
A
TL

-D
A

Q
-P

R
O

C
-2

01
9-

00
8

17
M

ay
20

19

Evaluating InfluxDB and ClickHouse database
technologies for improvements of the ATLAS operational
monitoring data archiving

Matei-Eugen Vasile1, Giuseppe Avolio2 and Igor Soloviev3

1Institutul Nat,ional de Cercetare-Dezvoltare pentru Fizică s, i Inginerie Nucleară Horia Hulubei
(IFIN-HH), Măgurele, România
2European Laboratory for Particle Physics, CERN, Geneva 23, CH-1211, Switzerland
3University of California, Irvine, CA 92697-4575, US

E-mail: matei.vasile@cern.ch

Abstract. The Trigger and Data Acquisition system of the ATLAS experiment at the Large Hadron
Collider at CERN is composed of a large number of distributed hardware and software components
which provide the data-taking functionality of the overall system. During data-taking, huge amounts
of operational data are created in order to constantly monitor the system. The Persistent Back-End
for the ATLAS Information System of TDAQ (P-BEAST) is a system based on a custom-built time-
series database. It is used to archive and retrieve any operational monitoring data for the applications
requesting it. P-BEAST stores about 18 TB of highly compacted and compressed raw monitoring
data per year. Since P-BEAST’s creation, several promising database technologies for fast access to
time-series have become available. InfluxDB and ClickHouse were the most promising candidates for
improving the performance and functionality of the current implementation of P-BEAST. This paper
presents a short description of main features of both technologies and a description of the tests ran
on both database systems. Then, the results of the performance testing performed using a subset of
archived ATLAS operational monitoring data are presented and compared.

1. Introduction
The Trigger and Data Acquisition (TDAQ) system of the ATLAS [1] experiment at the Large Hadron
Collider (LHC) [2] at CERN is currently composed of a large number of distributed hardware and
software components. There are about 3000 machines and in the order of O (105) applications
running at any given time, which, working in concert, provide the data-taking functionality of the
detector system.

During data-taking runs, a huge flow of operational data is produced in order to constantly
monitor the system and allow proper detection of any potential anomalies or misbehaviors. The
Persistent Back-End for the ATLAS Information System of TDAQ (P-BEAST) [3] is a system based on
a custom-built time-series database. It is used to archive and retrieve for applications any requested
operational monitoring data. P-BEAST stores about 18 TB of highly compacted and compressed raw
monitoring data per year acquired at 200 kHz average information update rate during ATLAS data-
taking periods.

Copyright 2019 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license.



2. Background
Since P-BEAST has been put into production, 4 years ago, several promising database technologies
that feature fast access to time-series or column-oriented data become available. InfluxDB [4] and
ClickHouse [5] have been the most promising candidates for use in improving the performance and
functionality of the current implementation of P-BEAST.

A survey was done to identify if any suitable candidate technologies that could potentially be used
in improving P-BEAST exist. Once viable candidates have been identified, a series of synthetic tests
have been planned and ran on these database systems in order to try and leverage the best possible
options for storage of the P-BEAST data using their respective data model capabilities.

These performance tests have been performed using a subset of archived ATLAS operational
monitoring data.

3. Testing
3.1. Testing strategy
P-BEAST can store integers, floats, strings and arrays and structures of these data types. A preliminary
survey was done amongst the existing time-series databases, columnar databases, key-value stores
and anything else that could conceivably work as a fast backend for P-BEAST, were available on the
market, and were, ideally, Open Source Software. Only two candidate database have been identified:
InfluxDB (a time-series database) and ClickHouse (a columnar database).

One of the most important qualities in a candidate was raw write speed. A minimum write speed
of 100k metrics/s was used as a point of reference. During the survey, we discovered an existing survey
that tackled the same issues we were investigating. This survey proved most useful because it gave
us a starting point to easily identify which of the existing technologies met our minimum write speed
reference criterion. Moreover, other qualitative factors, beyond raw write and read performance, were
important in this preliminary research. The factors directly relevant to the write performance testing
described here are concerned with the database systems’ capability of mapping existing P-BEAST
data on the data model supported by each database technology:

• support not just for numeric values but also for strings,

• support for arrays (or ability to simulate it) and

• support for structures (or ability to simulate it).

Using these data model requirements, we filtered the candidate pool we already had from the write
speed survey and ended up with the final two candidates: InfluxDB and ClickHouse.

InfluxDB is a time-series database with support for storing integers, floats, strings. It is schemaless
and has a high write speed. InfluxDB organizes data using measurements (similar to the tables from
classic DBMSes), fields & tags (similar to columns) and points (similar to rows).

The timestamp of a point is always the primary key. Tags are always indexed, fields are never
indexed. The more tags are used, the lower the performance, but adding new fields has very little
impact on performance. A collection of data that share a measurement and a tag set constitutes
a series. The series cardinality is the number of unique measurements and tag set combinations
in a database and is crucial for database’s performance. Both tags and fields can be added in a
measurement on the fly, making InfluxDB de facto schema-less.

ClickHouse is a columnar database with support for storing integers, floats, strings, arrays and
control over signedness and word size. It also has a high write speed.

On the surface, at least regarding its query language, ClickHouse is much closer than InfluxDB to
a classic relational DBMS. However, it lacks the schema flexibility of InfluxDB.



3.2. Tested Data Models
P-BEAST objects are stored using a class.attribute system. The smallest piece of data stored is a time
series data point that represents a value of an attribute. The attributes whose values are stored belong
to objects. The most important dimension is the number of objects that need to be stored. The class
and attribute counts are less variable compared to object counts. If they grow, the database storage
system can be easily scaled horizontally. If object counts increase, there is no way but for the database
to handle the higher counts. Thus, the very important series cardinality will be linked to object count.

Drawing up the testing methodology started from the particularities of InfluxDB, because
InfluxDB was the first database being tested. The focus of this first round of testing was write
performance.

For versioning purposes, the data types are stored as part of the column name for all tested data
models, both in InfluxDB and in ClickHouse. For example, if we have variable x of data type integer
and at a version change the data type of x becomes float, we encode the data type using the field
key/column name: before the version change we use field/column x:int and after the version change
we use field/column x:float.

InfluxDB has no native support for arrays, so arrays are encoded using multiple fields and encoding
the index of the array elements in the field keys. For example, if we have array vector of length
N, we encode it using the fields named vector[1], vector[2] ... vector[n]. Structures are encoded
using multiple fields. For example, if we have structure struct, we encode it using the fields named
struct.element_a, struct.element_b etc.

These rules can be combined to encode the types of the data stored into arrays (e.g. vector[k]:int,
array[n]:string etc.) or structures (e.g. struct.element:float etc.). Furthermore, they can be combined
even more to create structures of arrays, arrays of structures etc. (e.g. vector[m].element_x:int,
struct.array[y]:float etc.);

InfluxDB #1 test: Single measurement - the timestamp and a tag containing the object name make
up the primary key in each measurement (Figure 1). A P-BEAST attribute is stored using a single
measurement, and the object tag is used for defining the P-BEAST object that data point belongs to.

InfluxDB #2 test: Multiple measurements - the timestamp is the primary key in each measurement.
Each measurement contains data from a single object. The object name is stored as part of the
measurement name (Figure 2).

ClickHouse has support for arrays. Because of it, in the ClickHouse tests arrays are stored in a single
column. The rest of the data model is organized along the same lines as in the case of the InfluxDB
tests. In order to maintain similarity with the InfluxDB setup, when using object name column are
used, they are used to create partitions. However, the ClickHouse documentation recommends that
"you shouldn’t make overly granular partitions (more than about a thousand partitions)” [6].

Figure 1. Single table setup Figure 2. Multiple tables setup



ClickHouse #1 test: Single table - the columns containing the timestamp and the object name make
up the primary key. The object name column is used to create partitions (Figure 1). A P-BEAST
attribute is stored using a single table, and the object column is used for defining the P-BEAST object
that data point belongs to.

ClickHouse #2 test: Multiple tables - the column containing the timestamp is the primary key in
each table. Each table contains data from a single object. The object name is stored as part of the
table name (Figure 2).

3.3. Testing setup
3.3.1. Software The 4 tested data models have each been implemented as a separate test that was
run on 6 types of ATLAS operational monitoring data. The monitoring data types have been selected
in order to have as wide an array of data types as possible:

• single integer

• single float

• array of 12 floats

• array of approximately 3.5k floats

• single string

• large single string (approximately 5.5kB)

All the tests have been implemented in the Go Programming Language [7]. InfluxDB is itself
written in Go, so it comes with a Go client library from the developer. The library is based on the
built-in InfluxDB HTTP API [8]. ClickHouse has multiple third-party Go libraries. Some of them are
based on the low level native ClickHouse TCP client-server protocol[9]. For performance reasons,
we chose one based on the TCP protocol in order to avoid the extra overhead of the HTTP protocol.
Moreover, the chosen library also has support for bulk writes [10].

All 4 tests have been developed to be as similar as possible, so that the comparison of the resuls
would yield as clear conclusions as possible. They all follow the same pattern. All of them receive the
batch size as an input parameter which will be used for the size of the bulk writes. Data is read into a
prepared batch which is written to the database when the defined size or the end of the available data
has been reached.

3.3.2. Hardware All the tests have been run on a dual-CPU machine with:

• 2 Intel Xeon E5-2630 v2 @ 2.60GHz CPUs (each with 6 cores and Hypethreading, for a total of 24
threads) and

• 32 GB of RAM and

• An 18 TB RAID0 array using hard disk drives

4. Results and conclusions
In most cases, the write performance of ClickHouse has been better than that of InfluxDB (Figure 3).
The exception that is clearly visible in the case of the single integer data is caused by a combination
of factors whose importance was not fully assessed in the planning phase of the testing. First,
there is series cardinality. The InfluxDB documentation states that a single node, under high load
conditions, should be able to handle over 250k field writes per second while having a series cardinality
of over 1 million in the database [11]. When implementing the ClickHouse tests, the idea was to
use ClickHouse’s partitions feature in order to have a similar functionality to the InfluxDB series.
However, as mentioned earlier, the ClickHouse documentation warns about not having a large



Figure 3. Results

numbers of partitions and definitely not going over 1k partitions, with the mention that SELECT
queries would be negatifely impacted. However, as it turns out, writes are also negatively impacted.
The single integer data has a series cardinality of over 45k. As seen in the results, the ClickHouse write
performance suffered noticeably because of it.

Also, the multiple table approach has almost always been slightly poorer than the single table
approach. Taking into account that when using the multiple table approach there is a need to perform
joins when retrieving results that use data stored in more than one table, at this point, it seems like
that the single table approach is better.

4.1. Future work
Taking into account this first round of results, we will be designing a second round of testing that
takes into account aspects what weren’t taken into account in the first round. First, series cardinality
and ClickHouse’s partition count limitation will be taken into account. Second, only the single table
approach will be tested, because all the results and analysis indicate that is the better approach.
Furthermore, this second round of testing will be designed so as to be useful in drawing valid
conclusions regarding storage performance as well.

Finally, after the second round of write performace testing, a series of test for assessing read
performance will need to be developed.

References
[1] ATLAS Collaboration 2008 JINST 3 S08003
[2] Evans L and Bryant P 2008 JINST 3 S08001
[3] Avolio G, D’Ascanio M, Lehmann-Miotto G and Soloviev I (ATLAS Collaboration) 2017 A web-based solution to

visualize operational monitoring data in the Trigger and Data Acquisition system of the ATLAS experiment at the
LHC Tech. Rep. ATL-DAQ-PROC-2017-001. 3 CERN Geneva URL https://cds.cern.ch/record/2242032

[4] InfluxData InfluxDB URL https://www.influxdata.com/time-series-platform/
[5] Yandex ClickHouse URL https://clickhouse.yandex/
[6] Yandex ClickHouse Documentation: Custom Partitioning Key URL https://clickhouse.yandex/docs/en/

operations/table_engines/custom_partitioning_key/#custom-partitioning-key
[7] Google The Go Programming Language URL https://golang.org/
[8] InfluxData InfluxDB HTTP API reference URL https://docs.influxdata.com/influxdb/v1.7/tools/api/
[9] Yandex Native Interface (TCP) URL https://clickhouse.yandex/docs/en/interfaces/tcp/

[10] Shvakov K GitHub - kshvakov/clickhouse: Golang driver for ClickHouse column-oriented database management
system URL https://github.com/kshvakov/clickhouse/

[11] InfluxData General hardware guidelines for a single node URL https://docs.influxdata.com/influxdb/v1.7/
guides/hardware_sizing/#general-hardware-guidelines-for-a-single-node

https://cds.cern.ch/record/2242032
https://www.influxdata.com/time-series-platform/
https://clickhouse.yandex/
https://clickhouse.yandex/docs/en/operations/table_engines/custom_partitioning_key/#custom-partitioning-key
https://clickhouse.yandex/docs/en/operations/table_engines/custom_partitioning_key/#custom-partitioning-key
https://golang.org/
https://docs.influxdata.com/influxdb/v1.7/tools/api/
https://clickhouse.yandex/docs/en/interfaces/tcp/
https://github.com/kshvakov/clickhouse/
https://docs.influxdata.com/influxdb/v1.7/guides/hardware_sizing/#general-hardware-guidelines-for-a-single-node
https://docs.influxdata.com/influxdb/v1.7/guides/hardware_sizing/#general-hardware-guidelines-for-a-single-node

