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Abstract

Purely hadronic B decays are vital to the study of CP violation within and beyond
the Standard Model of particle physics. One key contribution is the determination of
of the CKM angle γ. In addition, very large direct CP violation has been observed in
regions of phase space of multi-body hadronic decays, the description of which remains a
significant challenge. In this summary, we discuss the recent results and progress for the
determination of γ and direct CP violation in purely hadronic B decays as presented at
CKM 2018.
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1 Introduction

Within the Standard Model of particle physics (SM), CP violation is accommodated by the
Cabibbo-Kobayashi-Maskawa (CKM) matrix. The violation of the CP symmetry is a crucial
element to explain the imbalance between matter and anti-matter in the universe, and its study
forms an important part of the flavour physics program. The goal is to precisely determine the
SM CKM parameters, and to obtain insights in possible new sources of CP violation beyond
the SM.

Purely hadronic B decays are vital to this endeavour. Decays like B → DK, allow for a
precise determination of the Unitary Triangle (UT) angle γ, which plays an important role in
the study of CP violation. At the moment, this angle is the least well known of the three UT
angles, however due to significant experimental progress this is expected to change in the near
future. From a theoretical point, the study of CP violation in pure (charmless) hadronic B
decays is challenging due to the strong decay dynamics of these decays. The incredible amount
of data available from LHCb and the B-factories provides a perfect set-up, but requires reliable
and precise theoretical predictions and poses experimental challenges. In this summary, we
present recent experimental and theoretical progress, and give a brief outlook for the exciting
future to come.

2 Determination of γ

One of the key parameters of the CKM matrix is the Unitarity Triangle (UT) angle γ:

γ = arg

(
−VudV∗ub

VcdV∗cb

)
. (1)

It can be determined in a theoretically clean way from tree-level B→ D(∗)K(∗) and B→ D(∗)π
decays using the interference between the b→ ucs(d) and b→ cus(d) transitions. The theoreti-
cal uncertainty on γ determined from these decays is expected to be δγ/γ . 10−7 as no penguin
operators contribute to the decay amplitudes, and in addition electroweak box corrections are
shown to be tiny [1,2]. However, it has been pointed out that new physics contributions to the
tree-level Wilson coefficients C1 and C2 might actually influence the determination of γ from
tree decays [3, 4].

Several methods to determine γ have been proposed [5–8], differing in the type of D decays
that are probed: the GLW [5, 6] method, exploiting D decays to CP -eigenstates; the ADS [8],
using doubly Cabibbo-suppressed decays; the GGSZ [7], which exploits the three-body D decays
to self-conjugate modes, such as D0→ K0

Sh
+h− (h =K, π). The best sensitivity is achieved

by combining the various methods and decay modes as each of them has a different sensitivity
to γ depending on the CP -conserving parameters entering the decay amplitudes. The latest
combination of γ measurements by the LHCb collaboration [9] yield

γ = (74.0+5.0
−5.8)

◦, (2)

which is in very good agreement with the world averages γ = (71.1+4.6
−5.3)

◦ [10], γ = (73.5+4.2
−5.1)

◦ [11]
and γ = (70.0 ± 4.2)◦ [12]. The updated LHCb combination includes also three recent LHCb
analyses of B+ → D(∗)K(∗)± decays [13–15], all based on data from Run1 and Run2, and
corresponding to an integrated luminosity of pp collisions of 1 fb−1 at

√
s = 7 TeV, 2 fb−1 at√

s = 8 TeV, and 2 fb−1 at
√
s = 13 TeV. Particularly interesting is the analysis reported in
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Figure 1: Comparison between the current results of LHCb using the GGSZ and the GLW/ADS
methods, alongside with their future projections with 300 fb−1, in the plane of γ vs. rDKB . Plot
taken from [22]. Note: the parameter rDKB is an additional hadronic parameter quantifying the ratio
between the amplitudes of the suppressed b→ u and favoured b→ c transitions of the B decay.

Ref. [15], where the D∗0→ D0π0 and D∗0→ D0γ decays are exploited without reconstructing
the π0 or the γ. In fact, the invariant-mass distribution of B+→ D∗0h+ decays with a partially
reconstructed D∗0 has a peculiar shape, which allow for the separation of the B+→ D∗0h+ from
backgrounds and fully reconstructed B+→ D0h+ decays. With the full LHCb Run 2 data, the
attainable uncertainty on γ from this single decay is expected to be between 3◦ and 4◦.

At the moment, the γ combination from LHCb in Eq. (2) is dominated by the results of
GLW, ADS and GGSZ analyses, however, also other B → Dh modes contribute. Of those
modes, very interesting are the tagged time-dependent analyses of the B0

s → D−s K
+ [16] and

B0→ D−π+ [17] decays. These analyses provide valuable information on both γ and −2βs (for
the B0

s mode), and on both γ and β (for the B0 mode) with minimal external inputs [18–21].
In particular, the B0

s mode, which can uniquely be probed at LHCb, allows for a determination
of γ with a precision of approximately 20◦ with the current experimental precision using as the
only external input the value −2βs. Projections show that a precision of 2.5◦ on γ is achievable
at the end of Run3 of LHCb from this channel alone [22].

With the increasing precision of the collected data sets, it will be possible to exploit also new
decay modes to determine γ. Nice examples are B0 and B0

s decays to D0π+π− and D0K+K−

final states. A time-dependent analysis of the Dalitz plane of these decays provides significant
information on γ, β and −2βs [6, 23]. The first observation of the B0

s → D0K+K− decay is
reported by LHCb analyzing the full Run1 sample [24]. Restricting to the K+K− mass region
around the φ(1020) also the B0

s→ D∗0K+K− decay is observed for the first time1. Even though
the statistics are still insufficient to fully exploit the full potential of these decays, the long term
prospects are encouraging given the large sensitivity to γ provided by these modes [6, 22].

New analyses of B → Dh decays are also available from the Belle experiment [25]. The
much cleaner environment of e+-e− collisions and the fixed centre-of-mass energy allow to work
with D-meson decays that involve γ and π0 in the final state, that are very challenging for
LHCb, like D0→ K−π+π0 or D0→ K0

Sπ
+π−π0. This last final state is very interesting given

its relatively large branching fraction of 5.2%. A precision on γ of 25◦ is expected from this

1The technique of partially reconstructing D∗0→ D0π0 and D∗0→ D0γ decays is used.
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Figure 2: Contribution of CLEO-c and BES-III to the determination of γ from B+→ D0K+ decay
with the D0 meson going to π+π−π+π− final state. The uncertainty on γ as a function of the signal
yields is determined considering different contribution from the charm factories. Plot taken from [28].

channel alone with the full Belle data set, while a 4.4◦ precision is foreseen if projecting to
the 50 ab−1 of integrated luminosity of Belle-II [26]. Including all the main B→ Dh modes,
Belle-II is expected to measure the angle γ with a precision of 1◦ with 50 ab−1 of integrated
luminosity [27]. The projection for Belle-II are encouragingly supported by the first run of data
taking. With an integrated luminosity of approximately 0.5 fb−1B- and D-meson decays have
been rediscovered. A promising yield of 254 B→ Dπ candidates is observed with the D mesons
reconstructed using various final states.

As already mentioned, thanks to impressive data set that will be collected by Belle-II and the
LHCb upgrade, the determination of the angle γ will reach an impressive precision of about 1◦

for each experiment in the next few years. Even more impressive are the prospects for a second
upgrade of LHCb; collecting an integrated luminosity of 300 fb−1 would shrink the uncertainty
on γ to 0.35◦ [22]. Figure 1 shows the comparison between the current determination of γ
from LHCb and the expected determination with 300 fb−1 of integrated luminosity. However,
the analyses that mainly contribute to the γ determination require external inputs, that will
soon become the limiting factor to achieve such a precision. The best way to determine these
input parameters is to study quantum-correlated charm decays, that can be produced at e+-
e− colliders operating at the ψ(3770) resonance threshold. Decays of ψ(3770) to two neutral
charm mesons allow the measurement of the strong phases, the coherence factors and the CP
content of multibody charm decays. In this respect the rôle of BES-III, and its predecessor
CLEO-c, will be crucial. The current contribution of CLEO-c is quantified in an uncertainty
of about 2◦ on the overall error on γ [29]. Fully exploiting the full sample collected by BES-III,
corresponding to about 10 times the integrated luminosity of CLEO-c, will allow to reach a
sub-degree precision on γ. As an example, in Figure 2 the contribution of BES-III and CLEO-c
to the determination of γ from the B+→ D0K+ decay with the D0 meson going to π+π−π+π−

final state, is shown [28].
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3 CP violation in two-body B decays

Two-body B decays are theoretically challenging to describe as both the initial and final states
are purely hadronic. These decays have been studied in various approaches such as QCD factor-
ization (QCDF) [30–32], pQCD [33–35] or by using flavour symmetries of the light quarks [36].
Here we focus on the status and prospects for QCD factorization [37] and recent developments
for B → πK decays using flavour symmetries [38].

QCD factorization makes use of the heavy B meson mass to make a systematic expansion
both in Λ/mb as well as in αs. Importantly, at leading order in Λ/mb the strong phases
required to generate CP violation are only generated at order αs, making the study of these
contributions crucial. While the topological tree amplitudes are known already at NNLO level
[39–48], the leading penguin amplitudes represent the last missing ingredient to establish QCD
factorization at the NNLO level to leading power in ΛQCD/mb. The calculation of the vertex
correction to the latter amounts to a genuine two-loop, two-scale problem including a kinematic
threshold, and applies state-of-the-art multi-loop techniques. Recently, also the leading penguin
amplitudes were calculated [49,50]. The NNLO correction turns out to be sizable, but there is
no breakdown of the perturbative expansion [50]. The sizable NNLO effects in the amplitude
gets diluted in quantities like amplitude ratios, direct CP asymmetries and branching ratios.

The key question is how to improve QCDF-based predictions for non-leptonic B-decays in
the future [37]. On the perturbative side, the NNLO QCD correction to the power-suppressed
but chirally enhanced (and therefore phenomenologically relevant) penguin amplitude a6 are
still missing, as well as NLO QED corrections. Moreover, it could be beneficial to combine
insights from two-body decays with the QCDF formulation of three-body decays [51, 52]. The
most urgent issue in two-body charmless nonleptonic B-decays in QCDF is, however, improving
our poor understanding of power corrections. To date their inclusion amounts to a rather crude
parametrisation [53] or to a data-driven approach [54]. An understanding of power corrections
in QCDF on field-theoretic grounds is therefore highly desired, and ideas in this direction exist
based on the ‘collinear anomaly’ [55, 56] in collider physics. The long-term goal is to obtain a
comprehensive QCDF analysis of all channels and observables with a satisfactory treatment of
power corrections.

In this respect, phenomenological studies using flavour symmetries can provide valuable
insights into the strong decay dynamics of pure hadronic decays and non-perturbative contri-
butions. Specifically interesting are B → πK decays, which are dominated by QCD penguin
topologies due to a CKM suppression of the tree topologies, and which were studied exten-
sively [53, 57–68]. In fact, using an isospin relation between the neutral B → πK decays, a
correlation between the direct and mixing-induced CP asymmetries of B0→ π0K0

S is found,
which is in tension with the experimental data [57,58,68]. Interestingly, this tension has grown
stronger over the years in particular due to more precise determination of γ, which emphasizes
the importance of improved γ determinations for phenomenological studies. The tension can-
not trivially be resolved by a change in the data, as was recently discussed [38, 57, 58]. Here a
state-of-the-art analysis of B → πK using flavour SU(3) symmetry was performed, including
the electroweak penguin (EWP) contributions that are at the same level as the tree contribu-
tion in these decays. In addition, the angle φ± between the amplitude A(B0

d → π−K+) and
its CP -conjugate was studied and found to provide an additional stringent constraint which
increases the tension between the SM prediction and the current experimental data. An in-
triguing possibility is that this discrepancy is signalling New Physics, for which a modified
EWP sector is a prime candidate.
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Figure 3: Scan of the confidence level for α/φ2 using only data from B→ ππ measurements of the
Belle experiment. The dashed red curve shows the previous constraint, while the solid blue curve
includes the newest measurement of the B0→ π0π0 decay. Plot taken from [75].

The B → πK decays, therefore, provide an excellent opportunity to study the parameters
that govern these EWP contributions. Isospin relations between the B → πK amplitudes can
be used to determine them in a theoretically clean way, using only minimal SU(3) assumptions
[57, 58, 68]. In this new strategy, the mixing-induced CP asymmetry of B0

d → π0KS plays
an important role, offering exciting prospects for Belle II. Although in general, theoretical
uncertainties are difficult to control in non-leptonic B decays, in this new method, the theory
uncertainty is expected to be at the same level as the experimental precision that can be reached
at the end of Belle II [69]. The new strategy offers exciting possibilities for the nearby future
and would potentially allow for the observation of new CP -violating physics in the B → πK
system.

From the experimental point of view, charmless non-leptonic B decays are also challenging.
Main experimental issues are related to the cross-contamination of the different final states that
need to be suppressed with excellent particle identification capabilities. This is complicated
by the fact that the typical branching ratios of these decays vary by about three order to
magnitudes (between 10−5 and 10−8) making some of the decay modes the main source of
background to other channels. New results have been shown by LHCb and Belle, plus interesting
projections on the capabilities of Belle-II. Updated measurement of CP violation in B0

(s) meson

decays to π+π−, K+K− and K+π− final states have been reported by LHCb [70]. This includes
the measurement of the time-integrated CP asymmetries of the B0→ K+π− and B0

s→ π+K−

decays, and the time-dependent CP asymmetries of the B0→ π+π− and B0
s→ K+K− decays.

All the measurements are world’s best and the time-integrated CP asymmetries of the B0→
K+π− and B0

s→ π+K− decays are also leading the world averages of these quantities. They are
used to perform the test of the Standard Model suggested in Ref. [71], finding no evidence of
deviations from the Standard Model. The measurement of the CP violation parameters in the
B0
s→ K+K− decay is unique to LHCb and constitutes the strongest evidence of time-dependent

CP violation in the B0
s -meson sector to date, with a significance of 4 standard deviations. These

new measurements will enable improved constraints to be set on the CKM CP -violating phases,
using processes whose amplitudes receive significant contributions from loop diagrams both in
the mixing and decay of B0

(s) mesons [72–74].

As already mentioned in Section 2 the much cleaner environment of e+-e− colliders allows
Belle to perform analyses with neutral particles in the final states, that would be very challeng-
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ing for LHCb, like ηπ0, η η and π0π0. Particularly interesting is the analysis of the B0→ π0π0

decay, whose CP asymmetry and branching fraction are relevant input to the determination
of the CKM angle α [76] and to the analysis already mentioned in Ref. [73, 74]. The updated
result from Belle on the branching ratio and the direct CP asymmetry of this decay [75] provide
a relevant contribution to the determination of α, as visualised in Figure 3. However, the real
breakthrough is expected with Belle-II, when the much larger statistics will allow to exploit the
Dalitz decay π0→ γe+e−. This makes it possible to perform a time-dependent analysis of the
B0→ π0π0 decay, measuring both the direct and mixing-induced CP asymmetries. Finally, a
precision on α of about 2◦ is expected using only the B→ ππ system, while the overall precision
on α is expected to be below 1◦ [27].

Another interesting channel that is challenging for LHCb, given the reduced acceptance of
the experiment to the long living K0

S , is the B0
s→ K0

SK
0
S decay. This decay proceeds through

pure penguin topologies and thus the measurement of its branching fraction and CP asymme-
tries has the potential to probe several scenarios of physics beyond the Standard Model [77–79].
The Belle experiment, using the 121.4 fb−1 of luminosity collected at the Υ (5S)resonance, re-
ported the first observation of this decay with a significance of more than 5 standard devia-
tions [80]. Even though the resolution on the decay time achievable by Belle (and Belle-II)
is not sufficient to resolve the fast oscillation of the B0

s meson, a measurement of its effective
lifetime is possible. Thanks to the non-zero decay-width difference ∆Γs of the B0

s meson, mea-
suring the effective lifetime allows to extract information also on CP violation. Approximately
1000 B0

s→ K0
SK

0
S signal candidates are expected with the full Belle-II sample.

4 CP violation in three-body B decays

Multibody decays form a large part of the non-leptonic B-meson branching fraction. Especially,
in the study of CP violation they are interesting because due to their non-trivial kinematics,
these decays contain more information on strong phases than two-body decays. For charmless
B → hhh decays, interesting and rich patterns of direct CP violation, (ACP ), across the Dalitz
distribution were indeed observed [81]. In particular, a clear correlation between the channels
B± → K±π+π− and B± → K±K+K− decays was observed, where the CP asymmetries carry
opposite signs. This is a signature of the rescattering process π+π− → K+K− and a conse-
quence of the CPT symmetry, which requires the equal total decay rates between particles
and antiparticles [82]. Theoretically, such three-body decays are challenging to describe and a
large variety of approaches are considered (see e.g. [82–84]). Recently, three-body decays were
also studied for the first time in a QCD factorization approach [51, 52], which requires new
non-perturbative objects as the B → hh and 2h distribution amplitudes.

To fully understand the different CP patterns and distribution of the strong phases across
the Dalitz plot a full amplitude analysis is required. For B± → π−π+π± and B± → K−K+π±,
new analyses by the LHCb Collaboration are expected to appear soon [85]. Of particular note
are the observation of very large direct CP-violation, (approaching 1), in regions of phase space
for the B± → K+K−π± and B± → π+π−π± modes [85] [86]. The interpretation of these decays
is challenging, given the lack of proper description for all the components (in particular scalar
resonances) contributing to the Dalitz plot distributions. The case of the B± → K+K−π±

decay, is particularly challenging as the yield shows an order of magnitude increase above
phase space below MKK < 1.1GeV as well as ACP = −0.90 ± 0.17 ± 0.04 [86]. Thus two
amplitudes are required to provide an order of magnitude increase below MKK < 1.1GeV. One
where the weak phase phase changes sign between particles and anti-particles and the other
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where it does not.
The analysis of B± → K−K+K± is ongoing. In this decay, the rescattering of charm

penguins might play an important role in the generation of strong phases [87, 88]. In fact, the
CP asymmetry of B± → K−K+K± changes sign close to the DD̄ open threshold around an
invariant KK-mass of 4 GeV [81]. Therefore, at these high energies DD̄ → KK̄(π−π+) may
be important, in analogy to ππ − KK rescattering at low energies. The effect of this DD̄
rescattering, can be parameterized by a pure hadronic triangle loop [88], which would generate
a distinct structure in the Dalitz plot. In particular, the phase of the hadronic amplitude
changes sign across the DD̄ threshold. This triangle parameterization could be confirmed
by data, using amplitude analysis of the B± → K−K+K± channel. Interestingly, a similar
contribution would also influence the rare Bc → K−K+π+ decay [89]. New data from LHCb,
would be able to test the charm rescattering parametrization.

4.1 Extracting γ from three-body decays

The conventional methods to extract γ from hadronic B→ Dh decays are theoretically clean
because these decays proceed through pure tree-level transitions. Besides, using flavour sym-
metries, it is also possible to extract γ from penguin dominated charmless two-body B de-
cays [90,91], but also from three-body B decays [83,92]. Because of the relevant contributions
of penguin topologies to the decay amplitudes, these latter decays might be sensitive to new
particles that could enter the loops as virtual contributions, making very interesting to compare
extractions of γ from tree- and loop-dominated decays.

The angle γ can be extracted from B→ hhh decays using a diagrammatic analysis, and by
relating the hadronic parameters of the different decays by SU(3) flavour symmetry [83,92,93].
In this way, by using the available branching ratios, direct and mixing-induced CP asymmetries,
γ can be determined from data [94]. Thanks to the number of observables that over-constrain
the system of equations, it is also possible to introduce a parameter that takes into account
possible SU(3)-breaking effects, hence relaxing the theoretical assumptions of the method. An
implementation of this method using BaBar data for B+→ K+π+π−, B0→ K0

Sπ
+π−, B0→

K+π−π0, B0 → K0
SK

0
SK

0
S and B0 → K0

SK
+K− [95] was first presented in Ref. [92, 94]. In

the SU(3) limit, the momentum dependent hadronic parameters are equal in each point in the
Dalitz plot, making it possible to extract γ (and the SU(3)-breaking parameter) independently
in different regions. The key advantage is that the extracted values of γ can then be averaged
over the entire Dalitz plot, and thereby increasing the precision.

Recently, a new analysis using this method was performed, which takes into account several
systematic uncertainties [96, 97]. By combining several hundred sets of points on the Dalitz
plane, and taking into account the correlations among the different points, six possible solutions
for γ with a O(10◦) precision were found. The uncertainty is comparable with measurements of
γ from decays including loops processes and allows for a comparison with the world average from
measurements obtained with tree-dominated decays [11, 12]. Very interesting is the possibility
of the analysis to quantify the strength of SU(3)-breaking effects. Although locally SU(3)
breaking might be large, it was found that averaging over a large number of points in the
Dalitz plane, the breaking effects are O(6%) [96,97].

Efforts to included anti-symmetric states or mixed states are undertaken, which may help
to decrease the statistical uncertainties and reduced the number of solutions. It would be
interesting to perform this analysis using LHCb and Belle-II data by extracting γ directly from
a simultaneous fit.
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Figure 4: Projections of the B0 → K0
Sπ

+π− data points and best fit result (blue line) onto the
Dalitz-plot variables (left) m2

K0
Sπ

+ and (right) m2
K0

Sπ
− . Projections are restricted to the two-body low

invariant-mass regions. Plot taken from [99].

4.2 Experimental status

From the experimental point of view the study of B0
(s) decays to multibody charmless final states

is also challenging. As for the two body decays the low branching fractions and the plethora of
different final states makes very difficult to efficiently select the signals. Ror LHCb, the analyses
are further complicated by the low acceptance of the detector with respect to the long lifetime
of the K0

S . Recent results from LHCb includes the measurement of the branching fractions of
the various B0

(s)→ K0
Sh

+h′− decays [98] and the untagged time-integrated Dalitz analysis of the

B0→ K0
Sπ

+π− decay [99] both performed with the full Run1 sample. The branching fractions
are measured relatively to the B0→ K0

Sπ
+π− and report the observation of all the B0 and B0

s

modes, except for the B0
s→ K0

SK
+K− for which only an upper limit is determined. The Dalitz

analysis of the B0→ K0
Sπ

+π− is the first amplitude analysis of a any B0
(s)→ K0

Sh
+h′− mode

at a hadronic machine. It is described using the isobar model, including several intermediate
resonances plus a non-resonant component. The K0

Sπ
− S-wave is described using the EFKLLM

model [100]. The CP -averaged fit fractions of all the components are determined as well as the
CP asymmetries of the flavour-specific final states. A very large CP asymmetry is observed for
the B0→ K∗−π+ decay, corresponding to

ACP (B0→ K∗−π+) = −0.308± 0.062 , (3)

which is the first observation of CP violation in this channel with a significance of more than 6
standard deviations. The very large CP asymmetry is visible in Figure 4, where the projection
on the Dalitz-plot variables m2

K0
Sπ

+ and (right) m2
K0

Sπ
− are shown. The full potential of these

decays can only be exploited with flavour-tagged time-dependent Dalitz analyses, that are very
challenging and require much larger statistics. Thanks to the much better performances of
flavour tagging, Belle-II will be able to remain competitive for the time-dependent measurement
of the B0 modes.
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4.3 CP violation in beauty baryons at LHCb

In contrast to meson decays, CP violation in the baryon sector has never been observed. In this
quest, the study of beauty-baryon decays, and in particular those without charm quark in the
final state, provides excellent opportunities. In fact, these decays might have large CP asymme-
tries, as the tree-level and loop-level transitions are comparable in magnitude which allows for
large interference effects. Thanks to the large production cross-section of beauty baryons in pp
collisions at the LHC, the LHCb experiment is the only active experiment capable of expanding
our knowledge in this sector, as these decays are not accessible at the e+e− KEK collider. The
only measurement of CP violation in b-baryon decays previous to LHCb was the measurement
of the direct CP asymmetries of Λ0

b→ pK− and Λ0
b→ pπ− decays performed by CDF [101] with

precision of O(0.1). Using the full Run1 data sample, corresponding to integrated luminosities
of 1 fb−1 and 2 fb−1 of pp collisions collected as

√
s =7 TeV and

√
s =8 TeV, respectively, LHCb

measured the same quantities with uncertainties reduced by approximately a factor 4 [102]

ACP (Λ0
b→ pK−) = −0.020± 0.013± 0.019,

ACP (Λ0
b→ pπ−) = −0.035± 0.017± 0.020,

where the first uncertainty is statistics and the second systematics. A measurement of the
difference between the two CP asymmetries is also performed, in which the main systematic
uncertainties, being the asymmetry of detection efficiency between p and p, and the asymmetry
between the production cross-section of Λ0

b and Λ0
b , cancel:

ACP (Λ0
b→ pK−)− ACP (Λ0

b→ pπ−) = 0.014± 0.022± 0.013.

In addition, the LHCb collaboration also studies b-hadron decays with multibody final
states. Recently evidence for CP violation in the Λ0

b→ pπ−π+π− decay [103] with a significance
exceeding the 3 standard deviations was reported. The analysis is based on the full Run1
statistics, corresponding to integrated luminosities of 1 fb−1 and 2 fb−1 of pp collisions collected
as
√
s =7 TeV and

√
s =8 TeV, respectively, and the experiment has the potential to establish

a first observation of CP violation in a baryon decays when including also the Run2 data.
In the analysis, triple products of the momenta of the final-state particles are used to build
observables that are sensitive to the violation of the P and CP symmetry [104, 105]. These
observables have the advantage of being almost insensitive to spurious asymmetries, like the
detection asymmetry of charge-conjugate final states or the imbalance between the production
cross sections between Λ0

b and Λ0
b baryons in pp collisions. The validity of this consideration is

nevertheless tested by performing the analysis on the control mode Λ0
b→ Λ+

c π
− in which CP

violation is expected to be negligible. The search for P and CP violation is also performed in
different regions of the phase space of the decay. Two splitting scheme are used: one designated
to isolate regions according to the dominant intermediate resonances and one designated to
separate the sample in bins of the angle between the p− π− and the π+ − π− decay planes, as
suggested in Refs. [104, 105]. Also, the Λ0

b→ pπ−K+K− decay was studied by LHCb, finding
no evidence of P and CP violation [103]. More recently the same technique has been applied
to Λ0

b→ pK−π+π−, Λ0
b→ pK+K−K+ and Ξ0

b → pK−K+π− decays, reconstructed using the
Run1 data [106]. Again, no evidence of P or CP violation is observed for these decay modes.
Moreover, inspecting the phase space of the pK−π+π− and pK−K+K− final states the decay
Λ0
b→ pK−χc0 is observed for the first time. The branching ratios of several Λ0

b and Ξ0
b decays

to p 3h final states (with h being charged kaons or pions) have also been measured relatively to
the branching ratios of the Λ0

b→ Λ+
c (pK−π+)π−, using the same data sample [107]. Given that
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the sector of beauty baryon decays is almost unexplored, the many results expected in the near
future will require a joined effort both on the experimental and on the theory side to provide
reliable interpretation of the experimental results.

5 Conclusion

The search for new sources of CP violation in B decays remains an interesting but challenging
enterprise. With the start of Belle-II and the continued analyses at LHCb, many exciting
new results will surface in the near future. Among these are determination of γ from single
experiments at the few degree level and an expected combined precision of an impressive 1◦.
In addition, with Belle-II running also the decays with neutral particles (like photons and π0)
in the final states will be updated and new CP asymmetries measured, which provide also
important guidance to stimulate theoretical progress. Finally, especially in the three- and
multibody B decays exciting results are expected in the nearby future. Most importantly,
the full exploitation of this incredible amount of data, requires continued efforts and synergies
between theorists and experimentalists. Theoretically, there are still the power-corrections and
the description of three-body decays that require further investigations and many interesting
avenues can still be explored, especially when making use of the available data. We look forward
to the many interesting new analysis and theoretical progress that will be presented at the next
CKM workshop.
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