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1 Introduction

The search for new sources of CP violation in addition to that predicted by the CKM
matrix [1,2] is among the main goals of particle physics research. One interesting approach
is the study of decay-time distributions of neutral B-meson decays to hadronic final
states mediated by loop (penguin) b→ s amplitudes. As-yet undiscovered particles could
contribute in the loops and cause the observables to deviate from the values expected in
the Standard Model (SM) [3–6]. Studies of various B0 decays have been performed for
this reason, including decay-time-dependent amplitude analyses of B0 → K0

Sπ
+π− [7, 8]

and B0 → K0
SK

+K− [9, 10] transitions. Such analyses, which involve describing the
variation of the decay amplitudes over the phase-space of the three-body decays, are
more sensitive to interference effects than the quasi-two-body approach and are therefore
particularly important when broad resonances contribute. Decay-time-dependent analyses
of B0

s -meson transitions mediated by hadronic b→ s amplitudes have been performed for
the B0

s → K+K− [11], B0
s → φφ [12, 13] and B0

s → K∗0K∗0 [14] decays, but not yet for
any three-body B0

s decay.
The B0

s → K0
SK
±π∓ channels have been observed [15,16], and quasi-two-body measure-

ments of the resonant contributions from B0
s → K∗±K∓ [17] and B0

s →
( )

K ∗0K0
S [18] decays

have also been performed. These decays provide interesting potential for time-dependent
CP -violation measurements [19], once sufficiently large samples become available. The
K0

SK
−π+ and K0

SK
+π− final states are not flavour-specific and as such both B0

s and
B0
s decays can contribute to each, with the corresponding amplitudes expected to be

comparable in magnitude. Large interference effects and potentially large CP -violation
effects are possible, making an amplitude analysis of these channels of particular interest.
Example decay diagrams for contributions through the B0

s → K+K∗− (K∗+K−) and
B0
s → K∗0K0 (K0K∗0) resonant processes are shown in Fig. 1. The subsequent transitions

K∗− → K0π−, K∗0 → K+π− and K0 → K0
S (and their conjugates) lead to the K0

SK
+π−

(K0
SK
−π+) final state for the former (latter) processes.1

In this article, the first Dalitz plot analysis of B0
s → K0

SK
±π∓ decays is described.

The analysis is based on a sample corresponding to 3.0 fb−1 of pp collision data recorded
with the LHCb detector during 2011 and 2012. Due to the limited signal yield, and the
modest effective tagging efficiency that can be achieved at hadron collider experiments, the
analysis is performed without considering decay-time dependence and without separating
the B0

s or B0
s initial states (i.e. the analysis is untagged).

A novel feature of this analysis is that there are two independent final states (K0
SK

+π−

and K0
SK
−π+) that are treated separately but simultaneously. Denoting one final state by

f and the other by f̄ , the former (latter) receives contributions from the amplitudes Af
and Āf (Af̄ and Āf̄ ), where A and Ā are used to denote amplitudes for B0

s and B0
s decays,

respectively. Therefore, the untagged decay-time-integrated density of events in the Dalitz
plot corresponding to f depends on |Af |2 and |Āf |2, while that for f̄ depends on |Af̄ |2
and |Āf̄ |2. The untagged decay-time-integrated rate also depends on an interference term
that is responsible for the difference between the decay probability at t = 0 and the
decay-time-integrated branching fraction [20–22]. This must be considered when results
are interpreted theoretically, but is not relevant for the discussion here. In the absence of
CP violation in decay Af = Āf̄ and Āf = Af̄ , but there is no simple relation between

1 The inclusion of charge conjugate processes is implied throughout the paper, except where explicitly
stated otherwise.
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Figure 1: Feynman diagrams for (top left) external tree, (top right) internal penguin and (bottom
left) electroweak penguin contributions for B0

s → K+K∗− (K∗+K−) decays; and (bottom right)
internal penguin amplitude for the B0

s → K∗0K0 (K0K∗0) decay mode. The electroweak penguin
diagram for the B0

s → K∗0K0 (K0K∗0) channel is not shown; neither are diagrams corresponding
to annihilation amplitudes. In each case, the first set of final state particles (black) leads to the
K0

SK
+π− final state, while the second set (blue) leads to K0

SK
−π+.

Af and Āf . Indeed, theoretical predictions indicate that the values of these amplitudes
could be quite different [23–25]. Thus, the situation differs from that usually considered in
Dalitz plot analyses, where the density is given by just the magnitude of a single amplitude
squared.

A precedent for handling this situation is taken from amplitude analyses of flavour-
specific B-meson decays that do not account for CP -violation effects. In such analyses the
distributions for B and B decays are summed, assuming them to be identical, so that they
can be fitted with a single amplitude. However, in the presence of CP -violation effects,
the distribution is actually given by the incoherent sum of two contributions, as is the case
here. Consequently, the fitted parameters of the amplitude model will differ from their
true values by an amount that depends on the size of the CP -violation effects. Similarly,
by fitting each of the two B0

s → K0
SK
±π∓ Dalitz plots with a single amplitude, the results

will give values that differ from the true properties of the decays by amounts that must
be estimated. Detailed studies with simulated pseudoexperiments demonstrate that the
fit fractions (defined in Sec. 5) obtained by this approach are biased by relatively small
amounts that can be accounted for with systematic uncertainties, but that measurements
of other quantities may not be reliable. Therefore, the results of the analysis are presented
in terms of fit fractions only.

The remainder of the paper is organised as follows. In Sec. 2, a brief description of
the LHCb detector, online selection algorithms and simulation software is given. The
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selection of B0
s → K0

SK
±π∓ candidates, and the method to estimate the signal and

background yields are described in Sec. 3 and Sec. 4, respectively. The analysis described
in these sections follows closely the methods used for the branching fraction measurement
presented in Ref. [16]. As such, all four final states (K0

Sπ
+π−, K0

SK
+π−, K0

SK
−π+, and

K0
SK

+K−, collectively referred to as K0
Sh

+h′− where h represents either a kaon or a pion)
are considered up to Sec. 4. Only the K0

SK
+π− and K0

SK
−π+ channels are discussed

subsequently in the paper. The Dalitz plot analysis formalism is presented in Sec. 5 and
inputs to the fit such as the signal efficiency and background distributions are described
in Sec. 6. Sources of systematic uncertainty are discussed in Sec. 7, before the results are
presented in Sec. 8. A summary concludes the paper in Sec. 9.

2 Detector, trigger and simulation

The LHCb detector [26, 27] is a single-arm forward spectrometer covering the
pseudorapidity range 2 < η < 5, designed for the study of particles containing b or c
quarks. The detector includes a high-precision tracking system consisting of a silicon-strip
vertex detector (VELO) surrounding the pp interaction region, a large-area silicon-strip
detector located upstream of a dipole magnet with a bending power of about 4 Tm,
and three stations of silicon-strip detectors and straw drift tubes placed downstream
of the magnet. The tracking system provides a measurement of the momentum, p, of
charged particles with relative uncertainty that varies from 0.5% at low momentum to
1.0% at 200 GeV/c. The minimum distance of a track to a primary vertex (PV), the
impact parameter, is measured with a resolution of (15 + 29/pT)µm, where pT is the
component of the momentum transverse to the beam, in GeV/c. Different types of charged
hadrons are distinguished using information from two ring-imaging Cherenkov detectors.
Photons, electrons and hadrons are identified by a system consisting of scintillating-pad
and preshower detectors, and electromagnetic and hadronic calorimeters. Muons are
identified by a system composed of alternating layers of iron and multiwire proportional
chambers.

The online event selection is performed by a trigger [28], which consists of a hardware
stage, based on information from the calorimeter and muon systems, followed by a software
stage, in which all charged particles with pT > 500 (300) MeV/c are reconstructed for data
collected in 2011 (2012). At the hardware trigger stage, events are required to contain a
muon with high pT or a hadron, photon or electron with high transverse energy in the
calorimeters. The software trigger requires a two-, three- or four-track secondary vertex
with significant displacement from all primary pp interaction vertices. At least one charged
particle must have pT > 1.7 (1.6) GeV/c in the 2011 (2012) data and be inconsistent with
originating from a PV. A multivariate algorithm [29] is used for the identification of
secondary vertices consistent with the decay of a b hadron. It is required that the software
trigger decision must have been caused entirely by tracks from the decay of the signal B
candidate.

Simulated data samples are used to investigate backgrounds from other b-hadron decays
and also to study the detection and reconstruction efficiency of the signal. In the simulation,
pp collisions are generated using Pythia [30] with a specific LHCb configuration [31].
Decays of hadronic particles are described by EvtGen [32], in which final-state radiation
is generated using Photos [33]. The interaction of the generated particles with the
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detector, and its response, are implemented using the Geant4 toolkit [34] as described
in Ref. [35].

3 Event selection

The selection requirements follow closely those used for the determination of the branching
fractions of the B0

(s)→ K0
Sh

+h′− decays, reported in Ref. [16]. A brief summary of the
requirements follows, with emphasis placed on where they differ from those used in the
branching-fraction analysis.

Decays of K0
S → π+π− are reconstructed in two categories: the first involving K0

S

mesons that decay early enough for the resulting pions to be reconstructed in the VELO;
and the second containing K0

S mesons that decay later, such that track segments from
the pions cannot be formed in the VELO. These categories are referred to as long and
downstream, respectively. While the long category has better mass, momentum and vertex
resolution, there are approximately twice as many K0

S candidates reconstructed in the
downstream category. In the following, B candidates reconstructed from either a long or
downstream K0

S candidate, in addition to two oppositely charged tracks, are also referred
to with these category names. In order to account for changes in the trigger efficiency
for each of the K0

S reconstruction categories during the data taking, the data sample is
subdivided into 2011, 2012a, and 2012b data-taking periods. The 2012b sample is the
largest, corresponding to 1.4 fb−1, and also has the highest trigger efficiency.

To suppress backgrounds, in particular combinatorial background formed from random
combinations of unrelated tracks, the events satisfying the trigger requirements are filtered
by a loose preselection, followed by a multivariate selection optimised separately for each
data sample. All requirements are made with care to minimise correlation of the signal
efficiency with position in the Dalitz plot, resulting in better control of the corresponding
systematic uncertainties. Consequently, the selection exploits heavily the topological
features that arise from the detached vertex of the B candidate and relies very little on
the kinematics of the final state particles.

The preselection of K0
S and B candidates and the training of the multivariate classifiers,

based on a boosted decision tree (BDT) algorithm [36, 37], is identical to that reported in
Ref. [16]. The selection requirement placed on the output of each of the BDTs is optimised
using the figure of merit

Q ≡ N2
sig

(Nsig +Nbkg)
3
2

, (1)

where Nsig (Nbkg) represents the expected signal (combinatorial background) yield in the
combined K0

SK
±π∓ sample, for a given selection, in the signal region defined in Sec. 4.

This figure of merit, which is different from that in Ref. [16], is found to be suitable for
Dalitz plot analyses in a dedicated study. Pseudoexperiments are generated using a model
containing a set of resonances that might contribute to the B0

s→ K0
SK
±π∓ Dalitz plot,

and signal and background yields corresponding to various possible selection requirements
on the BDT output. The statistical uncertainty on each of the magnitudes and phases
of the resonances in the model, as well as the systematic uncertainty corresponding to
the knowledge of the Dalitz plot distribution of the backgrounds, are determined for each
selection requirement. The responses of several figures of merit are compared with the
results of this study, and that given in Eq. (1) is found to show the closest correspondence to
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minimising the uncertainties on the amplitude parameters. It may be noted that Q is equal
to the product of two other figures of merit considered in the literature: Nsig/

√
Nsig +Nbkg

(sometimes referred to as significance) and Nsig/ (Nsig +Nbkg) (purity).
Particle identification (PID) information is used to assign each candidate exclusively

to one of the four possible final states: K0
Sπ

+π−, K0
SK

+π−, K0
SK
−π+, and K0

SK
+K−.

The PID requirements are optimised to reduce the cross-feed between the different signal
decay modes using the same figure of merit Q introduced for the BDT optimisation.
Additional PID requirements are applied in order to reduce backgrounds from decays such
as Λ0

b→ K0
Spπ

−, where the proton is misidentified as a kaon.
Fully reconstructed B-meson decays into two-body D−(s)h

+ or (cc)K0
S combinations,

where (cc) indicates a charmonium resonance, may result in a K0
Sh

+h′− final state that
satisfies the selection criteria and has the same B-candidate invariant-mass distribution
as the signal candidates. The decays of Λ0

b baryons to Λ−c h
+ with Λ−c → pK0

S also peak
under the signal when the antiproton is misidentified. A series of invariant-mass vetoes,
identical to those used in Ref. [16], are employed to remove these backgrounds.

Less than 1% of selected events contain more than one B candidate. The candidate
that is retained in such events is chosen in a random but reproducible manner.

4 Determination of signal and background yields

The signal and background yields are determined by means of a simultaneous unbinned
extended maximum-likelihood fit to the 24 B-candidate invariant-mass distributions
that result from considering separately the four final states, three data-taking periods
and two K0

S reconstruction categories. Three components contribute to each invariant-
mass distribution: signal decays, backgrounds resulting from cross-feeds, and random
combinations of unrelated tracks. The contribution from a fourth category of background,
partially reconstructed decays, is reduced to a negligible level by performing the fit in the
invariant-mass window 5200 < m(K0

Sh
+h′−) < 5800 MeV/c2. The modelling of each of the

three fit components follows that used in Ref. [16]. A brief summary of the models used
is given here.

The B-candidate mass distributions for signal decays with correctly identified final-
state particles are modelled with the sum of two Crystal Ball (CB) functions [38] that
share common values for the mean and width of the Gaussian part of the function but
have independent power-law tails on opposite sides of the Gaussian peak. Cross-feed
contributions from misidentified B0

(s)→ K0
Sh

+h′− decays are also modelled with the sum of
two CB functions. Only processes with a single misidentified track are included, since other
potential misidentified decays are found to have negligibly small contributions. The yield
of each misidentified decay is constrained, with respect to the yield of the corresponding
correctly identified decay, using the ratio of the selection efficiencies and the corresponding
uncertainty. The combinatorial background is modelled by an exponential function.

The fit results for the K0
SK

+π− and K0
SK
−π+ final states, combining all data-taking

periods and K0
S reconstruction categories, are shown in Fig. 2, where comparison of the

data with the result of the fit gives χ2 values of 49.6 and 35.3 for the 50 mass bins in
each of the K0

SK
+π− and K0

SK
−π+ final states.2 Table 1 details the fitted yields of all

2 Since Fig. 2 contains projections of the simultaneous fit to 24 invariant-mass distributions, the
numbers of degrees of freedom associated to these χ2 values cannot be trivially calculated.
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Figure 2: Invariant-mass distribution of candidates in data for the (left) K0
SK

+π− and
(right) K0

SK
−π+ final states. Components are detailed in the legend.

Table 1: Yields obtained from the simultaneous fit to the invariant-mass distribution of
B0
s → K0

SK
±π∓ candidates in data for each fit category: signal, combinatorial background

and cross-feed from misidentified B0
(s)→ K0

Sh
+h′− decays. The uncertainties given on the yields

in the full range are statistical only. Yields in the signal region ±2.5σ around the B0
s peak are

also given; the determination of uncertainties on these values is described in Sec. 7.

Final K0
S Sample B0

s signal Combinatorial Cross-feed
state category Full range 2.5σ Full range 2.5σ Full range 2.5σ

K0
SK

+π−

downstream
2011 73.6± 10.6 72.1 108.3± 15.1 22.1 8.9± 2.8 1.7
2012a 48.2± 8.6 45.7 70.1± 12.1 14.3 7.3± 3.8 1.1
2012b 135.3± 13.6 130.0 87.4± 13.8 17.9 17.0± 5.6 3.1

long
2011 76.2± 9.8 74.6 44.1± 9.8 8.4 8.2± 1.7 1.8
2012a 38.5± 7.7 36.8 58.8± 11.2 11.2 7.8± 1.8 0.9
2012b 73.5± 10.6 71.9 71.7± 13.1 13.6 15.9± 2.5 1.7

total 431.1 87.5 10.3

K0
SK
−π+

downstream
2011 72.8± 10.3 71.4 78.9± 12.7 16.1 8.2± 2.4 1.3
2012a 68.8± 9.6 65.2 46.2± 9.9 9.5 7.0± 3.4 1.2
2012b 165.1± 15.2 158.6 104.1± 15.0 21.3 17.3± 5.8 2.9

long
2011 77.3± 9.8 75.7 39.0± 10.2 7.4 9.6± 1.7 1.4
2012a 40.3± 8.1 38.5 58.9± 11.9 11.2 8.6± 1.8 0.7
2012b 81.7± 10.4 80.0 50.1± 12.3 9.5 15.0± 2.5 1.4

total 489.4 75.0 8.9

subsamples of the K0
SK

+π− and K0
SK
−π+ final states, both in the invariant-mass region

used for the mass fit and in the reduced region to be used in the amplitude analysis,
defined as µ ± 2.5σ where µ (σ) is the fitted peak position (width) of the B0

s signal
component in that category. The yields are given for each of the two final states split by
data-taking periods and K0

S reconstruction categories.
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5 Dalitz plot analysis formalism

The Dalitz plot [39] describes the phase-space of a three-body decay in terms of two of
the three possible two-body invariant-mass squared combinations. In B0

s → K0
SK
±π∓

decays the most significant resonant structures are expected to be from excited kaon
states decaying to K0

Sπ
∓ or K±π∓ and therefore these are used to define the Dalitz plot

axes. The values of m(K0
Sπ
∓) and m(K±π∓) are calculated following a kinematic fit [40]

in which the B0
s candidate mass is fixed to the known value of mB0

s
[41], which improves

resolution and ensures that all decays remain within the Dalitz plot boundary. These
values and mB0

s
are used to calculate all other kinematic quantities that are used in the

Dalitz plot fit.
The Dalitz plot analysis involves developing a model that describes the variation of the

complex decay amplitudes over the full phase-space of a three-body decay. The observed
distribution of decays is related to the square of the magnitude of the amplitude, modified
to account for detection efficiency and background contributions. As described in Sec. 1,
this is only an approximation for B0

s → K0
SK
±π∓ decays, where the physical distribution in

each final state depends on the incoherent sum of two contributions. A single amplitude is
nonetheless used to model the data, since it is not possible to separate the two contributing
amplitudes without initial state flavour tagging; a systematic uncertainty is assigned to
account for possible biases induced by this approximation. The Dalitz plot fit is performed
using the Laura++ [42] package, with the different final states, K0

S reconstruction
categories and data-taking periods handled using the Jfit method [43].

The isobar model [44–46] is used to describe the complex decay amplitude. The total
amplitude is given by the coherent sum of N intermediate processes,

A
[
m2(K0

Sπ
∓),m2(K±π∓)

]
=

N∑
j=1

cjFj
[
m2(K0

Sπ
∓),m2(K±π∓)

]
, (2)

where cj are complex coefficients describing the relative contribution of each intermediate
amplitude. The resonant dynamics are contained in the Fj[m

2(K0
Sπ
∓),m2(K±π∓)] terms,

which are normalised such that the integral of the squared magnitude over the Dalitz plot
is unity for each term. For a K0

Sπ
∓ resonance Fj[m

2(K0
Sπ
∓),m2(K±π∓)] is given by

F
[
m2(K0

Sπ
∓),m2(K±π∓)

]
= R

[
m(K0

Sπ
∓)
]
×X(|~p | rBW)×X(|~q | rBW)× T (~p, ~q ) , (3)

where ~p is the momentum of the companion particle3 and ~q is the momentum of one of
the resonance decay products, both evaluated in the K0

Sπ
∓ rest frame. The R functions

are the mass lineshapes, typically described by the relativistic Breit–Wigner function
with alternative shapes used in some specific cases. The X and T terms describe barrier
factors and angular distributions, respectively, and depend on the orbital angular mo-
mentum between the resonance and the companion particle, L. The barrier factors X
are evaluated in terms of the Blatt–Weisskopf radius parameter rBW for which a default
value of 4.0 GeV−1~c is used. The angular distributions are given in the Zemach tensor
formalism [47, 48], and are proportional to the Legendre polynomials, PL(x), where x
is the cosine of the angle between ~p and ~q (referred to as the helicity angle). Detailed
expressions for the functions R, X and T can be found in Ref. [42].

3 The companion particle is that not forming the resonance, i.e. the K± in this example.
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The complex coefficients cj, defined in Eq. (2), are determined from the fit to data.
These are used to obtain fit fractions for each component j, which provide a robust and
convention-independent way to report the results of the analysis. The fit fractions are
defined as the integral over one Dalitz plot (K0

SK
+π− or K0

SK
−π+) of the amplitude for

each intermediate component squared, divided by that of the coherent matrix element
squared for all intermediate contributions,

Fj =

∫∫
DP
|cjFj|2 dm2(K0

Sπ
∓) dm2(K±π∓)∫∫

DP
|A|2 dm2(K0

Sπ
∓) dm2(K±π∓)

, (4)

where the dependence of Fj and A on Dalitz plot position has been omitted for brevity.
The fit fractions need not sum to unity due to possible net constructive or destructive
interference.

For this analysis, it is useful to define also flavour-averaged fit fractions F̂j, where the
numerator and denominator of Eq. (4) are replaced by sums of the same quantities over
both final states, and it is understood that a resonance corresponding to j in one Dalitz plot
will be replaced by its conjugate in the other (e.g. K∗(892)− in the K0

SK
+π− final state

and K∗(892)+ for K0
SK
−π+). These can be converted into products of branching fractions

for the B0
s and K∗ decays by multiplying by the known B0

s →
( )

K 0K±π∓ branching
fraction,

B
(
B0
s → K∗K;K∗ → Kπ

)
= F̂j × B

(
B0
s→

( )

K 0K±π∓
)
, (5)

where B (B0
s → K∗K) is the sum of the branching fractions for the two conjugate final

states.

6 Dalitz plot fit

The parameters of the signal model are determined from a simultaneous unbinned
maximum-likelihood fit to the distribution of data across the K0

SK
+π− and K0

SK
−π+

Dalitz plots. The physical signal model is modified to account for variation of the efficiency
across the phase-space, and background contributions are included. The yields of signal
and background components in the signal region are taken from Table 1. Separate effi-
ciency functions and background models for each final state, K0

S reconstruction category
and data-taking period are also used.

Since the resonance masses are much smaller than the B0
s mass, the selected candidates

tend to populate regions close to the kinematic boundaries of the Dalitz plot. Therefore,
it is convenient to describe the signal efficiency variation and background event density
using the transformed coordinates referred to as square Dalitz plot (SDP) variables. The
SDP variables are defined by

m′ ≡ 1

π
arccos

(
2
m(K±π∓)−mmin

K±π∓

mmax
K±π∓ −mmin

K±π∓
− 1

)
, θ′ ≡ 1

π
θ(K±π∓) , (6)

where m(K±π∓) is the invariant mass of the charged kaon and pion, mmax
K±π∓ = mB0

s
−mK0

S

and mmin
K±π∓ = mK± +mπ∓ are the kinematic limits of mK±π∓ , and θ(K±π∓) is the helicity

angle between the π∓ and the K0
S in the K±π∓ rest frame.
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6.1 Signal efficiency variation

The signal efficiency is determined accounting for effects due to the LHCb detector
geometry, and due to reconstruction and selection requirements. The effects of PID
requirements are considered separately to the rest of the selection efficiency to facilitate
their determination using data control samples.

The geometric efficiency is determined from generator-level simulation. This contri-
bution is the same for the 2012a and 2012b samples, and for the long and downstream
categories, as it is purely related to the kinematics of B0

s mesons that are produced in pp
collisions at the LHC. The effect is evaluated separately for the 2011 and 2012 data due
to the different beam energies.

The product of the reconstruction and selection (excluding PID) efficiencies is deter-
mined from simulated samples, which account for the response of the detector, generated
with a flat distribution across the square Dalitz plot. Small corrections are applied to
take into account known differences between data and simulation in the track-finding
efficiency [49] and hardware-trigger response [50].

The efficiency of the PID requirements is determined from large control samples of
D∗+ → D0π+, D0 → K−π+ decays. Differences in kinematics and detector occupancy
between the control samples and the signal data are accounted for [51,52].

The combined efficiency maps are obtained as products of SDP histograms describing
each of the three contributions described above. These are subsequently smoothed using
two-dimensional bicubic splines. The variation of the efficiency across the SDP is similar
for each subsample of the data; the absolute scale differs between long and downstream
categories due to acceptance and between data-taking periods due to changes in the
trigger. The efficiency varies by about a factor of five between the smallest and largest
values, mainly caused by the difficulty to reconstruct decays in a region of phase-space
where the K± and π∓ tracks have low momentum and the K0

S is highly energetic.

6.2 Background modelling

As can be seen in Fig. 2 and Table 1, the signal region contains contributions from
combinatorial background and cross-feed from misidentified B0 → K0

Sπ
+π− decays. The

Dalitz plot distribution of the combinatorial background is modelled using data from a
sideband at high m(K0

SK
±π∓). In order to increase the size of the sample used for this

modelling, a looser BDT requirement is imposed than that used for the signal selection.
It is verified that this does not change the Dalitz plot distribution of the background
significantly (the BDT is explicitly constructed to minimise correlation of its output
variable with position in the Dalitz plot). The combinatorial background is found to vary
smoothly over the Dalitz plot.

Cross-feed from misidentified B0 → K0
Sπ

+π− decays is modelled using a simulation
of this decay, weighted in order to reproduce its measured Dalitz plot distribution [8].
The effect of the detector response is simulated, with the effect of the PID requirements
accounted for by weights determined from data control samples, as is done for the
evaluation of the signal efficiency. The most prominent structures in the Dalitz plot model
for this background are due to the K∗(892)± resonances.
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Figure 3: Background-subtracted and efficiency-corrected Dalitz plot distributions for
(left) K0

SK
+π− and (right) K0

SK
−π+ final states. Boxes with a cross indicate negative values.

6.3 Amplitude model for B0
s → K0

S
K±π∓ decays

The Dalitz plot distributions of the selected B0
s → K0

SK
±π∓ candidates, after background

subtraction and efficiency correction, are shown in Fig. 3 for all data subsamples combined.
There are clear excesses at low values of both m2(K0

Sπ
∓) and m2(K±π∓), corresponding

to excited kaon resonances. There is no strong excess at low values of m2(K0
SK
±), which

would appear as diagonal bands towards the upper right side of the kinematically allowed
regions of the Dalitz plots. The two Dalitz plot distributions appear to be consistent with
each other, and hence with CP conservation.

The baseline signal model is developed by assessing the impact of including or removing
resonant or nonresonant contributions in the model. The kaon resonances listed in Ref. [41]
are considered. Charged and neutral isospin partners are treated separately, as it is possible
that one contributes significantly while the other does not. If a resonance is included in
the model for one final state, its conjugate is also included in the model for the other
final state with independent cj coefficients. States which can decay to K0

SK
±, such as the

a2(1320)± particle, are also considered but none are found to contribute significantly.
The baseline model contains contributions from the K∗(892)0,+, K∗0(1430)0,+ and

K∗2(1430)0,+ resonances. The removal of any of these components from the model leads
to deterioration of twice the negative log likelihood (−2NLL) by more than 25 units,
while the addition of any other component does not improve −2NLL by more than 9
units. The vector and tensor states are described with relativistic Breit–Wigner functions
with parameters taken from Ref. [41]. This is not appropriate for the broad Kπ S-wave.
Several different lineshapes that have been suggested in the literature are tested, with the
LASS description [53] found to be most suitable in terms of fit stability and agreement
with the data. The LASS shape combines the K∗0(1430) resonance with a slowly varying
nonresonant component; the associated parameters are taken from Refs. [41, 54]. The
combined shape is referred to as the K∗0 (1430) component when discussing the amplitude
fit; results for the resonant and nonresonant contributions are reported in addition to
those for the total in Sec. 8.

The B0
s → K∗(892)±K∓ and B0

s →
( )

K ∗(892)0
( )

K 0 decays have previously been ob-
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Table 2: Results of the fit with the baseline model to the K0
SK

+π− and K0
SK
−π+ Dalitz

plots. The fit fractions associated with each resonant component are given with statistical
uncertainties only. The sums of fit fractions for both K0

SK
+π− and K0

SK
−π+ final states are

102%, corresponding to low net interference effects.

K0
SK

+π− K0
SK
−π+

Resonance Fit fraction (%) Resonance Fit fraction (%)

K∗(892)− 15.6± 1.5 K∗(892)+ 13.4± 2.0
K∗0(1430)− 30.2± 2.6 K∗0(1430)+ 28.5± 3.6
K∗2(1430)− 2.9± 1.3 K∗2(1430)+ 5.8± 1.9
K∗(892)0 13.2± 2.4 K∗(892)0 19.2± 2.3
K∗0(1430)0 33.9± 2.9 K∗0(1430)0 27.0± 4.1
K∗2(1430)0 5.9± 4.0 K∗2(1430)0 7.7± 2.8

served [17, 18].4 The significance of each of the other contributions is evaluated using
a likelihood ratio test. Ensembles of simulated pseudoexperiments are generated with
parameters corresponding to the best fit to data obtained with models that do not contain
the resonance of interest, but that otherwise contain the same resonances as the baseline
model. Each pseudoexperiment is fitted with models both including and not including
the given resonance, from which a distribution of the difference in negative log likelihood
is obtained. This is found to be well fitted by a χ2 shape, which can then be extrapolated
to find the p-value corresponding to the −2NLL value obtained in data.

Using this procedure, the significances for the K∗0 (1430)+, K∗0 (1430)0, K∗2 (1430)+ and
K∗2(1430)0 contributions are found to correspond to 17.3, 15.2, 4.0 and 4.8 standard
deviations, when only statistical uncertainties are included. The Kπ S-wave contributions
remain highly significant among all the systematic variations discussed in Sec. 7, and

therefore the B0
s → K∗0(1430)±K∓ and B0

s →
( )

K ∗0(1430)0
( )

K 0 decays are observed with
significance over 10 standard deviations. However, some systematic variations do impact
strongly on the need to include tensor resonances in the fit model, and thus preclude any

similar conclusion for the B0
s → K∗2(1430)±K∓ and B0

s →
( )

K ∗2(1430)0
( )

K 0 decays.
The results of the fit of the baseline model to the data are shown in Fig. 4. Various

methods are used to assess the goodness-of-fit [55] and good agreement between the model
and the data is found. The results for the fit fractions are given in Table 2. The statistical
uncertainties on the fit fractions are evaluated from the spreads in these values obtained
when fitting ensembles of pseudoexperiments generated according to the baseline model
with parameters corresponding to those obtained in the fit to data. The fit fractions for
each resonance and its conjugate (in the other Dalitz plot) are consistent, as expected
from the absence of significant difference between the two Dalitz plot distributions seen in
Figs. 3 and 4. Thus, no significant CP -violation effect is observed.

7 Systematic uncertainties

Systematic uncertainties that affect the determination of the observables in the amplitude
analysis arise from inaccuracy in the experimental inputs and the choice of the baseline

4 The notation
( )

K ∗(892)0
( )

K 0 refers to the sum of the K∗(892)0K0 and K∗(892)0K0 final states.
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Figure 4: Invariant-mass distributions for (top) m(K±π∓), (middle) m(K0
Sπ
∓) and (bot-

tom) m(K0
SK
±), for (left) the K0

SK
+π− and (right) the K0

SK
−π+ final states. The data

are shown with black points, while the full fit result is shown as a blue solid line with individual
signal and background components as detailed in the legend.

amplitude parametrisation. The evaluation of effects arising from these sources is discussed
in the following, with a summary of the systematic uncertainties on the fit fractions
presented in Table 3.

Uncertainties associated with the signal and background yields obtained from the mass
fit are examined by scaling the errors obtained from the whole mass fit range to the signal

12



Table 3: Systematic uncertainties on the fit fractions, quoted as absolute uncertainties in percent.
The columns give the contributions from each of the different sources described in the text.

Fit fraction (%) uncertainties
Resonance Yields Bkg. Eff. Fit bias Add. res. Fixed par. Alt. model Method Total
K∗(892)− 0.2 0.2 0.5 0.2 – 0.7 5.4 3.1 6.3
K∗0(1430)− 0.1 0.2 0.6 0.3 0.1 2.1 22.0 2.9 22.3
K∗2(1430)− 0.1 0.1 0.3 0.6 0.1 1.8 2.2 0.2 2.9
K∗(892)0 0.2 0.2 0.4 0.9 – 0.3 7.0 2.0 7.4
K∗0(1430)0 0.2 0.3 0.9 0.4 0.1 4.4 3.3 1.3 5.7
K∗2(1430)0 0.1 0.3 0.7 1.3 0.2 4.4 3.6 1.0 6.0
K∗(892)+ 0.4 0.1 0.6 0.5 0.1 0.7 1.1 0.7 1.8
K∗0(1430)+ 0.5 0.4 0.7 0.8 0.2 6.4 13.0 4.5 15.2
K∗2(1430)+ 0.1 0.2 0.4 0.2 0.1 4.1 4.5 3.2 6.9
K∗(892)0 0.4 0.3 0.4 0.2 0.2 0.5 3.0 7.9 8.5
K∗0(1430)0 0.4 0.4 0.6 0.8 0.7 0.9 3.9 5.4 6.8
K∗2(1430)0 0.1 0.2 0.4 0.8 0.1 1.0 5.5 2.7 6.3

region. Statistical uncertainties on the yields are obtained from the covariance matrix
of the baseline fit result, and systematic uncertainties are extracted similarly as for the
branching fraction measurement [15]. A series of pseudoexperiments are generated from
the baseline mass fit, which are fitted by varying all of the fixed parameters according
to their covariance matrix. The distributions of the differences from the baseline fit
results are then fitted with a Gaussian function, and a systematic uncertainty is assigned
as the linear sum of the absolute value of the corresponding mean and width. The
dependence on the models used in the invariant-mass fit is investigated by repeating the
fit on ensembles generated with alternative shapes. The signal shape is examined by
removing the tail to high mass values, whilst for the combinatorial background the effect
of floating independently the slopes for each spectrum and replacing the exponential by a
linear model are evaluated. These uncertainties are propagated into the amplitude fit by
generating ensembles of pseudoexperiments in order to address the uncertainties related
to the yield extraction, either by the RMS of the fitted quantity over the ensemble or the
mean difference to the baseline model.

Uncertainties arising from the modelling of the Dalitz plot distributions of both
combinatorial and cross-feed backgrounds are estimated by varying the histograms used to
describe these shapes within their statistical uncertainties in order to create an ensemble
of new histograms. The data are refitted using each new histogram and the systematic
uncertainty is taken from the RMS of the fitted quantity over the ensemble.

Effects related to the efficiency modelling are determined by repeating the Dalitz plot
fit using new histograms obtained in a similar fashion as for the background. Uncertainties
caused by residual disagreements between data and simulation are addressed by examining
alternative efficiency maps, either by varying the binning-scheme choice or by using
alternative corrections. The simulated distributions of the features used in the BDT
algorithm are known to have residual differences with respect to the data. The impact
of this is estimated by repeating the amplitude fit using efficiency models that include
additional corrections obtained with a multivariate weighting procedure [56]. Potential
disagreements in the vertexing of the K0

S meson as a function of momentum are also
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studied using D∗+ → (D0 → φK0
S )π+ calibration samples, with a similar procedure to

that used in Ref. [57]. Finally, effects related to the hardware-stage trigger are addressed
by calibrating the associated efficiency maps using B+ → J/ψK+ and B0 → J/ψK+π−

control samples. The data fit is repeated including each of these new efficiency models
and a systematic uncertainty is assigned from the mean difference to the results with the
baseline model.

Pseudoexperiments generated from the baseline fit results are used to quantify any
intrinsic bias in the fit procedure. The uncertainties are evaluated as the sum in quadrature
of the mean difference between the baseline and sampled values and the corresponding
uncertainty.

The choice of the baseline Dalitz fit model introduces important uncertainties through
the choices of both the resonant or nonresonant contributions included and the lineshapes
used. The effects on the results of including additional K∗(1410), K∗(1680) or a2(1320)±

signal components in the fit are examined individually for each contribution. Some
alternative fits give unrealistic results (for example, with very large sums of fit fractions)
and are not included in the evaluation of this uncertainty.

Each resonant contribution has fixed parameters in the fit, which are varied to evaluate
the associated systematic uncertainties. These include masses and widths [41] and the
effective range and scattering length parameters of the LASS lineshape [41, 54]. The
Blatt–Weisskopf radius parameter is varied within the range 3.0–5.0 GeV−1~c. The fit is
repeated many times varying each of these fixed parameters within its uncertainties. The
RMS of the distribution of the change in each fitted parameter is taken as the systematic
uncertainty.

The baseline LASS parametrisation for the Kπ S-wave modelling is known to be an
approximate form, and associated uncertainties are assigned by evaluating the impact of
an alternative parametrisation. This component is replaced by the model suggested in
Ref. [58], using tabulated magnitudes and phases at various values of m(Kπ) obtained
from form factors. This is found to provide a good description of the data, despite the
larger interference pattern observed. Further theoretical work is required to have an
accurate description of the S-wave term, therefore the differences between this alternative
model and the baseline model are conservatively assigned as systematic uncertainties.

The method of modelling each of the B0
s → K0

SK
±π∓ Dalitz plots with a single

amplitude is an approximation, as discussed in Sec. 1. The systematic uncertainty
associated with the method is evaluated by generating with a full decay-time-dependent
model ensembles of pseudoexperiments with different parameters for the contributing
amplitudes based on the expected branching fractions [23, 24] and a range of different
CP -violation hypotheses. The results obtained from the fit with the approximate model
are compared to those expected with the full model, with results for the fit fractions found
to be robust (in contrast to the results for relative phases between resonant contributions).
The systematic uncertainty is assigned as the bias found in the case that the model is
generated with the theoretically preferred values for the parameters [23,24].

14



8 Results

The flavour-averaged fit fractions are converted into products of branching fractions using

Eq. (5) and B(B0
s→

( )

K 0K±π∓) = (84.3± 3.5± 7.4± 3.4)× 10−6 [16], to obtain

B
(
B0
s → K∗(892)±K∓;K∗(892)± → ( )

K 0π±
)

=

(12.4± 0.8± 0.5± 2.7± 1.3)× 10−6 ,

B
(
B0
s → (

( )

K 0π±)∗0K
∓
)

=

(24.9± 1.8± 0.5± 20.0± 2.6)× 10−6 ,

B
(
B0
s → K∗2(1430)±K∓;K∗2(1430)± → ( )

K 0π±
)

=

( 3.4± 0.8± 0.4± 5.4± 0.4)× 10−6 ,

B
(
B0
s →

( )

K ∗(892)0 ( )

K 0;
( )

K ∗(892)0 → K∓π±
)

=

(13.2± 1.9± 0.8± 2.9± 1.4)× 10−6 ,

B
(
B0
s → (K∓π±)∗0

( )

K 0
)

=

(26.2± 2.0± 0.7± 7.3± 2.8)× 10−6 ,

B
(
B0
s →

( )

K ∗2(1430)0 ( )

K 0;
( )

K ∗2(1430)0 → K∓π±
)

=

( 5.6± 1.5± 0.6± 7.0± 0.6)× 10−6 ,

where the uncertainties are respectively statistical, systematic related to experimental and

model uncertainties, and due to the uncertainty on B(B0
s→

( )

K 0K±π∓).5

It is possible to use the composition of the LASS lineshape to obtain separately the
fractions of the contributing parts. Integrating separately the resonant part, the effective

range part, and the coherent sum, for both the (K∓π±)∗0 and the (
( )

K 0π±)∗0 components,

the K∗0 (1430)± or
( )

K ∗0(1430)0 resonances are found to account for 78%, the effective range
term 46%, and destructive interference between the two terms is responsible for the excess
24%. The branching fractions of the two nonresonant parts are found to be

B
(
B0
s → (

( )

K 0π±)NRK
∓
)

= (11.4± 0.8± 0.2± 9.2± 1.2± 0.5)× 10−6 ,

B
(
B0
s → (K∓π±)NR

( )

K 0
)

= (12.1± 0.9± 0.3± 3.3± 1.3± 0.5)× 10−6 ,

where the fifth uncertainty is related to the proportion of the (Kπ)∗0 component due to
the effective range part. Similarly, the products of branching fractions for the K∗0(1430)
resonances are

B
(
B0
s → K∗0(1430)±K∓;K∗0(1430)± → ( )

K 0π±
)

=

(19.4± 1.4± 0.4± 15.6± 2.0± 0.3)× 10−6 ,

B
(
B0
s →

( )

K ∗0(1430)0
( )

K 0;
( )

K ∗0(1430)0 → K∓π±
)

=

(20.5± 1.6± 0.6± 5.7± 2.2± 0.3)× 10−6 .

Results for the various K∗ resonances are further corrected by their branching frac-
tions to Kπ to obtain the quasi-two-body branching fractions. The branching fractions

5The notation (Kπ)∗0 indicates the total Kπ S-wave that is modelled by the LASS lineshape.
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to Kπ are [41]: B (K∗(892)→ Kπ) = 100%, B (K∗0(1430)→ Kπ) = (93 ± 10)% and
B (K∗2(1430)→ Kπ) = (49.9± 1.2)%. In addition, the values of B (K∗ → Kπ) are scaled

by the corresponding squared Clebsch–Gordan coefficients, i.e. 2/3 for both
( )

K ∗0 → K±π∓

and K∗± → ( )

K 0π±. Thus, the branching fractions are

B
(
B0
s → K∗(892)±K∓

)
= (18.6± 1.2± 0.8± 4.0± 2.0)× 10−6 ,

B
(
B0
s → K∗0(1430)±K∓

)
= (31.3± 2.3± 0.7± 25.1± 3.3)× 10−6 ,

B
(
B0
s → K∗2(1430)±K∓

)
= (10.3± 2.5± 1.1± 16.3± 1.1)× 10−6 ,

B
(
B0
s →

( )

K ∗(892)0 ( )

K 0
)

= (19.8± 2.8± 1.2± 4.4± 2.1)× 10−6 ,

B
(
B0
s →

( )

K ∗0(1430)0 ( )

K 0
)

= (33.0± 2.5± 0.9± 9.1± 3.5)× 10−6 ,

B
(
B0
s →

( )

K ∗2(1430)0 ( )

K 0
)

= (16.8± 4.5± 1.7± 21.2± 1.8)× 10−6 ,

where the uncertainties are respectively statistical, systematic related to experimental and

model uncertainties, and due to the uncertainty on B(B0
s→

( )

K 0K±π∓), B (K∗ → Kπ)
and, in the case of K∗0(1430), the uncertainty of the proportion of the (Kπ)∗0 component
due to the K∗0(1430) resonance.

9 Summary

The first amplitude analysis of B0
s → K0

SK
±π∓ decays has been presented, using a pp

collision data sample corresponding to 3.0 fb−1 collected with the LHCb experiment. A
good description of the data is obtained with a model containing contributions from both
neutral and charged resonant states K∗(892), K∗0(1430) and K∗2(1430). No significant
CP -violation effect is observed. Measurements of the branching fractions of the previously

observed decay modes B0
s → K∗(892)±K∓ and B0

s →
( )

K ∗(892)0
( )

K 0 are consistent with
theoretical predictions [23–25] and also consistent with, but larger than, the previous LHCb
results [17, 18], which they supersede. This is partly due to the larger B0

s→ K0
SK
±π∓

branching fraction determined in the updated analysis based on both 2011 and 2012
data [16] compared to the previous determination [15]. This amplitude analysis provides
better separation of the K∗(892) states from the other contributions in the Dalitz plot,
in particular the S-wave, and more accurate estimation of the associated systematic
uncertainties. Contributions from K∗0(1430) states are observed for the first time with
significance above 10 standard deviations.

Increases in the data sample size will allow the reduction of both statistical and
systematic uncertainties on these results. As substantially larger samples are anticipated
following the upgrade of LHCb [59,60], it will be possible to extend the analysis to include
flavour tagging and decay-time-dependence, and therefore to obtain sensitivity to test the
SM through measurement of CP -violation parameters in B0

s → K0
SK
±π∓ decays.
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A. Dosil Suárez43, L. Douglas55, A. Dovbnya47, K. Dreimanis56, L. Dufour29, G. Dujany10,
P. Durante44, J.M. Durham78, D. Dutta58, R. Dzhelyadin41,†, M. Dziewiecki14, A. Dziurda31,
A. Dzyuba35, S. Easo53, U. Egede57, V. Egorychev36, S. Eidelman40,x, S. Eisenhardt54,
U. Eitschberger12, R. Ekelhof12, L. Eklund55, S. Ely63, A. Ene34, S. Escher11, S. Esen29,
T. Evans61, A. Falabella17, C. Färber44, N. Farley49, S. Farry56, D. Fazzini22,44,i, M. Féo44,
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gUniversità di Ferrara, Ferrara, Italy
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