002658036 001__ 2658036
002658036 003__ SzGeCERN
002658036 005__ 20210503101214.0
002658036 0247_ $$2DOI$$9submitter$$a10.1051/epjconf/201714605013
002658036 0248_ $$aoai:inspirehep.net:1681592$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pcerncds:CERN$$qForCDS
002658036 035__ $$9http://inspirehep.net/oai2d$$aoai:inspirehep.net:1681592$$d2019-02-11T17:19:46Z$$h2019-02-12T07:32:35Z$$mmarcxml
002658036 035__ $$9Inspire$$a1681592
002658036 041__ $$aeng
002658036 100__ $$aHilaire, Sté[email protected]$$uCEA DAM
002658036 245__ $$9submitter$$aQuasiparticle random phase approximation predictions of the gamma-ray strength functions using the Gogny force
002658036 246__ $$9crossref$$aQuasiparticle random phase approximation predictions of the gamma-ray strength functions using the Gogny force
002658036 260__ $$c2017
002658036 300__ $$a6 p
002658036 520__ $$aDipole excitations of nuclei are crucial since they play an important role in nuclear reaction modeling in connection with the photoabsorption and the radiative capture processes. We present here results for the gamma-ray strength function obtained in large-scale axially-symmetric deformed quasiparticle (qp) random phase approximations approach using the finite-range Gogny force, with a particular emphasis on the E1 mode. The convergence with respect to the number of harmonic oscillator shells adopted and the cut-off introduced in the 2-quasiparticle excitation energy space is analyzed. The microscopic nature of our self-consistent Hartree-Fock-Bogoliubov plus QRPA (HFB+QRPA) calculation has unfortunately to be broken, some phenomenological corrections being needed to take into account effects beyond the standard 2-qp QRPA excitations and the coupling between the single-particle and low-lying collective phonon degrees of freedom. The corresponding phenomenological parameters are adjusted on experimental photoabsorption data. In such a procedure, a rather satisfactory description of experimental data is obtained. To study the sensitivity of these phenomenological corrections on the extrapolation, both at low energies and towards exotic neutron-rich nuclei, three different prescriptions are considered. They are shown to lead to rather similar predictions of the E1 strength at low energies as well as for exotic neutron-rich nuclei. The Gogny-HFB+QRPA strength is finally applied to the calculation of radiative neutron capture cross sections and the predictions compared with those obtained with more traditional Lorentzian-type approaches.
002658036 540__ $$aCC-BY-4.0$$uhttp://creativecommons.org/licenses/by/4.0/
002658036 65017 $$2SzGeCERN$$aNuclear Physics - Experiment
002658036 690C_ $$aCERN
002658036 700__ $$aGoriely, Stéphane$$uBrussels U., IAA
002658036 700__ $$aPéru, Sophie$$uCEA DAM
002658036 700__ $$aLechaftois, François$$uCEA DAM
002658036 700__ $$aDeloncle, Isabelle$$uCEA DAM$$uCSNSM, Orsay
002658036 700__ $$aMartini, Marco$$uSPhN, DAPNIA, Saclay
002658036 773__ $$c05013$$pEPJ Web Conf.$$v146$$wC16-09-11.5$$y2017
002658036 8564_ $$uhttps://www.epj-conferences.org/articles/epjconf/pdf/2017/15/epjconf-nd2016_05013.pdf
002658036 8564_ $$81463604$$s695909$$uhttp://cds.cern.ch/record/2658036/files/fulltext.pdf$$yFulltext
002658036 960__ $$a13
002658036 962__ $$b2313313$$k05013$$nbruges20160911
002658036 980__ $$aARTICLE
002658036 980__ $$aConferencePaper
002658036 999C5 $$01619751$$hCapote, R.$$mSee also$$o1$$sNucl.Data Sheets,110,3107$$uhttp://www-nds.iaea.org/RIPL-3$$x[1] R. Capote, et al., Nuclear Data Sheets 110, 3107 (2009). See also http://www-nds.iaea.org/ RIPL-3$$y2009$$z0
002658036 999C5 $$0584736$$hGoriely, S.$$hKhan, E.$$o2$$sNucl.Phys.,A706,217$$x[2] S. Goriely and E. Khan, Nucl. Phys. A 706, 217 (2002)$$y2002$$z0
002658036 999C5 $$hGoriely, S.$$hKhan, E.$$hSamyn, M.$$o3$$sNucl.Phys.,A739,331$$x[3] S. Goriely, E. Khan, and M. Samyn, Nucl. Phys. A 739, 331 (2004)$$y2004$$z0
002658036 999C5 $$0890715$$hPéru, S.$$o4$$sPhys.Rev.,C83,014314$$x[4] S. P´ eru et al., Phys. Rev. C 83, 014314 (2011)$$y2011$$z0
002658036 999C5 $$01474927$$hMartini, M.$$o5$$sPhys.Rev.,C94,014304$$x[5] M. Martini et al., Phys. Rev. C 94, 014304 (2016)$$y2016$$z0
002658036 999C5 $$0331805$$hBerger, J.F.$$hGirod, M.$$hGogny, D.$$o6$$sComput.Phys.Commun.,63,365$$x[6] J.F. Berger, M. Girod, D. Gogny, Comp. Phys. Comm. 63, 365 (1991)$$y1991$$z0
002658036 999C5 $$0825932$$hGoriely, S.$$o7$$sPhys.Rev.Lett.,102,242501$$x[7] S. Goriely et al., Phys. Rev. Lett. 102, 242501 (2009)$$y2009$$z0
002658036 999C5 $$0782496$$hPéru, S.$$hGoutte, H.$$o8$$sPhys.Rev.,C77,044313$$x[8] S. P´ eru and H. Goutte, Phys. Rev. C 77, 044313 (2008)$$y2008$$z0
002658036 999C5 $$01278376$$hScamps, G.$$hLacroix, D.$$o9$$sPhys.Rev.,C89,034314$$x[9] G. Scamps and D. Lacroix, Phys. Rev. C 89, 034314 (2014)$$y2014$$z0
002658036 999C5 $$hPapakonstantinou, P.$$hRoth, R.$$o10$$sPhys.Lett.,B671,356$$x[10] P. Papakonstantinou and R. Roth, Phys. Lett. B 671, 356 (2009)$$y2009$$z0
002658036 999C5 $$0919620$$hGambacurta, D.$$o11$$sPhys.Rev.,C84,034301$$x[11] D. Gambacurta et al., Phys. Rev. C 84, 034301 (2011)$$y2011$$z0
002658036 999C5 $$01124614$$hGambacurta, D.$$o12$$sPhys.Rev.,C86,021304$$x[12] D. Gambacurta et al., Phys. Rev. C 86, 021304 (2012)$$y2012$$z0
002658036 999C5 $$01395149$$hGambacurta, D.$$o13$$sPhys.Rev.,C93,024309$$x[13] D. Gambacurta et al., Phys. Rev. C 93, 024309 (2016)$$y2016$$z0
002658036 999C5 $$0554991$$hColo, G.$$hBortignon, P.F.$$o14$$sNucl.Phys.,A696,427$$x[14] G. Colo and P.F. Bortignon, Nucl. Phys. A 696, 427 (2001)$$y2001$$z0
002658036 999C5 $$0633562$$hKamerdzhiev, S.$$o15$$sPhys.Rept.,393,1$$x[15] S. Kamerdzhiev et al., Phys. Rep. 393, 1 (2004)$$y2004$$z0
002658036 999C5 $$0653120$$hSarchi, D.$$o16$$sPhys.Lett.,B601,27$$x[16] D. Sarchi et al., Phys. Lett. B 601, 27 (2004)$$y2004$$z0
002658036 999C5 $$0916749$$hAvdeenkov, A.$$o17$$sPhys.Rev.,C83,064316$$x[17] A. Avdeenkov et al., Phys. Rev. C 83, 064316 (2011)$$y2011$$z0
002658036 999C5 $$01331847$$hAchakovskiy, O.$$o18$$sPhys.Rev.,C91,034620$$x[18] O. Achakovskiy et al., Phys. Rev. C 91, 034620 (2015)$$y2015$$z0
002658036 999C5 $$01449801$$hYannouleas, C.$$o19$$sNucl.Phys.,A397,239$$x[19] C. Yannouleas et al. Nucl. Phys. A 397, 239 (1983)$$y1983$$z0
002658036 999C5 $$0259873$$hYannouleas, C.$$o20$$sPhys.Rev.,C35,1159$$x[20] C. Yannouleas, Phys. Rev. C 35, 1159 (1987)$$y1987$$z0
002658036 999C5 $$0198971$$hBertsch, G.F.$$o21$$sRev.Mod.Phys.,55,287$$x[21] G.F. Bertsch et al., Rev. Mod. Phys. 55, 287 (1983)$$y1983$$z0
002658036 999C5 $$hSoloviev, V.G.$$mTheory of complex nuclei (Oxford: / Press,)$$o22$$pPergamon$$x[22] V.G. Soloviev, Theory of complex nuclei (Oxford: Pergamon Press, 1976)$$y1976$$z0
002658036 999C5 $$01430399$$hSoloviev, V.G.$$o23$$sNucl.Phys.,A304,503$$x[23] V.G. Soloviev et al., Nucl. Phys. A 304, 503 (1978)$$y1978$$z0
002658036 999C5 $$0754263$$hTsoneva, N.$$hLenske, H.$$o24$$sPhys.Rev.,C77,024321$$x[24] N. Tsoneva and H. Lenske, Phys. Rev. C 77, 024321 (2008)$$y2008$$z0
002658036 999C5 $$mPhotonuclear data for applications$$o25$$x[25] Photonuclear data for applications; cross sections and spectra, IAEA-Tecdoc-1178 (2000)$$z0
002658036 999C5 $$mcross sections and spectra / -Tecdoc-1178$$o25$$pIAEA$$x[25] Photonuclear data for applications; cross sections and spectra, IAEA-Tecdoc-1178 (2000)$$y2000$$z0
002658036 999C5 $$hFultz, S.C.$$o26$$sPhys.Rev.,186,1255$$x[26] S.C. Fultz et al., Phys. Rev. 186, 1255 (1969)$$y1969$$z0
002658036 999C5 $$hDe Moraes, M.A.P.V.$$hCesar, M.F.$$o27$$sPhys.Scripta,47,519$$x[27] M.A.P.V. De Moraes, M.F. Cesar, Physica Scripta 47, 519 (1993)$$y1993$$z0
002658036 999C5 $$hHilaire, S.$$hKoning, A.J.$$hGoriely, S.$$o28$$sJ.Korean Phys.Soc.,59,767$$x[28] S. Hilaire, A.J. Koning and S. Goriely, Journal of the Korean Physical Society 59, 767 (2011)$$y2011$$z0
002658036 999C5 $$hGoriely, S.$$hHilaire, S.$$hKoning, A.J.$$o29$$sAstron.Astrophys.,487,767$$x[29] S. Goriely, S. Hilaire and A.J. Koning Astronomy and Astrophysics 487, 767 (2008)$$y2008$$z0
002658036 999C5 $$hKoning, A.J.$$hHilaire, S.$$hNucl, M.C. Duijvestijn$$mData for Science and technology (EDP Sciences, Bersillon et al. (eds.) / 211$$o30$$x[30] A.J. Koning, S. Hilaire and M.C. Duijvestijn Nucl. Data for Science and technology (EDP Sciences, eds Bersillon et al.) 211 (2008)$$y2008$$z0
002658036 999C5 $$hKoning, A.J.$$hRochman, D.$$o31$$sNucl.Data Sheets,113,2841$$x[31] A.J. Koning and D. Rochman, Nuclear Data Sheets 113, 2841 (2012)$$y2012$$z0
002658036 999C5 $$01209377$$hHilaire, S.$$hGirod, M.$$hGoriely, S.$$mS and A.J. Koning$$o32$$sPhys.Rev.,C86,064317$$x[32] S. Hilaire, M. Girod, S. Goriely S and A.J. Koning, Phys. Rev. C 86, 064317 (2012)$$y2012$$z0
002658036 999C5 $$01423322$$hGoriely, S.$$o33$$sPhys.Rev.,C94,034306$$x[33] S. Goriely et al., Phys. Rev. C 94, 034306 (2016)$$y2016$$z0