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Abstract

Starting from a QCD inspired bilocal quark interaction we ob-
tain a local effective meson lagrangian. In contrast to previous local
(NJL-like) approaches, we include nonlocal corrections related to the
finite meson size which we characterize by a small parameter. After
bosonization using the heat-kernel method we predict the structure
coeflicients of the Gasser-Leutwyler p*lagrangian up to first order in
this parameter. The modifications for the L; coefficients are typically
of the order 15-20%, except for Lg, where we find a stronger nonlocal
influence.
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This report is based on the work [1], where we have studied the bosoniza-
tion of an effective QCD-inspired quark interaction, including nonlocal ef-
fects. First we have considered a "fixed-distance” approximation and intro-
duced a small parameter a characterizing the size of the nonlocal corrections
in order to obtain a quantitative estimate. The result was used as an in-
put into a more general dynamical separation ansatz which then allowed to
predict the modifications of the structure constants of the effective Gasser-
Leutwyler p*-lagrangian [2] to first order in a. Of course, in the limit a — 0,
our method reproduces the results of the bosonization in the usual local NJL
model [3] (see refs.[4] and references therein). We briefl, review the stan-
dard method of transforming the QCD lagrangian into an effective 4-quark
lagrangian and estimate the size of the g system within a nonrelativistic
Schrodinger approach for constituent quarks. We use the result for a quan-
titative estimate of the nonlocal effects and then describe a fixed-distance
approximation. Further we present the bosonization in the more general
dynamical bilocal approach, where we consider a separable ansatz for the
bilocal collective fields. Solving the heat-kernel equation, we calculate the
modified structure constants L; of.the chiral p'-lagrangian.

The starting point of our consideration is the QCD action in Minkowski
space,

si3.9.4) = [dz[atiD - mo)g - licv‘:.c"""] ,

and €, £, J? are the external sources associated with the fields g, ¢, A3; ¢ is
the quark ﬁeld my is the current quark mass matrix; A}, represents a gluon
with color index a, and A% are SU(3)c matrices. We ha.ve used the common
definitions for the covariant derivative and the gluon field-strength tensor,

zgz CA'

Further g is the QCD coupling constant, and fu. are the SU(3) structure
constants. We use D for v,D".

Using standard techniques of path integration [5], after integration over
the gluon fields, neglecting triple and higher-order gluon vertices, the effective
action can be written,

Swi = =% [[ dzdy #4(2) DRz = )37 0) 1

D, =9, = 8,A% — B, A% — gfuc ALAS .
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where ji(z) = ¢(z)7. J—‘,flq(z).ln the Feynman gauge the nonperturbative
gluon propagator is defined as D3 (x) = g~28%g,, D(z). As the behavior of
the Green’s function D(z) is unknown for large distances, a specific ansatz
has to be used.

Here we will outline the ideas which motivate the bilocal fixed-distance
approximation. Basing on the assumption of the dominant role of equal-time
intcractions in the formation of bound states [6}, the Schwinger-Dyson equa-
tions of the bilocal meson theory reduce to the nonrelativistic Schrodinger
approach corresponding to the description of gg-pairs interacting via some
eflcctive gluonic potential. Studies of the g system have shown, that it can
be approximated by a linear one V(r) = o-r with ¢ = 0.27 GeV3. Using the
results of [7] one can estimate the characteristic distance between the quark

and antiquark,

<r>.=.h=2—§1z0.68]m,
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where E, = 2.238(c/2u)'/® is the ground state energy and x = 0.336 GeV
the reduced mass of the system.

In the following we only consider the ground state (! = 0), i.e., neglect
excited mesonic states such as x*, K* etc. . In order to obtain a qualitative
estimate of the nonlocal corrections from the bilocal effective action, we make
the following ansatz. We consider the case where the constituent quarks in
tlic meson are localized at the scale h. This we do by including a delta
function 8((z — y)* — h?) into the integrand Siu, Eq. (1),

IC’
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The correct dimension is obtained by introducing a constant « ( ([s] = m™!).
After shifting the argument y by a Lorentz-invariant operator K'(h, ), the
etlective action, Eq. (2), becoines

3
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with

K(h,z) = /wyexp((y_,)“an)s((z_y)z_hz) = xh? [1 +%%+()(i‘—:)] )

where A = h~'. Introducing G = 3x?x?h?D(h) and performing a Fierz
transformation the action, Eq. (2), reads

[ 0 ¢ [
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where M? are tensor products of Dirac, flavor and color matrices of the type
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Here we cousider the SU(3)¢ flavor group with flavor matrices A}, and we
restrict ourselves to the color-singlet §g contributions.

Before considering the physical results of the bilocal fixed-distance ap-
proximation, let us study a more general approach using a dynamical bilo-
cal model. Starting with the effective action, Eq. (1), and performing a Fierz
transformation one finds

i ’ [
Sei = & [[ 2y Dz — 3 i) 5-40) i) 5a().

Introducing bilocal collective meson fields in a standard way [5] leads to an
effective action which is bilinear in the quark fields,

Sont = // &'z d'y { - S—DT;—_E tr [5’ + P42V + 21?.] + ﬁ(x)ﬁ(r,y)q(y)},

with ij(z,y) = ~§—i7*P+iy*V, +iy*1*A, and S, P,V,A = S, P,V, A(z,y).
Following ref. (8], we assume a strong localization of the bilocal fields and
make the ansatz

i(2,y) = Wz,t) = n(2)f(t) + nu(2)t*9() + -+, (4)

where z = (z + y)/2, t = (y — 7)/2 are the global and relative coordinates,
and n(z) = —5(z) — i13P(2) + i1V, (2) + 17#7*A,u(2) combines the local
collective fields of the composite operators §(z)q(z), §(2)iv*9(z), g(z)v.q(2)
and §(2)7,7%¢(z), corresponding to the lowest meson excitations 0%+, 0°%,
17, 1**. The next order term of Eq. (4), proportional to y,, can be iden-
tified with the excitations 177, 11, 2%+ 27~ which will be neglected. The



functions f(t) and g(t) rapidly decrease for |t?] > h? and strongly localize
the bilocal fields 7j(z, y) to the effective size of the collective meson h = 1/A.

I:xpanding ¢(y) and §(z) in a Taylor series about z, and using Eq. (4) we
obtain

[ sy i) = 2 [dzaemen [a
+ 2 [ d:0qm0ae) [ a1

Then, for the first generation of mesons corresponding to the (0++,0°+, 177,
1*+) multiplets, the generating action is

St = [ 2]~ o rl(9(2) ~ ma)(9(2) = m)] = (V) + A=)
+1()iDa() - 528 1(2)Bua(a)]} 5)

where D is the Dirac operator in the presence of local collective meson fields,
iD = [i( + AM) — (& + mo)|Pr + [i(8 + AT) — (@' + mo)]PL.  (6)

Here @ = S +iP, V = Viy*, A = Ay*; Prpu = (1 £ %) are chiral
right/left projectors; A®) = ¥ & A are right and left combinations of fields.
The parameter o is defined as

= %]d‘tt’f(t),

where f(t) is normalized as 2 [ d'tf(t) = 1.
Performing a partial integration and dropping the surface term, the last
term in Eq. (5) can be rewritten in the form

[ #q()na)duata) = - [ AP D B+ P (D

Of course, we do not know the explicit form of the function f(t). However,
we can now use the fixed-distance approximation of Eq. (2) to estimate the
parameter a. Indeed, the second term in Eq. (3) can be transformed into the
form

S = 1o [ 202 8, 4 n(x) Pla(e), ®)
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where 5(z) is the combination of the local collective fields, which now are
defined by the local quark bilinears.

Comparing Eqgs. (7) and (8) we can fix the value a, a = 1/16, corre-
sponding to the naive bilocal fixed-distance approximation. Using the values
A = 0.28 GeV the ratio is estimated to be of the order

2
ap’
Tz— ~ 0-09 .
This value will be used as a small parameter for further numerical estimates
of nonlocal effects.
After integration over the quark fields, the full action arising from the
generating functional, Eq. (5), is

s@,o.v,4) = [ a"z[ - 4-%::[(1' ~ mo)(® — ma)} — i,:u(v: + A:)]
—i TY' [log(iD)]. 9)

Here the second term is the quark determinant of the Dirac operator iD
which is extended to the case of nonlocality. It is obtained from the usual
operator, Eq. (6), by the following replacement,

[ 4 ¢4 ~ . [+ 4
AD - AB (14 58) + 55 (8.40) &0 - o1+ 1,0°) + ;(a.0) .

The modulus of the quark determinant in Eq. (9) corresponds to non-anomalous
part of the effective meson action. Using the heat-kernel technique [9] one
can calculate the quark determinant in a momentum expansion.

We will follow here the standard notations (2] for the chiral lagrangian,
where F, is the bare 7 decay constant and L; are the dimensionless p* struc-
ture constants. Our calculation predicts the following expression for Fo,

Ney? 4x? <Gg> ap?
2 _ Yy - —— ———
Fo=" BN, A (10)

where y = ['(0, u2/A?). In Eq. (10) the first term is the standard prediction
of the local limit and the second corresponds to the nonlocal correction. For
the meson mass matrix M = diag(x2, x3, .--» Xa) we obtain

Nepm? (<3 _afkr _ 2 ) 2m? <gg>
x*’zxwg("‘ “hY)= Z
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Moreover, the coeflicients L; are given by Ly — L3/2=Ly=0and

N, 1 ap’) N, l( ap’)
= —_— —_— = ———— ) - —_—
L, 161212(1+2A3 v ba=- a8 -v3e )
_ N 28 ap? _ N l( 2ly—260p7)
Le = 16«2’[”—1'3 A BT\t 6 ar )
N 15y-1oap3)
bo = 16136( t3 T A )

where z = —uF2/(2 <qg>). We made use of the approximation I'(k, Wi/A?) =
(k) for k > 1 and p?/A* < 1.

In Eq. (10) we use <gg>= —(0.25 GeV)? and Fp = 92 MeV to fix the value
of y. In comparison with the local limit it changes from yioe ~ 1 10 Ynontoc =
0.5. It is worth to be mentioned here that the mass matrix is not affected
by nonlocal corrections. We found that the nonlocal corrections to the L;
coefficients were typically of the order 15-20%, except for Ls which is stronly
modified by nonlocal effects. Thus, the local NJL model has turned out to be
a reasonable approximation for bosonization of low-energy quark interactions
and deriving the effective meson lagrangian at O(p*)-level. Of course, our
analysis could be extended to any order in the momentum expansion. Given
the fact that nonlocal corrections to the coefficients L; are of the ordcr 20 %,
it is to be expected that these corrections are of the same order of magnitude
as local p® contributions.

The uncertainties arising from nonlocality make it difficult to distinguish
between next to leading order effects of the momentum expansion and non-
local contributior - to the leading order. As an example where this is not the
case we suggest to investigate the processes n — x%yy and 7y — x%2° where
the nonzero Born contributions to the amplitudes appear only at O(p®)-level.
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