
A
TL

-D
A

Q
-P

R
O

C
-2

01
9-

00
7

17
M

ay
20

19

THE CONTROLS AND CONFIGURATION

SOFTWARE OF THE ATLAS DATA

ACQUISITION SYSTEM FOR LHC RUN 2

A Kazarov5, I Aleksandrov1, G Avolio2, M Caprini3, A Chitan3,
A Corso Radu4, A Kazymov1, G Lehmann Miotto2, M Mineev1,
A Santos2, I Soloviev4, M Vasile3 and G Unel4

1JINR, Dubna, Russian Federation
2CERN, Geneva, Switzerland
3National Institute for Physics and Nuclear Engineering, Bukharest, Romania
4University of California, Irvine, USA
5NRC “Kurchatov Institute” - PNPI, St. Petersburg, Russian Federation

E-mail: Andrei.Kazarov@cern.ch1

Abstract. The ATLAS experiment at the Large Hadron Collider (LHC) operated very
successfully in the years 2008 to 2013, a period identified as Run 1. ATLAS achieved an
overall data-taking efficiency of 94%, largely constrained by the irreducible dead-time introduced
to accommodate the limitations of the detector read-out electronics. Out of the 6% dead-
time only about 15% could be attributed to the central trigger and DAQ system, and out of
these, a negligible fraction was due to the Control and Configuration sub-system. Despite these
achievements, and in order to improve the efficiency of the whole DAQ system in Run 2 (2015-
2018), the first long LHC shutdown (2013-2014) was used to carry out a complete revision of the
control and configuration software. The goals were three-fold: properly accommodate additional
requirements that could not be seamlessly included during steady operation of the system; re-
factor software that had been repeatedly modified to include new features, thus becoming less
maintainable; and seize the opportunity of modernizing software written even before Run 1, thus
profiting from the rapid evolution in IT technologies. This upgrade was carried out retaining
the important constraint of minimally impacting the mode of operation of the system and public
APIs, in order to maximize the acceptance of the changes by the large user community. This
paper presents, using a few selected examples, how the work was approached and which new
technologies were introduced into the ATLAS DAQ system, and how they were performing in
course of Run 2. Despite these being specific to this system, many solutions can be considered
and adapted to different distributed DAQ systems.

1. Introduction
The ATLAS experiment [1] at the Large Hadron Collider at CERN relies on a complex
Trigger and Data Acquisition (TDAQ) system [2] to gather and select particle collision data
at unprecedented energy and rate. The TDAQ system is composed of a large number of
distributed hardware and software components (about 3000 machines and more than 50000
concurrent processes) which, in a coordinated manner, provide the data-taking functionality

1 c© 2019 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license.



of the overall system. The Control and Configuration (CC) system [3] is responsible for all
the software required to configure and control the ATLAS data taking; it provides essentially
the glue that holds the various sub-systems together. The CC software ranges from high level
applications to low level packages and it is designed following a layered component model (Figure
1). At the very bottom are common libraries and packages to deal, for instance, with threads, in
house developed object persistency system and the libraries for the CORBA based inter process
communication. Higher up are a set of services, like the configuration service or the process
management. Above these layers is the so-called application layer, with the run control, the
online recovery system, and a set of graphical user interfaces (GUIs) allowing the operator to
act on the system.

Information
Sharing

Information
Sharing

InterProcess 
Communication
InterProcess 

Communication
Error Reporting

Service
Error Reporting

Service

CORBA CORBA 

Object
Persistence

(OKS)

Object
Persistence

(OKS)

Oracle Oracle 

BoostBoost ROOT ROOT 

Configuration
Service

Configuration
Service

Process
Manager
Process
Manager

Resource
Manager

Resource
Manager

Test
Manager

Test
Manager

CLIPSCLIPS

Run
Control

Run
Control

Online 
Recovery
Online 

Recovery

Diagnostics And
Verification

Diagnostics And
Verification

GUIsGUIs

ex
te

rn
al

pa
ck

a
ge

s
ba

se
lib

ra
rie

s
co

re
 s

er
vi

ce
s

a
pp

lic
a

tio
ns

Run Number
Service

Run Number
Service

Access
Manager
Access

Manager

Resources
Information
Resources
Information

Shifter 
Assistant
Shifter 

Assistant

Intel TBB Intel TBB ESPERESPER

Web 
Applications

Web 
Applications

Logging
Service

Logging
Service

SplunkSplunk JDK/Java
Frameworks

JDK/Java
Frameworks

GrafanaGrafana

Data Archival
(PBEAST)

Data Archival
(PBEAST)

Figure 1. Control and Configu-
ration software: high-level architec-
ture.

2. From Run 1 to Run 2
Control and Configuration services and applications played an important role in successful
TDAQ operations during data taking period in Run 1, allowing a high level of the data taking
efficiency. Given the complexity and heterogeneity of the system, failures of hardware and
software components were not unlikely. The CC system handled this quite well, mostly thanks
to recently developed intelligent components, namely:

• the Expert System [4] for automation of routine actions and recovery scenarios, minimizing
interruptions in data-taking, and

• the Shifter Assistant [5] for analysis of operational parameters and for shift crew alerts,
helping operators to promptly undertake proper actions.

The intelligent components allowed experts to automate many routine operational tasks and
to substantially reduce load on the operations team, whether in the control room and on-call
experts.

Code quality, maintainability and evolution
CC software components are a part of the TDAQ software suite which is organized in more
then 200 individual packages, including about 7000 source files and more then 1.6 M lines of
C/C++, Java, Python and other code (not counting 3rd party packages). Code maintainability
and quality is an important aspect of the stability and robustness of the whole TDAQ system.



Many packages were designed in late 1990’s and developed in the first decade of 2000, and
those packages have been maintained by a small group of developers through decades of ATLAS
development and operations. Rapid development of open-source software projects, toolkits and
appearance of new software technologies, standards, compilers and so on shall be also taken into
account.

In these conditions, gradual software and code evolution is a process which must coincide
with ongoing software development. The evolution should aim for simplification of the software
architecture and clarity of the code, at the same time taking into account new functional and
scalability requirements which come along with operational experience and evolution of the
TDAQ system.

Lessons learned
Operation-wise, the architecture of the system should aim to guarantee robust and stop-less
operations. In particular, the system should:

• focus on operational automation and intelligence;

• provide real-time monitoring of important operational parameters and shifter alerting;

• allow browsing the history of the operations, for better understanding the system and
spotting potential and hidden problems;

• use of components testing widely to anticipate and to diagnose the problems; and

• involve detector experts and developers in formalizing and sharing the operational
knowledge specific to the subsystem.

Software-wise, scalability and performance of the software and also simplicity, quality and
maintainability of the code should be better addressed. The number of existing packages,
including quite some old and historical code, and the time scale (15 or more years) for the system
to be maintained in production suggest that software quality shall not be underestimated. The
following goals need to be addressed:

• use 3rd party software toolkits and libraries where and when possible;

• improve performance and scalability of the software by exploiting modern C++11 features
and utilizing modern threading techniques and multy-core CPUs;

• revise the old and historical code, and re-implement pieces of it where possible - even if all
functional requirements are fulfilled, for the sake of better and simpler architecture, code
clarity and maintainability; and

• follow the trends in software technologies, like web-based applications.

3. Upgrades for Run 2
The following sections give a description of the strategic choices and approach adopted for the
development of some of the major components of the CC system.

3.1. Software refactoring: The Run Control and the Central Hint and Information Processor
The Run Control (RC) system steers the data acquisition by starting and stopping processes
and by carrying all data-taking elements through well-defined states in a coherent way. Given
the size and complexity of the TDAQ system, errors and failures are bound to happen and
must be dealt with. In ATLAS this task is carried out by an expert system. The system was
originally based on an embedded rule-based forward-chaining Expert System (CLIPS [6]), which
was deeply integrated with the RC system. For Run2́, these two components were completely
redesigned, using a distributed and hierarchical control tree and a separate central expert system



Figure 2. Rates of messages handled by MTS during data taking runs in 2018 [12].

application, the Central Hint and Information Processor (CHIP). The new design has been based
on two pillars: (1) a pluggable modular schema in order to face the new requirements eventually
emerging during LHC Run 2; (2) clear separation of responsibilities for what concerns pure
application management, automation of procedures and error recovery and management.

The new RC is now assisted by the CHIP that can be truly considered as its “brain”. CHIP is
executed as a separate service with respect to the RC system and handles abnormal conditions,
automates complex procedures, performs advanced recoveries and supervises the ATLAS data
taking.

Additionally, it was perceived as a useful gain to use in CHIP the same CEP [7] technology
(ESPER [8]) as in the Shifter Assistant implementation.

3.2. Requirements extension: Test Management
In a large, heterogeneous system such as the ATLAS TDAQ, it is essential to be able to verify
the correct functioning of hardware and software components. Therefore, a TDAQ functional
testing framework was developed and used already throughout Run 1. Additional requirements
were identified with the experience gained during data taking, making it possible for experts to
configure:

• the order in which tests should be executed for a component (the test sequence may
dynamically change based on the result of completed tests);

• the order in which inter-related components shall be tested (the test sequence may change
depending on the result obtained for the components); and

• which actions should be executed upon failure of a test or a component to further diagnose
the issue or recover.

In addition, the test management functionality was required to be implemented in C++ and
Java.

The details about new implementation are presented in [9].

3.3. Code modernization:
Message Reporting and Transfer System (MTS) MTS [10] underwent a review of the
requirements that led to a complete redesign and new implementation to match its actual role
(fast and reliable transport layer for TDAQ Error Reporting System [11]). The redesigned
system is reliable and scalable, and its performance has been improved. The plot in Figure 2
shows the rates of messages reported in MTS during ATLAS operations in Sept-Oct 2018. In
these conditions MTS handled a maximum rate of up to 100 kHz of delivered messages.

Resource Manager After an initial review and simplification of the requirements, this
component underwent partial changes with the introduction of Boost multi-index containers.
As a result the code base has been reduced by 40% compared to the previous implementation,
thus leading to a more maintainable system [13].



Figure 3. Performance of P-BEAST in physics runs in 2018 [12].

3.4. New developments: Information Archival System P-BEAST (a Persistent Back-End for
the ATLAS TDAQ)
P-BEAST [14] is a new component designed and implemented to archive operational monitoring
information for analysis by experts. It provides CORBA and REST interfaces for data access. Its
implementation is based on Google protobuf (data persistence), CORBA (internal protocol and
user programming interface) and libmicrohttpd (Web server). The plot in Figure 3 demonstrates
how much data was archived per day by P-BEAST during operations in Sept-Oct 2018.

3.5. Web applications
P-BEAST Dashboard This web application offers an interface to visualize any operational
monitoring data published by the TDAQ system through configurable and customizable
dashboards. The data is provided by P-BEAST and the application is based on the Grafana
project [15], adapted to support a custom data source within the AngularJS framework. An
example of an operational dashboard is shown in Figure 4.

ELisA The ATLAS electronic logbook (ELisA) [16] is a web application used to record and
share messages about ATLAS data taking activities by system operators, experts and automated
services (Figure 5). The information is stored in an Oracle database. The adoption of an MVC-
driven architecture has allowed to focus code development on specific features of the project,
while profiting from the reliability of established third-party technologies such as the Spring
framework. The tool also provides an HTTP-based REST API [17], such that other programs
can access its features.

4. Conclusions and Outlook
The Control and Configuration software has contributed to the physics results obtained by
the ATLAS experiment during Run 1 by ensuring smooth and efficient data taking. It was
completely revised during 2013-2014 in order to accommodate additional requirements, improve
maintainability and profit from advances in IT technologies. All this was done applying
minimal changes to APIs, such that the large amount of client code would not need significant
adaptations. The Control and Configuration software has proved to be stable and well
performing in LHC Run 2 (2015-2018). It is designed to face the new challenges that will arise
in Run 3 operations, after further modernization in different components foreseen during Long
Shutdown 2. This experience has also demonstrated that the overall modular architecture of the
control and configuration system is flexible and supports partial upgrades, as well as step-wise
modernization of its components. This is fundamental for a system that is foreseen to run for
the next 20 to 30 years and that will undergo several more upgrade iterations.



Figure 4. Screenshot of a P-Beast dashboard
with TDAQ operations plots.

Figure 5. Screenshot of ELisA web page
with log entries.

References
[1] The ATLAS Collaboration (ATLAS) 2008 JINST 3 S08003
[2] Abolins M et al. (ATLAS TDAQ) 2016 JINST 11 P06008
[3] Lehmann Miotto G et al. 2010 Nucl. Instrum. Meth. A623 549–551
[4] Anders G, Avolio G, Miotto G L and Magnoni L 2015 J. Phys. Conf. Ser. 608 012007
[5] Kazarov A, Lehmann Miotto G and Magnoni L 2012 J. Phys. Conf. Ser. 368 012004
[6] Giarratano J C and Riley G 1989 Expert Systems: Principles and Programming (Pacific Grove, CA, USA:

Brooks/Cole Publishing Co.) ISBN 0878353356
[7] Complex Event Processing https://en.wikipedia.org/wiki/Complex_event_processing accessed: 2019-

04-29
[8] ESPER http://www.espertech.com accessed: 2019-04-29
[9] Kazarov A, Radu A C, Avolio G, Miotto G L, Soloviev I and Unel G 2018 J. Phys. Conf. Ser. 1085 032054

[10] Kazarov A, Caprini M, Kolos S, Lehmann Miotto G and Soloviev I 2014 Proceedings, 19th Real Time
Conference (RT2014): Nara, Japan, May 26-30, 2014 p 7097447

[11] Kolos S, Kazarov A and Papaevgeniou L 2015 J. Phys. Conf. Ser. 608 012004
[12] Public DAQ Operations plots https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ApprovedPlotsDAQ

accessed: 2019-04-29
[13] Aleksandrov I, Avolio G, Miotto G L and Soloviev I J. Phys. Conf. Ser. 898 032016
[14] Soloviev I and Sicoe A 2014 Proceedings, 19th Real Time Conference (RT2014): Nara, Japan, May 26-30,

2014
[15] Avolio G, D’Ascanio M, Lehmann-Miotto G and Soloviev I 2017 J. Phys. Conf. Ser. 898 032010
[16] Corso Radu A, Lehmann Miotto G and Magnoni L 2012 J. Phys. Conf. Ser. 396 012014
[17] Corso-Radu A, Magnoni L and Garcia R M 2013 2013 IEEE Nuclear Science Symposium and Medical Imaging

Conference (2013 NSS/MIC) pp 1–4 ISSN 1082-3654


