
A
TL

-D
A

Q
-P

R
O

C
-2

01
9-

00
4

13
M

ay
20

19

ATLAS High Level Trigger within the multi-threaded

software framework AthenaMT

Rafa l Bielski, on behalf of the ATLAS Collaboration

CERN, 1211 Geneva 23, Switzerland

E-mail: rafal.bielski@cern.ch

Abstract. Athena is the software framework used in the ATLAS experiment throughout the
data processing path, from the software trigger system through offline event reconstruction
to physics analysis. The shift from high-power single-core CPUs to multi-core systems in the
computing market means that the throughput capabilities of the framework have become limited
by the available memory per process. For Run 2 of the Large Hadron Collider (LHC), ATLAS
has exploited a multi-process forking approach with the copy-on-write mechanism to reduce the
memory use. To better match the increasing CPU core count and, therefore, the decreasing
available memory per core, a multi-threaded framework, AthenaMT, has been designed and is
now being implemented. The ATLAS High Level Trigger (HLT) system has been remodelled to
fit the new framework and to rely on common solutions between online and offline software to
a greater extent than in Run 2. We present the implementation of the new HLT system within
the AthenaMT framework, which is going to be used in ATLAS data-taking during Run 3 (2021
onwards) of the LHC. We also report on interfacing the new framework to the current ATLAS
Trigger and Data Acquisition (TDAQ) system, which aims to bring increased flexibility whilst
needing minimal modifications to the current system. In addition, we show some details of
architectural choices which were made to run the HLT selection inside the ATLAS online data-
flow, such as the handling of the event loop, returning of the trigger decision and handling of
errors.

1. AthenaMT motivation and design
Athena [1] is a software framework used in the ATLAS experiment [2] at all stages of event data
processing path, from simulation and trigger, through event reconstruction to physics analysis.
It is based on an inter-experiment framework Gaudi [3] designed in the early 2000s. At the
time of the initial design, there was no strong motivation for concurrent event processing in
experiments like ATLAS and the architectural choices made for Gaudi and Athena assumed
only a single-process and single-thread mode of operation. However, over the last decade, the
computing market has transitioned towards many-core processors and the unit price of memory
has plateaued. The combination of these two trends presented in Figures 1 and 2 implies
that high throughput of data processing in software requires concurrent execution and memory
sharing.

In Run 2 of the Large Hadron Collider (LHC) [6], the ATLAS experiment software has
already suffered from suboptimal use of resources leading to the throughput of simulation and

Copyright 2019 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license.

1975 1980 1985 1990 1995 2000 2005 2010 2015

Year

1

10

210

310

410

510

Frequency [MHz]

Number of logical cores

Figure 1. CPU frequency and logical core
count trends between 1972 and 2018, based on
data collected by K. Rupp [4]. Since around
2005, higher processing throughput is achieved
by increasing the number of cores rather than
their clock frequency.

1975 1980 1985 1990 1995 2000 2005 2010 2015

Year

4−10

3−10

2−10

1−10

1

10

210

310

410

510

610

710

M
em

or
y

pr
ic

e
[U

S
D

/M
B

]

Figure 2. Memory price trends between
1972 and 2018, based on data collected
by J.C. McCallum [5]. The orange line
represents a fit to data from the years 1972–
2009. A deviation from the logarithmic price
decrease is observed since around 2012.

reconstruction workflows being limited by the available memory. A multi-process approach
based on forking after initialisation (AthenaMP) was adopted as an intermediate solution to
this problem. A reduction of the overall memory requirements was possible thanks to the copy-
on-write mechanism. A similar approach has been also used in the ATLAS Trigger system. At
the same time, work has been started towards redesigning the core framework of both Gaudi
and Athena to support multi-threaded execution in a native, efficient and user-friendly manner.
The effort is aimed at production-ready software available for Run 3 of the LHC, starting in
spring 2021.

The multi-threaded Athena framework, AthenaMT, is based on Gaudi Hive [7] which
provides a concurrent task scheduler based on Intel Thread Building Blocks (TBB) [8]. The
framework supports both inter-event and intra-event parallelism by design and defines the
algorithm execution order based on the data dependencies declared explicitly as ReadHandles
and WriteHandles. When all input dependencies of an algorithm are satisfied, it is pushed
into a TBB queue which takes care of its execution. The combination of inter-event and intra-
event parallelism is depicted in Figure 3, where four threads are shown to execute concurrently
algorithms which process data from either the same or different events. More efficient memory
usage can be achieved thanks to a large share of event-independent data.

2. High Level Trigger in AthenaMT
Taking the advantage of major changes in the Athena core software, a decision has been made to
considerably redesign the ATLAS High Level Trigger (HLT) framework which is part of Athena.
In Run 2, the HLT software used a dedicated top-level algorithm implementing a dedicated sub-
algorithm scheduling procedure. All trigger algorithms implemented an HLT-specific interface
and any offline reconstruction algorithm required a wrapper to be used in the HLT. The Run-3
HLT framework will take full advantage of the Gaudi scheduler and no HLT-specific interfaces
will be required.

The main functional requirements of the ATLAS HLT have been incorporated into the design
of the Gaudi Hive framework. These include the processing of partial event data (regional
reconstruction) and early termination of an execution path if the event is failing the trigger
selection. The regional reconstruction is achieved with Event Views which allow an algorithm
to be executed in the same way on either partial or full event data. The Event Views are

= Algorithms

Thread 1

Thread 2

Thread 3

Thread 4

Event 1

Event 2

Event 3

Event 4

Event 5

Event data
in memory

Inter-event
shared memory

Time

Figure 3. Schematic flowchart describing
concurrent event processing in AthenaMT.
Each shape corresponds to a type of
algorithm and each colour corresponds to
data associated with one event. Data flow
is represented by arrows.

prepared by Input Maker algorithms scheduled before the reconstruction algorithms. Early
termination is achieved with Filter algorithms. The scheduling of all algorithms in the HLT is
assisted by configuration-time Control Flow which defines sequences of Filter → Input Maker
→ Reconstruction → Hypothesis algorithms. If the hypothesis testing fails in one sequence, the
filter step of the next sequence ensures the early termination of the given path. The Control Flow
creates a diagram including all possible execution paths at configuration time. The diagram is
built from a list of all physics selections configured to be executed and does not change during
runtime. However, each trigger “chain” corresponding to one path through the diagram can
be individually disabled during runtime or executed only on a fraction of events. An example
fragment of the Control Flow diagram is presented in Figure 4.

3. HLT within the TDAQ infrastructure
The ATLAS Trigger and Data Acquisition (TDAQ) infrastructure, presented in Figure 5, consists
of detector readout electronics, a hardware-based Level-1 (L1) trigger, an HLT computing farm
and data flow systems. Data from muon detectors and calorimeters are analysed by the L1
system at the LHC bunch crossing rate of 40 MHz in order to select potentially interesting
events and limit the downstream processing rate to a maximum of 100 kHz. In addition to the
accept decision, L1 produces also Region-of-Interest (RoI) information which seeds the regional
reconstruction of events in the HLT and will serve as the input to Event View creation in the new
software. The HLT computing farm consists of around 40 000 physical cores executing Athena
to enhance the trigger decision and to reduce the output rate to around 1.5 kHz which can be
written to permanent storage.

The HLT software can be used both in online data processing and in offline reprocessing
or simulation. Although the event processing sequence is the same in both cases, the online
processing requires a dedicated layer of communication to the TDAQ system. This layer
implements the TDAQ interfaces for input/output handling, online-specific error handling
procedures and an additional time-out watcher thread which is not needed offline. Each node in
the HLT farm runs a set of applications presented in Figure 6. The main application responsible
for event processing is the HLT Multi-Process Processing Unit (HLTMPPU) which loads an
instance of Athena. After initialisation, the process is forked to achieve memory savings
in a multi-process execution. The mother process only monitors the children and does not
participate in event processing. Each child processes events by executing Athena methods
and transferring the inputs and outputs to/from the Data Collection Manager (DCM) which
communicates with the data flow infrastructure.

Initial processing

Filter step 1
Muon

Filter step 1
Muon+Electron

Filter step 1
Electron/Photon

Reconstruction
Standalone muons

Hypo step 1
Muon

Reconstruction
Calorimeter clustering

Hypo step 1
Muon+Electron

Hypo step 1
Electron/Photon

Filter step 2
Muon

Filter step 2
Muon+Electron

Filter step 2
Electron

Filter step 2
Photon

Reconstruction
Fast ID tracking

Reconstruction
Combined muons

Reconstruction
Electrons

Reconstruction
Photons

Hypo step 2
Muon

Hypo step 2
Muon+Electron

Hypo step 2
Electron

Hypo step 2
Photon

Filter step 3
Muon

Filter step 3
Muon+Electron

Filter step 3
Electron

Filter step 3
Photon

Input maker
Muon RoIs

Input maker
EM RoIs

Input maker
Track RoIs

Input maker
Photon RoIs

Input maker
Muon RoIs

Input maker
EM cluster RoIs

Data dependencies
define how algorithms are scheduled

Trigger chains
correspond to different paths through the fixed control flow diagram

Filter algorithms
run at the start of each step and implement the early rejection

Reconstruction algorithms
process detector data to extract features

Hypothesis algorithms

Input maker algorithms
restrict the following reconstruction to a region of interest

execute hypothesis testing (e.g. pT > 10 GeV) for all active chains

Figure 4. Example fragment of HLT
Control Flow diagram presenting several
execution paths through sequences of Filter →
Input Maker → Reconstruction → Hypothesis
algorithms.

D
et

ec
to

r R
ea

do
ut

D
at

a
Fl

ow

Muon
Calo

Pixel
SCT Other

FE FE FE

ROD ROD ROD

Readout System (ROS)

Data Collection
Network

CERN Permanent Storage

Data Logger

H
igh

 L
ev

el
Tr

igg
er

Processing
Units

~40000

Level-1 Accept

Region of Interest
(RoI) Data

FE: Front End
FELIX: Front-End Link Interface eXchange
FTK: Fast Tracker
ROD: ReadOut Driver
ROS: Readout System

Trigger DAQ

FTK

O(100)

O(10)

Le
ve

l-1
 T

rig
ge

r

Custom
Hardware

FE

FELIX

Event Fragments

Accepted Events

HLTSV

40 MHz

100 kHz

1.5 kHz

Peak event rates
(primary physics)

O(60 TB/s)

~160 GB/s

~25 GB/s

~2 GB/s

Peak data rates
(primary physics)

Figure 5. Functional diagram of the ATLAS TDAQ
system showing typical peak rates and bandwidths
through each component in Run 2 [9].

Data Collection Manager (DCM)
provide event fragments and process HLT result

HLT Run Control (HLTRC)
execute state transitions, e.g. start/stop run

InfoService (IS)
send monitoring data

Error Reporting System
(ERS)

interface to central message stream

HLT Multi-Process Processing Unit
(HLTMPPU) [mother]

initialise and fork, monitor the children

HLTMPPU
[child]

execute event loop

athena

HLTMPPU
[child]

execute event loop

athena

HLTMPPU
[child]

execute event loop

athena

Data Flow Infrastructure

athena

ATLAS Final State Machine

H
LT

 P
ro

ce
ss

in
g

U
ni

t

Figure 6. Structure of the HLT
processing unit applications and the
communication between them.

The design of the TDAQ infrastructure will not change in Run 3 and the HLT processing unit
will consist of the same applications as in Run 2. However, the data flow within HLTMPPU
will change considerably to make use of the new AthenaMT HLT software framework. The
multi-process approach will remain in use, however the Athena instance within each HLTMPPU
child will be able to process multiple events concurrently using multiple threads. This design
provides flexibility for optimising the performance of the system.

In Run 2, the event processing loop was steered by HLTMPPU and events were pushed
into Athena sequentially. In Run 3, Athena will manage the event processing loop and will
actively pull events from DCM through HLTMPPU when processing slots are available. The
new interface between Athena, HLTMPPU and DCM is presented in Figure 7.

HLTMPPU athenaDataSource
(in HLTMPPU)

getNext()

collect()

eventDone()

Level-1 result data

doProcessLoop()

hltinterface::HLTInterface
hltinterface::DataCollector

HLTMP::DataSource hltinterface::HLTInterface

Serialised HLT result

Event fragments

DCMSession

dfinterface::Session

DCMEvent

dfinterface::Event

reject()
accept()

collect()

Event fragments

getL1Result()

Level-1 result data

getNext()

dfinterface::Event

st
ar

t n
ew

 e
ve

nt

pr
oc

es
s

ev
en

ts

fin
is

h
an

 e
ve

nt

doEventLoop()
while (processEvents){

multithreaded
event processing

}

Serialised HLT result

sequential calls
when free slots available

sequential calls in
different order from getNext

concurrent calls for the
same or different events

Figure 7. Simplified call diagram presenting the Run-3 interfaces steering the event execution
in an HLT processing unit.

4. Summary and outlook
Recent trends in the computing market and software design motivated a large redesign of
the Athena framework to fundamentally support multi-threaded event execution. Along this
adaptation, the ATLAS High Level Trigger is also being re-implemented to achieve closer
integration with the multi-threaded core framework and with the offline processing software.
The upgrade of both offline and online Athena software is aimed at Run 3 of the LHC starting
in 2021. The fundamental steps of the design and implementation of the core framework as well
as the interfaces to the TDAQ infrastructure have already been achieved and the adaptation of
the event processing algorithms and the supporting and monitoring infrastructure is ongoing.

In addition to the full implementation, the evaluation and optimisation of the performance
of the new system is also required before the start of Run 3. This includes the determination
of the optimal number of forks, threads, and concurrently processed events in the online system
and large-scale tests with the full TDAQ infrastructure. New classes of software problems
are anticipated with the multi-threaded execution and measures to minimise their impact and
analyse them have to be defined.

References
[1] ATLAS Collaboration 2019 Athena [software] Release 22.0.1 https://doi.org/10.5281/zenodo.2641997

[2] ATLAS Collaboration 2008 The ATLAS Experiment at the CERN Large Hadron Collider JINST 3 S08003
[3] Barrand G and others 2001 GAUDI – A software architecture and framework for building HEP data

processing applications Comput. Phys. Commun. 140 45–55. See also Gaudi [software] Release v31r0
https://gitlab.cern.ch/gaudi/Gaudi/tags/v31r0

[4] Rupp K 2018 Microprocessor Trend Data https://github.com/karlrupp/microprocessor-trend-data

commit 7bbd582ba1376015f6cf24498f46db62811a2919
[5] McCallum J C 2018 Memory Prices (1957-2018) http://jcmit.net/memoryprice.htm [accessed 2019-02-12]
[6] Evans L and Bryant P 2008 LHC Machine JINST 3 S08001
[7] Clemencic M, Funke D, Hegner B, Mato P, Piparo D and Shapoval I 2015 Gaudi components for concurrency:

Concurrency for existing and future experiments J. Phys. Conf. Ser. 608 012021
[8] Reinders J 2007 Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor Parallelism

(O’Reilly Media). See also TBB [software] Release 2019 U1 https://github.com/intel/tbb/tree/2019_U1

[9] ATLAS Collaboration 2019 Public results page https://twiki.cern.ch/twiki/bin/view/AtlasPublic/

ApprovedPlotsDAQ [accessed 2019-02-12]

https://doi.org/10.5281/zenodo.2641997
https://gitlab.cern.ch/gaudi/Gaudi/tags/v31r0
https://github.com/karlrupp/microprocessor-trend-data
http://jcmit.net/memoryprice.htm
https://github.com/intel/tbb/tree/2019_U1
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ApprovedPlotsDAQ
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ApprovedPlotsDAQ

