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Abstract

We study the implication of the triviality problem on the Higgs mass
and other relevant parameters in the Next to Minimal Supersymmetric
Standard Model. Through a full examination of the parameter space, we
are able to derive triviality bounds on the heaviest Higgs, the soft-breaking
parameters, and the Higgs singlet vacuum expectation value. Besides, an

absolute upper bound of 2.8 M on the lightest Higgs is established.






1 Introduction

There has been a lot of effort spent in finding the upper bound on the Higgs
mass of the standard model ( or the supersymmetric extension) [1, 2, 3]. One of
the approaches is based on triviality of the ¢* theory [4]. Due to triviality, the
standard model is inconsistent as a fundamental theory but is a good effective
theory with a cut-off momentum A. And, by requiring that A be larger than the
Higgs mass for the consistency of the standard model as a cut-off theory, Dashen
and Neuberger were the first to derive the triviality upper bound (about 800
GeV) on the Higgs mass in the minimal standard model [4]. Improvements on
this triviality upper bound were then made in several aspects, including the non-
perturbative calculations, or the inclusion of gauge couplings and the Yukawa
coupling of top quark [5, 6, 7, 8]. So far, supersymmetry is the only viable
framework where the Higgs scalar is natural [9, 10]. It is then interesting to
know how this triviality bound on the Higgs mass behaves in the supersymmetric
extension of the standard model. However, no similar discussion is available in
the context of supersymmetry to the present. These considerations then lead
to the idea of this paper: understand the implication of the triviality problem
on the Higgs mass and other relevant parameters within the supersymmetric

standard model.

Essentially, this paper extends the work of Dashen and Neuberger [4] to



the supersymmetric standard model. Specifically, the supersymmetric stan-
dard model with two SU(2)xU(1) Higgs doublets and one Higgs singlet (usually
named Next to Minimal Supersymmetric Standard Model, NMSSM) plus ap-
propriate soft-breaking terms is considered [10, 11]. The inclusion of the Higgs
singlet in NMSSM provides a natural explanation to the u-problem of the mini-
mal supersymmetric standard model(MSSM) [12]. In addition, the existence of
the Higgs singlet is suggested in many superstring models [13, 14] and grand
unified supersymmetric models [12]. These features make NMSSM an appealing
alternative to MSSM. In considering the strong Higgs coupling limit of NMSSM,
it is suggested that triviality still persists, at least at one-loop. This observa-
tion certainly implies an upper bound on the Higgs mass. Although a non-
perturbative discussion of triviality is beyond the scope here, this does not stop

us in understanding the behavior of the triviality bound on the Higgs mass in

NMSSM.

In Section 2, the relevant NMSSM lagrangian and renormalization group
equations are given. The observation of triviality is made in the strong Higgs
coupling limit. This triviality observation then implies the Landau-pole behavior
of the Higgs couplings. To facilitate the computations of triviality bounds later,
an analytic expression of the Landau pole Ay is also derived. In Section 3, the
parametrization of the NMSSM Higgs mass spectrum over the full parameter

space is done. The determination of the full parameter space is a non-trivial one
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because the minimization of the scalar potential leads to several constraints on
the parameters. In Section 4, the triviality bound is solved by requiring Ay larger
than the mass of the heaviest Higgs in order to ensure NMSSM a valid cut-oft
theory, where tan 3 = 1 is chosen for the sake of simplicity. The behavior of the
triviality bound is then analyzed through the full parameter space. Combined
with the present experimental knowledge of the lower bound on the Higgs mass,
this analysis indicates that a very large portion of the parameter space is ruled
out. For example, the vacuum expectation value vs of the Higgs singlet can be
constrained to: 0.24Mw < |vs| < 0.749Mw , where Mw is the mass of W gauge
boson. The soft-breaking parameters are constrained from above. And, if the
experimental lower bound on the Higgs mass is raised, the above constraints will
get even stronger, which implies a better understanding of the correct parameter
ranges. In Section 5, an absolute upper bound of 2.8 Mw on the lightest Higgs is
established by a search through the full parameter space. This absolute upper

bound is beyond the reach of LEP.

2 Indication of Triviality in NMSSM

The supersymmetric Higgs scalar potential for Next to Minimal Supersym-

metric Standard Model (NMSSM) can be written as [10, 15]:

1
V = |hNP(@®; + 81,8,) + kot &, + AN? + 29 (210 — 3t,®,)°
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@, = (¢1,,4°%) and ®; = (¢',,¢°%) are two SU(2)xU(1) Higgs doublets, and
N is a complex singlet. It is assumed that only ¢9, ¢ and N acquire vacuum
expectation values v;, v, and v respectively. The scalar-quarks and scalar-
leptons do not acquire vacuum expectation values, and we can ignore their
contributions to the scalar potential when studying the Higgs mass spectrum.
Note that the superpotential corresponding to (1) does not contain linear and
bi-linear terms [10] because these terms lead to naturalness problems. Besides,
these terms do not appear in a large class of superstring-inspired models. About

the soft-breaking terms, we are going to confine ourselves to the following type:
V;oft = mf‘bfﬁbl + mgq)fg@z —_ m?2¢T1®2 - m'f{l’fgfbl (2)

in order to have predictive power. However, this limited choice of V,.s; actually
does not destroy the generality of the conclusions made in this paper. Details

on this will be given in the last section.

We assume three generations of quarks and leptons together with their
supersymmetric partners. As for the renormalization group equations relevant to
the Higgs couplings, all the Yukawa couplings to the Higgs bosons are neglected
except for that of the top quark, whose coupling to ®, is denoted by f;. Then,

the relevant renormalization group equations (one-loop) of NMSSM are given



by (14, 15]:

d 2
8#27511 = 1llgj (3)
dg?
87r2d_t2 = 9 (4)
d 2
gr=—2 = —3g (5)
,d f? , 13 16
i = fE(6f +R% ggf —3g; — ggg) (6)
')dhz 2 2 2 2 2 2
8ri—— = RM4R*+2X° +3f7 - g{ —3g7) (7)
2
8#2% = 6X3(\? +h?) (8)

where g1, g» and g3 are the gauge couplings associated with SU(3), SU(2) and

U(1) gauge groups respectively. The parameter t is defined by:
1 -
t = 3In(3) (9)
w

where ¢? is the space-like effective square of the momentum at which these
couplings are defined. At t=0, the gauge couplings can be determined from the

experimentally derived inputs [16]:
gi = 0.126, g2 =0.446, g2 = 1.257 (10)

To understand the triviality problem, we assume strong Higgs coupling limit
for h? and A%, where the Yukawa coupling f; and all the gauge couplings can be
neglected. This is actually not an unreasonable assumption due to the following
observations: The RGEs (3)-(8) have been numerically studied by Babu and
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Ma [15]. Their results indicate that gauge couplings are negligible if the ratio
% > 5 or % > 2 holds, where tan =1 and the top quark mass m;=40~400
GeV. (See Fig.1 in [15] for a more precise description.) Therefore, it’s certainly
reasonable to expect g;— >5or 3;— > 2 holds in strong Higgs coupling limit even
though triviality eventually will put an upper bound on the magnitude of the
Higgs coupling. For the reason of self-consistency, this assumption of negligible
gauge couplings in the strong Higgs coupling limit will be verified a posterior:
using the numerical results of Sections 4 and 5. The assumption of negligible
Yukawa coupling f? is a little obscure. There has been numerical evidence in
the standard model [5] that the determination of triviality bounds on the Higgs
mass is insensitive to the top quark mass m; if m; < 200 GeV, and it may be
still true in NMSSM. The assumption of negligible fZ will be checked for self-
consistency within the calculations of Sections 4 and 5, and it turns out that f?

is important only in certain extreme situations. A detailed discussion will be

given in Section 4.

In the strong Higgs coupling limit with negligible fZ and g?, the RGEs for

the Higgs couplings are:

2dh2 2041,2 2
2
87r2dd—/> = 6X3(\% + h?) (12)

There is only one fixed point, the infrared stable fixed point at h?=0, A?=0.
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Therefore, similar to the Landau pole [10, 3] in the pure ¢* theory, h%(t) and A?(t)
will diverge at some finite t=t; (the Landau pole) unless the Higgs couplings
vanish, where triviality is clearly indicated at one-loop. Note that the above
conclusion is still valid even if the Yukawa coupling f? is included. In Section 3,
we will use triviality of the Higgs couplings to establish an upper bound on the
Higgs mass, and an analytic expression of the Landau pole t; will be useful.

The general solution of t;, can be found using the method of integrating factor

[21]:
L oo Ve eemgfiventevont) g
L= C C
_8 ~2
C = tho3+2th03 (14)
ho = h(t=0), do=Xt=0), AL = Mw -exp(tr) (15)

where Ay, is the momentum corresponding to the Landau pole ty..

Before going to the next section, note that the treatment of triviality here
is of perturbative nature. Although the problem of triviality should be of non-
perturbative nature, several non-perturbative numerical simulations have been
performed [17, 18] and imply that the renormalized perturbative calculation
gives essentially the correct triviality upper bound on the Higgs mass. This

observation may justify our approach as a first approximation.



3 Parameter Space and Higgs Mass Spectrum

In this section, we describe the relevant parameter space and the Higgs mass
spectrum. Consider V'=V+V,,4, and the relevant parameters are h, A, vy, v,

vs, m2, m2, m?,. Without loss of generality, the convention here is to take h, A,
1) M2, Mg & y

m?, m2 to be real, and vy, va, v3, m3, complex, that is, vy = ¥, €1, vy = Ty €2,

v3 = D33, m2%, = m?, e, The minimization of the scalar potential V"’ leads

to three complex constraints on these parameters:

h2(|v1|2 + |v2|2)1)3 + 2A(hviva + )\vg)v; =0 (16)
1 v
Z(gf + g3)(jvaf* — |val?) + B2 (Jva|® + Jvs) + m? = v—j(mfz — RXv*3) (17)

(51

1 .
163+ A0l = 1) + Bl + ool +md = L], = hxed) (19)
In addition, one has the following physical constraint:
1
My, = ‘2'£I§(|v1|2 + [v2l?) (19)

Imaginary parts of constraints (16)-(18) fix the phase among complex parameters

vy, Va2, vz, M3, and (19) reduces (01, ¥2) to a single parameter tan f =

S5

Furthermore, (h, A, ¥3) can be expressed in terms of other parameters using
the real parts of constraints (16)-(18). The resultant parameter space is then

defined by the parameters (¢, tan 8, m2, m2, mi,):

0< ¢ < dm, —oo < tanB, m?, mZ, mi;, < oo (20)



The other dependent parameters can be expressed in terms of (20) as

5 — Mw |2AB tan 3 — B%(1 + tan? f3)
T g A?(1 + tan® B3)

- 1 g3 tan? 1
. ~2 Lt gi tan" g — 1
A = mi(tanf tan 3 ) — m1 + m2 + MW(I + )ta.nz 71

1 2, 1 91 2 2 91 2
B e ol ZIZVAM2Z Y ¢ mé 4+ =(1 + )M, 21
= tanﬂ{ml_’_2(1+g§) W} anﬂ{ 2 (1 g;") W} ( )

2
M . .
v, = w \/i v = AJW \/5 tan:B ezd)’ vg = 1“)'3 et% (22)
\/tan ﬂ+1 \/tan2ﬁ+1
mi = M’ (23)
o m3, tan 8 — mi + —“‘(1 + _L)E&_;Q_g_ﬁ -
03 + tan 3 ‘5?‘ ta:nanﬁﬁﬂ * \/(ta.:':’n;+l) )
MZ tan 3 tan? 3 g3 O3
A = h5% + ~ 222 25
252" tan?B+ 1 \'(tan2ﬂ+l)2 M3, ) 2)
03, h, and X are real. (26)

“4" in (24) and (25) indicates (h, A) has two solutions, where the upper one
("+") is denoted as (ha, A4) and the lower one ("—") is (hg, AB).

(20)-(26) specify the full parameter space. (26) is non-trivial because the
square root is involved in (21), (24) and (25). An immediate consequence of

(26) follows from the reality requirement on A:

" | tan 3|
= ga2(tan? 5+ 1)

Mw (27)

d%—% has its maximum:% at tan 8 = +1. Thus, we are able to establish an



absolute upper bound on ¥3 as:
U3 < —Mw (28)

Given Mw = 80GeV and g7 = 0.446 from (10), this absolute upper bound
on the magnitude of vz is 60 GeV. As 93 — %’—,}f, (27) implies |tan3| — 1.
Therefore, in NMSSM, tan 8 is constrained by the determination of |vs|, and

vice versa.

For the sake of simplicity, we choose tan 8 = 1 when studying (20)-(26).
When tan 3 = 1, ¥;3 becomes a free parameter, and m? = m2 is required by
the minimization of the scalar potential V’: (17) and (18). On the whole, the

number of free parameters is unchanged. The full parameter space (tan 5 = 1)

is then defined by the parameters (¢, 03, m? = m2, m3,) plus the following

constraints:
1
0 < ¢ <dm 0< 93 < —My (29)
292
—o00 <mi=md < mi, < (30)

There is no essential change to the expressions of dependent parameters except

for A and A:
o M2 2 52
B+FG i)

2.~2
_ 9% ) (32)
w



(29)-(32) specify the full parameter space and will be the main study later. Note

that (31) and (32) imply:
h? A o (i, —m]) (33)

and m? = m2 < /%, in (30) is the consequence of the reality requirement on A.

Based on the parameter space described in (20) or (29), it is trivial to work
out the spectrum of Higgs mass? from V’. In general, {¢9, #3, N} does not mix
with {¢!, #5}. The mass®-matrix [M2] for {#?, ¢3, N} is a 6x6 matrix, and
the mass®-matrix [M?] for {#!, #}} is a 4x4 matrix. [M2] contains five neutral
Higgs bosons and one massless particle. [M2] contains two charged Higgs bosons
and two massless particles, as expected. Although the detailed expressions of

[M?] and [M?] are not given here, there are several symmetries of [M?2] and

[MZ):
[M?] and [M?] are periodic in ¢, of periodicity . (34)

In addition, [M?] and [M?] are invariant under two discrete symmetries on the

parameter space:
h — ~h, A — A, tanf8 — _ta“nﬂ7 ng - ~m%2 (35)

h— —h, X = =\ (36)
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4 Constraints on Higgs Mass and Soft-Breaking

Parameters

Based on the parameter space (¢, 93, m? = m2, m32,), (29)-(32), AL > Mhcqviest Higgs
is required by triviality and the triviality upper bound By on the heaviest Higgs
is established by Ay, = Mpeqviest Higgs = Br, where Ar is defined in (13)-(15) and
Miheguiest Higgs 18 obtained numerically from [M?]. Geometrically, the triviality
upper bound By defines a surface in the parameter space by AL = Mhcaviest Higgs,
and our convention is to parametrize triviality surface By in terms of (¢, U3, m2 =
m32). Actually, at. any point (¢, U3, m?2 = m2) of triviality surface By, there are
seven triviality upper bounds obtained from [M?] and [M?]. Each triviality up-
per bound corresponds to one of the seven physical Higgs bosons. So, studying
triviality surface By will be the main interest.

A typical example is shown in Fig.1, where (h, A) = (ha, A4), ¢ =0,
B3 = 0.7 M, and m?2 (= m2) is varied. This corresponds to a line lying within
triviality surface. Several universal features about Fig.1 are important. First,
in the small-m? regime, the soft-breaking terms are negligible and the determi-
nation of By is independent of m2. Second, the By curve as in Fig.1 terminates
at m? ~ —M} because the mass?-matrix [M?2] or [M?] will develop negative
eigenvalues if m? gets too negative. Together with (30), this observation indi-

cates m2, m2, Mm?, are bounded from below. Since nothing interesting happens
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for m? < 0, we will take 0 < m; = m, < M, from now on.

The last and most important universal feature from Fig.1 is: In the large-
m, regime, By = \/2m, is approximately true. To explain this observation,
note that (13) implies, on triviality surface, A2, \*> — 0if By (= AL) — oo.
The structure of [M?] also implies By — oo if m; = my — oo. The above

two facts then lead to:
On triviality surface: A%, A> — 0 if my =ms — oo (37)

Thus, in the limit m; = my — oo on triviality surface, [M?2] and [M?] can be

solved up to order O(h?):

Eigenvalues of [M?] = [2m}+ O(R?), 2m3 + O(R?), O(R?), O(h?), O(h?), 0]

Eigenvalues of [M?] = [2m?4 O(h?), 2m?2 + O(h?), 0, 0] (38)

(38) then explains why By = +/2m; is valid up to order O(h?) in the large-
m; regime. (38) also implies that there are exactly three light (neutral) Higgs
bosons in the large-m; regime. In fact, triviality upper bounds on these three
Higgs monotonically decrease to zero in the large-m; limit. According to the
present experimental knowledge of the lower bound on the Higgs mass [19, 20],
it is reasonable to require the seven triviality upper bounds on Higgs be larger
than 1 My, which immediately leads to an upper bound on m; (= m;) due to

(38). A typical realization of this idea is given in Fig.2, where (h, A) = (ha, Aa),
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¢ = 0.6, and (D3, m;) is fully examined. The enclosed region in Fig.2 indicates
the allowed range of U3 versus m;. An interesting quantity B,,s: can be defined
in such a way that the allowed range of ¥5 shrinks to a single point at m; = B,y:.
In Fig.2, Bsos: = 138 Mw, and there is no region allowed for m; > B,.:. The
meaning of B,y is then clear: For given ¢, B,,s: is the absolute upper bound
on m; with respect to 0 < 73 < %‘f. That is, Bsoy: is the upper bound on
m, when U3 = %’g‘f, and the upper bound on m; gets smaller than B,,s; when
U3 < %f. In fact, B,os can be interpreted as the absolute upper bound (with ¢
fixed) on all the soft-breaking parameters: m;, ma, 2, because m; ~ iy, is
true in the large-m, regime of triviality surface. This can be easily understood
by the fact that h? o« (M2, — m?), and the fact that h? becomes negligible in
the large-m,; regime.

The full dependence of B,,s: on ¢ is displayed in Fig.3, where (ha, A4) and
(hB, AB) have identical results. Fig.3 together with Fig.2 forms the complete
picture of the triviality upper bound on the soft-breaking parameters. For exam-
ple, Booje = 2380 Mw at ¢ = 0,and Bg,pr = 84.6 Mw at ¢ = Z. Furthermore,
all the conclusions about B, can be re-interpreted as the absolute triviality
upper bound (with ¢ fixed) By on the heaviest Higgs by By =~ /2 Bsojt, (38).
Thus, Fig.3 also provides the complete picture of the absolute triviality upper

bound on the heaviest Higgs. The determination of Fig.3 is very sensitive to

the present knowledge of the lower bound on the Higgs mass. Fig.3 is obtained
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by requiring all the Higgs triviality bounds > 1 Mw, and By = 2380 Mw
at ¢ = 0. However, B,oy: = 4.88 Mw at ¢ = 0 will be obtained if one can

require all the Higgs triviality bounds > 2 M.

Inspired by Fig.2, we can define the absolute triviality lower bound By on
D3 for given ¢. For example, By = 0.7 Mw in Fig.2. Bn then gives a modest
measure of the constraint on 3. Fig.4 displays the full dependence of By on ¢
for (ha, Aa) and (hp, Ag). The dotted straight line corresponds to the absolute
upper bound of 0.749 My on U3, (28). In the case ¢ = 0 (i.e., no CP-violation
in the scalar sector), we have 0.24 My < 3 < 0.749 Mw . In the case ¢ = 3,
0.65 Mw < 03 < 0.749 My . Thus, the consideration of triviality does lead us
to a good understanding of 03. In addition, if the experimental lower bound
on the Higgs mass is raised in the future, all the bounds involved in Fig.3 and
Fig.4 will only get stronger, which implies a better understanding of the heaviest
Higgs mass, the Higgs singlet vacuum expectation value, and the soft-breaking
parameters. However, NMSSM will not be consistent with an unlimited raise of

the experimental lower bound on Higgs. In Section 5, we will derive an absolute
upper bound of 2.8 My, on the lightest Higgs mass.

Finally, let’s check the assumption of negligible f? and g?. With the help
of [15], the assumption of negligible g7 is well satisfied by all the calculations
involved in Figures 1-4. To check the assumption of negligible fZ, take the mass

of top quark m; = 170 GeV. Generally speaking, this assumption is reasonable
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in the small-m; regime, but needs modifications in the large-m,; regime because
h? and A2 are small, (37). About Fig.4, the calculations of By indicates f? is
negligible. However, the calculations of Bs,y: in Fig.3 indicate f? is as important
as h? and A2, To understand the effect of f2 on B, j:, refer to (6)-(8). Because
all the coefficients of fZ-terms in (6)-(8) are positive (assuming negligible ¢?),
the inclusion of f2 will only make triviality even stronger. That is, the Lan-
dau pole t;, will get smaller if f2 is included. Qualitatively, this implies that
the calculated Bios: should get smaller (i.e., a stronger upper bound) if f2 is
included. Generally speaking, all the triviality bounds will get stronger when
fZ is included. In other words, the results of Fig.3 should be regarded as a weak
absolute upper bound on the soft-breaking parameters and the heaviest Higgs

boson.

5 Absolute Upper Bound on the Lightest Higgs

With the inclusion of the Higgs singlet in NMSSM, the tree-level upper
bound of Mzo on the mass of the lightest Higgs of MSSM is no longer valid. It
is, therefore, of considerable importance to study the triviality upper bound on
the lightest Higgs in order to devise effective search strategies for the detection
of Higgs particles. As before, for given ¢, we search for the absolute triviality

upper bound Bry on the lightest Higgs through all possible m; (= m,) and s.
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However, (38) implies a search in the small-m; regime is enough, and the resul-
tant full dependence of Bry on ¢ is displayed in Fig.5, where line A and line B
correspond to (ha, A4) and (hp, Ag). It is then verified that the assumption of
negligible fZ and g? is satisfied by Fig.5.

In the case ¢ = 0 (i.e., no CP-violation in the scalar sector), the absolute
upper bound Bry = 2.8 My from line B. In the case ¢ = % By = 1.75 My
from line B. Thus, the absolute triviality upper bound on the lightest Higgs

does lie outside the range of LEP.

6 Conclusion

By a complete study of triviality surface defined in the parameter space of
NMSSM, we were able to derive the triviality bounds on the heaviest Higgs,
the soft-breaking parameters, the Higgs singlet vacuum expectation value in
Section 4, and the absolute upper bound on the lightest Higgs in Section 5.
Essentially, all the triviality bounds are derived based on the observations (37)
and (38), where the mass of the lightest Higgs monotonically decreases to zero
in the large-m,; limit.

The limited choice of the soft-breaking potential Vo5 in (2) can be viewed
as an unsatisfactory feature of the present formulation. However, the triviality

bounds derived in Sections 4 and 5 persist even if a more general V.4 is con-
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sidered. We begin the argument of the above statement with the most general
Veost [10, 15]:
Veost = mf@fﬁ)l + m§<1>f2<1>2 - mfr_,q)f](bg — m‘fz(btgtbl
+mIN*N + m2N? + m*2N*?
+hms(A,P1B,N + A* 1B NY)

+§ Ams(A:N® + A*,N*3) (39)

Now, the relevant parameter space consists of:

(mf, mg, ma, mi, m2, mfz, Ay, A2) (40)

plus three complex constraints on the parameters derived from the minimization
of V! = V + V. Choosing tan8 = 1, again we have m2 = m2 from V'-
minimization. In the limit of large Ar, (= By), the Landau pole (13) always
implies:

h* — 0 if AL(=Bg) — (41)
In the large-mpeqviest Higgs limit (for example, in the lé.rge-ml limit), (41) then
implies that the Higgs mass®-matrices [M?] and [M?] can be solved up to order
O(h):
Eigenvalues of [M?] = [2m?+ O(h), 2m} + O(h), m(4) + O(h), my+ O(h), O(h), 0]

Eigenvalues of [M?] = [2m?+ O(h), 2m? + O(h), 0, 0]

18



my) = m2 + 4/\2|03|2 + 2|m3 + dmgvzA; + Ao3?

With the most general V,,;: (39), there is, in general, exactly one Higgs staying
light in the large-mpeqviest Higgs limit. Similar to (38), the mass of this lightest
Higgs is proportional to O(h), and decreases to zero in the large-mpequiest Higgs
limit. This observation then implies that the analysis made in Sections 4 and 5
still applies to the most general V' = V 4+ V,, 4. That is, the triviality bounds on
the heaviest Higgs, the lightest Higgs, the singlet vacuum expectation value, and

the soft-breaking parameters are not lost even in the largest possible parameter

space of NMSSM.
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FIGURE CAPTIONS

Fig.1: A plot of the triviality upper bound By on the heavest Higgs versus
m? for ¢ = 0, U3 = 0.7 Mw, and (h, A\) = (ha, Aa). The unit of the vertical

axis is Mw, where My =80 GeV. The unit of the horizontal axis is M3,.

Fig.2: A plot of the allowed range of 03 versus m; (the enclosed region)
for ¢ = 0.6, (h, A) = (ha, Aa). The allowed range of ©5 shrinks to a point at

my = Byos:=138 GeV. The unit of both the axes is Mw.

Fig.3: The plot of the absolute triviality upper bound B,,s: versus ¢, where
the two solutions (ha, Aa) and (hp, Ag) have identical results. B,,y; is periodic

in ¢ of periodicity 7. The unit of the vertical axis is Mw.

Fig.4: The plot of the absolute triviality lower bound By on o3 versus ¢,
where the dashed line corresponds to (h4, A4) and the solid line corresponds to
(he, AB). By is periodic in ¢ of periodicity #. The dotted line corresponds to

the absolute upper bound of %lblf on ¥3. The unit of the vertical axis is M.
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Fig.5: The plot of the absolute triviality upper bound Bry on the lightest
Higgs versus ¢, where the dashed line corresponds to (h4, A4) and the solid line

corresponds to (hp, Ag). By is periodic in ¢ of periodicity 7. The unit of the

vertical axis is M.
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