is proportional to ~ (1/tmin—1/ tmaz)-

The EPA method is based on the assumption that the photon virtuality is very small,
—k? < t << m?. Therefore, one ignores the small deviation from the real photon, and one
takes only the leading logarithmic term. In this case, the cross section of the reaction (1) can
be expressed via the cross section for the y7 scattering (2):

dorz3nvz = n(81)ds1do(51). (17)

Here, doyr(sy) is the cross section of the Compton scattering of the real photon, n(s;) is the

equivalent photon density .
In the EPA, the cross section for the reaction (1) in the center of mass frame can be written:
d?eWW a Z? tmaz

In

ds\dcost0*  ms —m? tmin

tmin t2

tmi doyn
min _ 18
* mar 1] dcosf* (Sl)’ ( )

9



where do.,x(s1)/dcosd* is the unpolarized differential cross section of the reaction (2).
The Born cross section of the yr Compton scattering has the form [18] :
daf,f"‘ ra? 2mlt,

(s1)=—|1+[-1+

dcost* $1 (s — m2)(u; — m?)

s (19)

where t; = (p1 — p2)%,u1 = (p1 — k')
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Figure 6: Comparison of two Born cross section calculations: ezact calculation and EPA
method (o' = d%c [dE,dQ?).

A comparison between the two Born cross section calculations was carried out in order
to estimate their applicability. In Fig. 6a the difference between the two double differential
cross sections d?0/dE;dQ?, is presented. The superscript Born refers to the exact Born cross
section performed by RCFORGV program, and WW to the Born cross section calculated by
the EPA method. As in Fig.4, ratios of d?c/dE;dQ? were taken, but the labeling is according
to the CM variables s; and cosf*. The cross section difference is given with respect to the
exact Born cross section.

From Fig. 6a, we can see that the EPA method agrees with the exact Born calculation
with a precision better then 3 % in the kinematical region s, 2 0.13GeV? and at backward
scattering angles cosf* < —0.5. From Fig. 6b, the cross sections difference divided by the
polarizability cross section is displayed. In the kinematical range limited by the inequalities
s1 > 0.13GeV? and cosf* < —0.5, both Born cross section calculation methods are in agree-
ment and can be applied equally well. This kinematical region was also preferred for the study
of the magnetic polarizability (see section 3).

The validity of the EPA method was discussed in recent papers (see for example [19}-[21})
shown that the EPA for the other processes can lead to large errors, if used outside of the
region of applicability and must be used judiciously or improved in order to get correct results.
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5 Conclusions

We used the semi-analytical program RCFORGYV to evaluate the contribution of the radiative
corrections to the total cross section of the pion scattering by a Coulomb center with hard
photon emission. We showed that the radiative corrections can simulate the polarizability
effect and the average effect 37° = (—0.20 £+ 0.05) x 10~*3cm® was obtained. We showed
that the preferred kinematical region to investigate the magnetic polarizability cross section
in the laboratory frame is the range of final gamma energy w > 0.75E; . The corresponding
range in the center of mass frame is defined by the following inequalities : s, > 0.15GeV?
and cosf* < —0.75, where s; and 0* are the energy squared and the polar scattering angle.
The cross sections of the reaction (1) computed in the Born approximation using the exact
calculation method and the equivalent photon approximation are in the agreement for hard
emitted photons w > 0.75E; . In the range of the photons w < 0.6F,, we must use the exact
calculation method. The suggested method allows to take into account the radiative correction
effects with high accuracy.
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