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Abstract. Athena is the software framework used in the ATLAS experiment throughout the
data processing path, from the software trigger system through offline event reconstruction
to physics analysis. The shift from high-power single-core CPUs to multi-core systems in the
computing market means that the throughput capabilities of the framework have become limited
by the available memory per process. For Run 2 of the Large Hadron Collider (LHC), ATLAS
has exploited a multi-process forking approach with the copy-on-write mechanism to reduce the
memory use. To better match the increasing CPU core count and, therefore, the decreasing
available memory per core, a multi-threaded framework, AthenaMT, has been designed and is
now being implemented. The ATLAS High Level Trigger (HLT) system has been remodelled to
fit the new framework and to rely on common solutions between online and offline software to
a greater extent than in Run 2. We present the implementation of the new HLT system within
the AthenaMT framework, which is going to be used in ATLAS data-taking during Run 3 (2021
onwards) of the LHC. We also report on interfacing the new framework to the current ATLAS
Trigger and Data Acquisition (TDAQ) system, which aims to bring increased flexibility whilst
needing minimal modifications to the current system. In addition, we show some details of
architectural choices which were made to run the HLT selection inside the ATLAS online data-
flow, such as the handling of the event loop, returning of the trigger decision and handling of
errors.

1. AthenaMT motivation and design
Athena [1] is a software framework used in the ATLAS experiment [2] at all stages of event data
processing path, from simulation and trigger, through event reconstruction to physics analysis.
It is based on an inter-experiment framework Gaudi [3] designed in the early 2000s. At the
time of the initial design, there was no strong motivation for concurrent event processing in
experiments like ATLAS and the architectural choices made for Gaudi and Athena assumed
only a single-process and single-thread mode of operation. However, over the last decade, the
computing market has transitioned towards many-core processors and the unit price of memory
has plateaued. The combination of these two trends presented in Figures 1 and 2 implies
that high throughput of data processing in software requires concurrent execution and memory
sharing.

In Run 2 of the Large Hadron Collider (LHC) [6], the ATLAS experiment software has
already suffered from suboptimal use of resources leading to the throughput of simulation and
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Figure 1. CPU frequency and logical core
count trends between 1972 and 2018, based on
data collected by K. Rupp [4]. Since around
2005, higher processing throughput is achieved
by increasing the number of cores rather than
their clock frequency.
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Figure 2. Memory price trends between
1972 and 2018, based on data collected
by J.C. McCallum [5]. The orange line
represents a fit to data from the years 1972–
2009. A deviation from the logarithmic price
decrease is observed since around 2012.

reconstruction workflows being limited by the available memory. A multi-process approach
based on forking after initialisation (AthenaMP) was adopted as an intermediate solution to
this problem. A reduction of the overall memory requirements was possible thanks to the copy-
on-write mechanism. A similar approach has been also used in the ATLAS Trigger system. At
the same time, work has been started towards redesigning the core framework of both Gaudi
and Athena to support multi-threaded execution in a native, efficient and user-friendly manner.
The effort is aimed at production-ready software available for Run 3 of the LHC, starting in
spring 2021.

The multi-threaded Athena framework, AthenaMT, is based on Gaudi Hive [7] which
provides a concurrent task scheduler based on Intel Thread Building Blocks (TBB) [8]. The
framework supports both inter-event and intra-event parallelism by design and defines the
algorithm execution order based on the data dependencies declared explicitly as ReadHandles
and WriteHandles. When all input dependencies of an algorithm are satisfied, it is pushed
into a TBB queue which takes care of its execution. The combination of inter-event and intra-
event parallelism is depicted in Figure 3, where four threads are shown to execute concurrently
algorithms which process data from either the same or different events. More efficient memory
usage can be achieved thanks to a large share of event-independent data.

2. High Level Trigger in AthenaMT
Taking the advantage of major changes in the Athena core software, a decision has been made to
considerably redesign the ATLAS High Level Trigger (HLT) framework which is part of Athena.
In Run 2, the HLT software used a dedicated top-level algorithm implementing a dedicated sub-
algorithm scheduling procedure. All trigger algorithms implemented an HLT-specific interface
and any offline reconstruction algorithm required a wrapper to be used in the HLT. The Run-3
HLT framework will take full advantage of the Gaudi scheduler and no HLT-specific interfaces
will be required.

The main functional requirements of the ATLAS HLT have been incorporated into the design
of the Gaudi Hive framework. These include the processing of partial event data (regional
reconstruction) and early termination of an execution path if the event is failing the trigger
selection. The regional reconstruction is achieved with Event Views which allow an algorithm
to be executed in the same way on either partial or full event data. The Event Views are
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Figure 3. Schematic flowchart describing
concurrent event processing in AthenaMT.
Each shape corresponds to a type of
algorithm and each colour corresponds to
data associated with one event. Data flow
is represented by arrows.

prepared by Input Maker algorithms scheduled before the reconstruction algorithms. Early
termination is achieved with Filter algorithms. The scheduling of all algorithms in the HLT is
assisted by configuration-time Control Flow which defines sequences of Filter → Input Maker
→ Reconstruction → Hypothesis algorithms. If the hypothesis testing fails in one sequence, the
filter step of the next sequence ensures the early termination of the given path. The Control Flow
creates a diagram including all possible execution paths at configuration time. The diagram is
built from a list of all physics selections configured to be executed and does not change during
runtime. However, each trigger “chain” corresponding to one path through the diagram can
be individually disabled during runtime or executed only on a fraction of events. An example
fragment of the Control Flow diagram is presented in Figure 4.

3. HLT within the TDAQ infrastructure
The ATLAS Trigger and Data Acquisition (TDAQ) infrastructure, presented in Figure 5, consists
of detector readout electronics, a hardware-based Level-1 (L1) trigger, an HLT computing farm
and data flow systems. Data from muon detectors and calorimeters are analysed by the L1
system at the LHC bunch crossing rate of 40 MHz in order to select potentially interesting
events and limit the downstream processing rate to a maximum of 100 kHz. In addition to the
accept decision, L1 produces also Region-of-Interest (RoI) information which seeds the regional
reconstruction of events in the HLT and will serve as the input to Event View creation in the new
software. The HLT computing farm consists of around 40 000 physical cores executing Athena
to enhance the trigger decision and to reduce the output rate to around 1.5 kHz which can be
written to permanent storage.

The HLT software can be used both in online data processing and in offline reprocessing
or simulation. Although the event processing sequence is the same in both cases, the online
processing requires a dedicated layer of communication to the TDAQ system. This layer
implements the TDAQ interfaces for input/output handling, online-specific error handling
procedures and an additional time-out watcher thread which is not needed offline. Each node in
the HLT farm runs a set of applications presented in Figure 6. The main application responsible
for event processing is the HLT Multi-Process Processing Unit (HLTMPPU) which loads an
instance of Athena. After initialisation, the process is forked to achieve memory savings
in a multi-process execution. The mother process only monitors the children and does not
participate in event processing. Each child processes events by executing Athena methods
and transferring the inputs and outputs to/from the Data Collection Manager (DCM) which
communicates with the data flow infrastructure.
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Figure 5. Functional diagram of the ATLAS TDAQ
system showing typical peak rates and bandwidths
through each component in Run 2 [9].
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Figure 6. Structure of the HLT
processing unit applications and the
communication between them.

The design of the TDAQ infrastructure will not change in Run 3 and the HLT processing unit
will consist of the same applications as in Run 2. However, the data flow within HLTMPPU
will change considerably to make use of the new AthenaMT HLT software framework. The
multi-process approach will remain in use, however the Athena instance within each HLTMPPU
child will be able to process multiple events concurrently using multiple threads. This design
provides flexibility for optimising the performance of the system.



In Run 2, the event processing loop was steered by HLTMPPU and events were pushed
into Athena sequentially. In Run 3, Athena will manage the event processing loop and will
actively pull events from DCM through HLTMPPU when processing slots are available. The
new interface between Athena, HLTMPPU and DCM is presented in Figure 7.
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Figure 7. Simplified call diagram presenting the Run-3 interfaces steering the event execution
in an HLT processing unit.

4. Summary and outlook
Recent trends in the computing market and software design motivated a large redesign of
the Athena framework to fundamentally support multi-threaded event execution. Along this
adaptation, the ATLAS High Level Trigger is also being re-implemented to achieve closer
integration with the multi-threaded core framework and with the offline processing software.
The upgrade of both offline and online Athena software is aimed at Run 3 of the LHC starting
in 2021. The fundamental steps of the design and implementation of the core framework as well
as the interfaces to the TDAQ infrastructure have already been achieved and the adaptation of
the event processing algorithms and the supporting and monitoring infrastructure is ongoing.

In addition to the full implementation, the evaluation and optimisation of the performance
of the new system is also required before the start of Run 3. This includes the determination
of the optimal number of forks, threads, and concurrently processed events in the online system
and large-scale tests with the full TDAQ infrastructure. New classes of software problems
are anticipated with the multi-threaded execution and measures to minimise their impact and
analyse them have to be defined.
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